historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/tests/qtest/rtc-test.c

721 lines
20 KiB
C
Raw Normal View History

2024-01-16 17:20:27 +00:00
/*
* QTest testcase for the MC146818 real-time clock
*
* Copyright IBM, Corp. 2012
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "libqtest-single.h"
#include "qemu/timer.h"
#include "hw/rtc/mc146818rtc.h"
#include "hw/rtc/mc146818rtc_regs.h"
#define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
static uint8_t base = 0x70;
static int bcd2dec(int value)
{
return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
}
static uint8_t cmos_read(uint8_t reg)
{
outb(base + 0, reg);
return inb(base + 1);
}
static void cmos_write(uint8_t reg, uint8_t val)
{
outb(base + 0, reg);
outb(base + 1, val);
}
static int tm_cmp(struct tm *lhs, struct tm *rhs)
{
time_t a, b;
struct tm d1, d2;
memcpy(&d1, lhs, sizeof(d1));
memcpy(&d2, rhs, sizeof(d2));
a = mktime(&d1);
b = mktime(&d2);
if (a < b) {
return -1;
} else if (a > b) {
return 1;
}
return 0;
}
#if 0
static void print_tm(struct tm *tm)
{
printf("%04d-%02d-%02d %02d:%02d:%02d\n",
tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff);
}
#endif
static void cmos_get_date_time(struct tm *date)
{
int base_year = 2000, hour_offset;
int sec, min, hour, mday, mon, year;
time_t ts;
struct tm dummy;
sec = cmos_read(RTC_SECONDS);
min = cmos_read(RTC_MINUTES);
hour = cmos_read(RTC_HOURS);
mday = cmos_read(RTC_DAY_OF_MONTH);
mon = cmos_read(RTC_MONTH);
year = cmos_read(RTC_YEAR);
if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
sec = bcd2dec(sec);
min = bcd2dec(min);
hour = bcd2dec(hour);
mday = bcd2dec(mday);
mon = bcd2dec(mon);
year = bcd2dec(year);
hour_offset = 80;
} else {
hour_offset = 0x80;
}
if ((cmos_read(0x0B) & REG_B_24H) == 0) {
if (hour >= hour_offset) {
hour -= hour_offset;
hour += 12;
}
}
ts = time(NULL);
localtime_r(&ts, &dummy);
date->tm_isdst = dummy.tm_isdst;
date->tm_sec = sec;
date->tm_min = min;
date->tm_hour = hour;
date->tm_mday = mday;
date->tm_mon = mon - 1;
date->tm_year = base_year + year - 1900;
#ifndef __sun__
date->tm_gmtoff = 0;
#endif
ts = mktime(date);
}
static void check_time(int wiggle)
{
struct tm start, date[4], end;
struct tm *datep;
time_t ts;
/*
* This check assumes a few things. First, we cannot guarantee that we get
* a consistent reading from the wall clock because we may hit an edge of
* the clock while reading. To work around this, we read four clock readings
* such that at least two of them should match. We need to assume that one
* reading is corrupt so we need four readings to ensure that we have at
* least two consecutive identical readings
*
* It's also possible that we'll cross an edge reading the host clock so
* simply check to make sure that the clock reading is within the period of
* when we expect it to be.
