historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/hw/misc/imx6_ccm.c

784 lines
22 KiB
C
Raw Normal View History

2024-01-16 11:20:27 -06:00
/*
* IMX6 Clock Control Module
*
* Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
* To get the timer frequencies right, we need to emulate at least part of
* the CCM.
*/
#include "qemu/osdep.h"
#include "hw/misc/imx6_ccm.h"
#include "migration/vmstate.h"
#include "qemu/log.h"
#include "qemu/module.h"
#ifndef DEBUG_IMX6_CCM
#define DEBUG_IMX6_CCM 0
#endif
#define DPRINTF(fmt, args...) \
do { \
if (DEBUG_IMX6_CCM) { \
fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_CCM, \
__func__, ##args); \
} \
} while (0)
static const char *imx6_ccm_reg_name(uint32_t reg)
{
static char unknown[20];
switch (reg) {
case CCM_CCR:
return "CCR";
case CCM_CCDR:
return "CCDR";
case CCM_CSR:
return "CSR";
case CCM_CCSR:
return "CCSR";
case CCM_CACRR:
return "CACRR";
case CCM_CBCDR:
return "CBCDR";
case CCM_CBCMR:
return "CBCMR";
case CCM_CSCMR1:
return "CSCMR1";
case CCM_CSCMR2:
return "CSCMR2";
case CCM_CSCDR1:
return "CSCDR1";
case CCM_CS1CDR:
return "CS1CDR";
case CCM_CS2CDR:
return "CS2CDR";
case CCM_CDCDR:
return "CDCDR";
case CCM_CHSCCDR:
return "CHSCCDR";
case CCM_CSCDR2:
return "CSCDR2";
case CCM_CSCDR3:
return "CSCDR3";
case CCM_CDHIPR:
return "CDHIPR";
case CCM_CTOR:
return "CTOR";
case CCM_CLPCR:
return "CLPCR";
case CCM_CISR:
return "CISR";
case CCM_CIMR:
return "CIMR";
case CCM_CCOSR:
return "CCOSR";
case CCM_CGPR:
return "CGPR";
case CCM_CCGR0:
return "CCGR0";
case CCM_CCGR1:
return "CCGR1";
case CCM_CCGR2:
return "CCGR2";
case CCM_CCGR3:
return "CCGR3";
case CCM_CCGR4:
return "CCGR4";
case CCM_CCGR5:
return "CCGR5";
case CCM_CCGR6:
return "CCGR6";
case CCM_CMEOR:
return "CMEOR";
default:
sprintf(unknown, "%d ?", reg);
return unknown;
}
}
static const char *imx6_analog_reg_name(uint32_t reg)
{
static char unknown[20];
switch (reg) {
case CCM_ANALOG_PLL_ARM:
return "PLL_ARM";
case CCM_ANALOG_PLL_ARM_SET:
return "PLL_ARM_SET";
case CCM_ANALOG_PLL_ARM_CLR:
return "PLL_ARM_CLR";
case CCM_ANALOG_PLL_ARM_TOG:
return "PLL_ARM_TOG";
case CCM_ANALOG_PLL_USB1:
return "PLL_USB1";
case CCM_ANALOG_PLL_USB1_SET:
return "PLL_USB1_SET";
case CCM_ANALOG_PLL_USB1_CLR:
return "PLL_USB1_CLR";
case CCM_ANALOG_PLL_USB1_TOG:
return "PLL_USB1_TOG";
case CCM_ANALOG_PLL_USB2:
return "PLL_USB2";
case CCM_ANALOG_PLL_USB2_SET:
return "PLL_USB2_SET";
case CCM_ANALOG_PLL_USB2_CLR:
return "PLL_USB2_CLR";
case CCM_ANALOG_PLL_USB2_TOG:
return "PLL_USB2_TOG";
case CCM_ANALOG_PLL_SYS:
return "PLL_SYS";
case CCM_ANALOG_PLL_SYS_SET:
return "PLL_SYS_SET";
case CCM_ANALOG_PLL_SYS_CLR:
return "PLL_SYS_CLR";
case CCM_ANALOG_PLL_SYS_TOG:
return "PLL_SYS_TOG";
case CCM_ANALOG_PLL_SYS_SS:
return "PLL_SYS_SS";
case CCM_ANALOG_PLL_SYS_NUM:
return "PLL_SYS_NUM";
case CCM_ANALOG_PLL_SYS_DENOM:
return "PLL_SYS_DENOM";
case CCM_ANALOG_PLL_AUDIO:
return "PLL_AUDIO";
case CCM_ANALOG_PLL_AUDIO_SET:
return "PLL_AUDIO_SET";
case CCM