*/
ts = time(NULL);
gmtime_r(&ts, &start);
cmos_get_date_time(&date[0]);
cmos_get_date_time(&date[1]);
cmos_get_date_time(&date[2]);
cmos_get_date_time(&date[3]);
ts = time(NULL);
gmtime_r(&ts, &end);
if (tm_cmp(&date[0], &date[1]) == 0) {
datep = &date[0];
} else if (tm_cmp(&date[1], &date[2]) == 0) {
datep = &date[1];
} else if (tm_cmp(&date[2], &date[3]) == 0) {
datep = &date[2];
} else {
g_assert_not_reached();
}
if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) {
long t, s;
start.tm_isdst = datep->tm_isdst;
t = (long)mktime(datep);
s = (long)mktime(&start);
if (t < s) {
g_test_message("RTC is %ld second(s) behind wall-clock", (s - t));
} else {
g_test_message("RTC is %ld second(s) ahead of wall-clock", (t - s));
}
g_assert_cmpint(ABS(t - s), <=, wiggle);
}
}
static int wiggle = 2;
static void set_year_20xx(void)
{
/* Set BCD mode */
cmos_write(RTC_REG_B, REG_B_24H);
cmos_write(RTC_REG_A, 0x76);
cmos_write(RTC_YEAR, 0x11);
cmos_write(RTC_CENTURY, 0x20);
cmos_write(RTC_MONTH, 0x02);
cmos_write(RTC_DAY_OF_MONTH, 0x02);
cmos_write(RTC_HOURS, 0x02);
cmos_write(RTC_MINUTES, 0x04);
cmos_write(RTC_SECONDS, 0x58);
cmos_write(RTC_REG_A, 0x26);
g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
if (sizeof(time_t) == 4) {
return;
}
/* Set a date in 2080 to ensure there is no year-2038 overflow. */
cmos_write(RTC_REG_A, 0x76);
cmos_write(RTC_YEAR, 0x80);
cmos_write(RTC_REG_A, 0x26);
g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
cmos_write(RTC_REG_A, 0x76);
cmos_write(RTC_YEAR, 0x11);
cmos_write(RTC_REG_A, 0x26);
g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
}
static void set_year_1980(void)
{
/* Set BCD mode */
cmos_write(RTC_REG_B, REG_B_24H);
cmos_write(RTC_REG_A, 0x76);
cmos_write(RTC_YEAR, 0x80);
cmos_write(RTC_CENTURY, 0x19);
cmos_write(RTC_MONTH, 0x02);
cmos_write(RTC_DAY_OF_MONTH, 0x02);
cmos_write(RTC_HOURS, 0x02);
cmos_write(RTC_MINUTES, 0x04);
cmos_write(RTC_SECONDS, 0x58);
cmos_write(RTC_REG_A, 0x26);
g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19);
}
static void bcd_check_time(void)
{
/* Set BCD mode */
cmos_write(RTC_REG_B, REG_B_24H);
check_time(wiggle);
}
static void dec_check_time(void)
{
/* Set DEC mode */
cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
check_time(wiggle);
}
static void alarm_time(void)
{
struct tm now;
time_t ts;
int i;
ts = time(NULL);
gmtime_r(&ts, &now);
/* set DEC mode */
cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
g_assert(!get_irq(RTC_ISA_IRQ));
cmos_read(RTC_REG_C);
now.tm_sec = (now.tm_sec + 2) % 60;
cmos_write(RTC_SECONDS_ALARM, now.tm_sec);
cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE);
cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE);
cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE);
for (i = 0; i < 2 + wiggle; i++) {
if (get_irq(RTC_ISA_IRQ)) {
break;
}
clock_step(1000000000);
}
g_assert(get_irq(RTC_ISA_IRQ));
g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
g_assert(cmos_read(RTC_REG_C) == 0);
}
static void set_time_regs(int h, int m, int s)
{
cmos_write(RTC_HOURS, h);
cmos_write(RTC_MINUTES, m);
cmos_write(RTC_SECONDS, s);
}
static void set_time(int mode, int h, int m, int s)
{
cmos_write(RTC_REG_B, mode);
cmos_write(RTC_REG_A, 0x76);
set_time_regs(h, m, s);
cmos_write(RTC_REG_A, 0x26);
}
static void set_datetime_bcd(int h, int min, int s, int d, int m, int y)
{
cmos_write(RTC_HOURS, h);
cmos_write(RTC_MINUTES, min);
cmos_write(RTC_SECONDS, s);
cmos_write(RTC_YEAR, y & 0xFF);
cmos_write(RTC_CENTURY, y >> 8);
cmos_write(RTC_MONTH, m);
cmos_write(RTC_DAY_OF_MONTH, d);
}
static void set_datetime_dec(int h, int min, int s, int d, int m, int y)
{
cmos_write(RTC_HOURS, h);
cmos_write(RTC_MINUTES, min);
cmos_write(RTC_SECONDS, s);
cmos_write(RTC_YEAR, y % 100);
cmos_write(RTC_CENTURY, y / 100);
cmos_write(RTC_MONTH, m);
cmos_write(RTC_DAY_OF_MONTH, d);
}
static void set_datetime(int mode, int h, int min, int s, int d, int m, int y)
{
cmos_write(RTC_REG_B, mode);
cmos_write(RTC_REG_A, 0x76);
if (mode & REG_B_DM) {
set_datetime_dec(h, min, s, d, m, y);
} else {
set_datetime_bcd(h, min, s, d, m, y);
}
cmos_write(RTC_REG_A, 0x26);
}
#define assert_time(h, m, s) \
do { \
g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \
g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
} while(0)
#define assert_datetime_bcd(h, min, s, d, m, y) \
do { \
g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, min); \
g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, d); \
g_assert_cmpint(cmos_read(RTC_MONTH), ==, m); \
g_assert_cmpint(cmos_read(RTC_YEAR), ==, (y & 0xFF)); \
g_assert_cmpint(cmos_read(RTC_CENTURY), ==, (y >> 8)); \
} while(0)
static void basic_12h_bcd(void)
{
/* set BCD 12 hour mode */
set_time(0, 0x81, 0x59, 0x00);
clock_step(1000000000LL);
assert_time(0x81, 0x59, 0x01);
clock_step(59000000000LL);
assert_time(0x82, 0x00, 0x00);
/* test BCD wraparound */
set_time(0, 0x09, 0x59, 0x59);
clock_step(60000000000LL);
assert_time(0x10, 0x00, 0x59);
/* 12 AM -> 1 AM */
set_time(0, 0x12, 0x59, 0x59);
clock_step(1000000000LL);
assert_time(0x01, 0x00, 0x00);
/* 12 PM -> 1 PM */
set_time(0, 0x92, 0x59, 0x59);
clock_step(1000000000LL);
assert_time(0x81, 0x00, 0x00);
/* 11 AM -> 12 PM */
set_time(0, 0x11, 0x59, 0x59);
clock_step(1000000000LL);
assert_time(0x92, 0x00, 0x00);
/* TODO: test day wraparound */
/* 11 PM -> 12 AM */
set_time(0, 0x91, 0x59, 0x59);
clock_step(1000000000LL);
assert_time(0x12, 0x00, 0x00);
/* TODO: test day wraparound */
}
static void basic_12h_dec(void)
{
/* set decimal 12 hour mode */
set_time(REG_B_DM, 0x81, 59, 0);
clock_step(1000000000LL);
assert_time(0x81, 59, 1);
clock_step(59000000000LL);
assert_time(0x82, 0, 0);
/* 12 PM -> 1 PM */
set_time(REG_B_DM, 0x8c, 59, 59);
clock_step(1000000000LL);
assert_time(0x81, 0, 0);
/* 12 AM -> 1 AM */
set_time(REG_B_DM, 0x0c, 59, 59);
clock_step(1000000000LL);
assert_time(0x01, 0, 0);
/* 11 AM -> 12 PM */
set_time(REG_B_DM, 0x0b, 59, 59);
clock_step(1000000000LL);
assert_time(0x8c, 0, 0);
/* 11 PM -> 12 AM */
set_time(REG_B_DM, 0x8b, 59, 59);
clock_step(1000000000LL);
assert_time(0x0c, 0, 0);
/* TODO: test day wraparound */
}
static void basic_24h_bcd(void)
{
/* set BCD 24 hour mode */
set_time(REG_B_24H, 0x09, 0x59, 0x00);
clock_step(1000000000LL);
assert_time(0x09, 0x59, 0x01);
clock_step(59000000000LL);
assert_time(0x10, 0x00, 0x00);
/* test BCD wraparound */
set_time(REG_B_24H, 0x09, 0x59, 0x00);
clock_step(60000000000LL);
assert_time(0x10, 0x00, 0x00);
/* TODO: test day wraparound */
set_time(REG_B_24H, 0x23, 0x59, 0x00);
clock_step(60000000000LL);
assert_time(0x00, 0x00, 0x00);
}
static void basic_24h_dec(void)
{
/* set decimal 24 hour mode */
set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
clock_step(1000000000LL);
assert_time(9, 59, 1);
clock_step(59000000000LL);
assert_time(10, 0, 0);
/* test BCD wraparound */
set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
clock_step(60000000000LL);
assert_time(10, 0, 0);
/* TODO: test day wraparound */
set_time(REG_B_24H | REG_B_DM, 23, 59, 0);
clock_step(60000000000LL);
assert_time(0, 0, 0);
}
static void am_pm_alarm(void)
{
cmos_write(RTC_MINUTES_ALARM, 0xC0);
cmos_write(RTC_SECONDS_ALARM, 0xC0);
/* set BCD 12 hour mode */
cmos_write(RTC_REG_B, 0);
/* Set time and alarm hour. */
cmos_write(RTC_REG_A, 0x76);
cmos_write(RTC_HOURS_ALARM, 0x82);
cmos_write(RTC_HOURS, 0x81);
cmos_write(RTC_MINUTES, 0x59);
cmos_write(RTC_SECONDS, 0x00);
cmos_read(RTC_REG_C);
cmos_write(RTC_REG_A, 0x26);
/* Check that alarm triggers when AM/PM is set. */
clock_step(60000000000LL);
g_assert(cmos_read(RTC_HOURS) == 0x82);
g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
/*
* Each of the following two tests takes over 60 seconds due to the time
* needed to report the PIT interrupts. Unfortunately, our PIT device
* model keeps counting even when GATE=0, so we cannot simply disable
* it in main().
*/
if (g_test_quick()) {
return;
}
/* set DEC 12 hour mode */
cmos_write(RTC_REG_B, REG_B_DM);
/* Set time and alarm hour. */
cmos_write(RTC_REG_A, 0x76);
cmos_write(RTC_HOURS_ALARM, 0x82);
cmos_write(RTC_HOURS, 3);
cmos_write(RTC_MINUTES, 0);
cmos_write(RTC_SECONDS, 0);
cmos_read(RTC_REG_C);
cmos_write(RTC_REG_A, 0x26);
/* Check that alarm triggers. */
clock_step(3600 * 11 * 1000000000LL);
g_assert(cmos_read(RTC_HOURS) == 0x82);
g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
/* Same as above, with inverted HOURS and HOURS_ALARM. */
cmos_write(RTC_REG_A, 0x76);
cmos_write(RTC_HOURS_ALARM, 2);
cmos_write(RTC_HOURS, 3);
cmos_write(RTC_MINUTES, 0);
cmos_write(RTC_SECONDS, 0);
cmos_read(RTC_REG_C);
cmos_write(RTC_REG_A, 0x26);
/* Check that alarm does not trigger if hours differ only by AM/PM. */
clock_step(3600 * 11 * 1000000000LL);
g_assert(cmos_read(RTC_HOURS) == 0x82);
g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0);
}
/* success if no crash or abort */
static void fuzz_registers(void)
{
unsigned int i;
for (i = 0; i < 1000; i++) {
uint8_t reg, val;
reg = (uint8_t)g_test_rand_int_range(0, 16);
val = (uint8_t)g_test_rand_int_range(0, 256);
cmos_write(reg, val);
cmos_read(reg);
}
}
static void register_b_set_flag(void)
{
if (cmos_read(RTC_REG_A) & REG_A_UIP) {
clock_step(UIP_HOLD_LENGTH + NANOSECONDS_PER_SECOND / 5);
}
g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
/* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/
cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET);
set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
/* Since SET flag is still enabled, time does not advance. */
clock_step(1000000000LL);
assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
/* Disable SET flag in Register B */
cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET);
assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
/* Since SET flag is disabled, the clock now advances. */
clock_step(1000000000LL);
assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
}
static void divider_reset(void)
{
/* Enable binary-coded decimal (BCD) mode in Register B*/
cmos_write(RTC_REG_B, REG_B_24H);
/* Enter divider reset */
cmos_write(RTC_REG_A, 0x76);
set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
/* Since divider reset flag is still enabled, these are equality checks. */
clock_step(1000000000LL);
assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
/* The first update ends 500 ms after divider reset */
cmos_write(RTC_REG_A, 0x26);
clock_step(500000000LL - UIP_HOLD_LENGTH - 1);
g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
clock_step(1);
g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0);
clock_step(UIP_HOLD_LENGTH);
g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
}
static void uip_stuck(void)
{
set_datetime(REG_B_24H, 0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
/* The first update ends 500 ms after divider reset */
(void)cmos_read(RTC_REG_C);
clock_step(500000000LL);
g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
/* UF is now set. */
cmos_write(RTC_HOURS_ALARM, 0x02);
cmos_write(RTC_MINUTES_ALARM, 0xC0);
cmos_write(RTC_SECONDS_ALARM, 0xC0);
/* Because the alarm will fire soon, reading register A will latch UIP. */
clock_step(1000000000LL - UIP_HOLD_LENGTH / 2);
g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0);
/* Move the alarm far away. This must not cause UIP to remain stuck! */
cmos_write(RTC_HOURS_ALARM, 0x03);
clock_step(UIP_HOLD_LENGTH);
g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
}
#define RTC_PERIOD_CODE1 13 /* 8 Hz */
#define RTC_PERIOD_CODE2 15 /* 2 Hz */
#define RTC_PERIOD_TEST_NR 50
static uint64_t wait_periodic_interrupt(uint64_t real_time)
{
while (!get_irq(RTC_ISA_IRQ)) {
real_time = clock_step_next();
}
g_assert((cmos_read(RTC_REG_C) & REG_C_PF) != 0);
return real_time;
}
static void periodic_timer(void)
{
int i;
uint64_t period_clocks, period_time, start_time, real_time;
/* disable all interrupts. */
cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) &
~(REG_B_PIE | REG_B_AIE | REG_B_UIE));
cmos_write(RTC_REG_A, RTC_PERIOD_CODE1);
/* enable periodic interrupt after properly configure the period. */
cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_PIE);
start_time = real_time = clock_step_next();
for (i = 0; i < RTC_PERIOD_TEST_NR; i++) {
cmos_write(RTC_REG_A, RTC_PERIOD_CODE1);
real_time = wait_periodic_interrupt(real_time);
cmos_write(RTC_REG_A, RTC_PERIOD_CODE2);
real_time = wait_periodic_interrupt(real_time);
}
period_clocks = periodic_period_to_clock(RTC_PERIOD_CODE1) +
periodic_period_to_clock(RTC_PERIOD_CODE2);
period_clocks *= RTC_PERIOD_TEST_NR;
period_time = periodic_clock_to_ns(period_clocks);
real_time -= start_time;
g_assert_cmpint(ABS((int64_t)(real_time - period_time)), <=,
NANOSECONDS_PER_SECOND * 0.5);
}
int main(int argc, char **argv)
{
QTestState *s = NULL;
int ret;
g_test_init(&argc, &argv, NULL);
s = qtest_start("-rtc clock=vm");
qtest_irq_intercept_in(s, "ioapic");
qtest_add_func("/rtc/check-time/bcd", bcd_check_time);
qtest_add_func("/rtc/check-time/dec", dec_check_time);
qtest_add_func("/rtc/alarm/interrupt", alarm_time);
qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm);
qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec);
qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd);
qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec);
qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd);
qtest_add_func("/rtc/set-year/20xx", set_year_20xx);
qtest_add_func("/rtc/set-year/1980", set_year_1980);
qtest_add_func("/rtc/update/register_b_set_flag", register_b_set_flag);
qtest_add_func("/rtc/update/divider-reset", divider_reset);
qtest_add_func("/rtc/update/uip-stuck", uip_stuck);
qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers);
qtest_add_func("/rtc/periodic/interrupt", periodic_timer);
ret = g_test_run();
if (s) {
qtest_quit(s);
}
return ret;
}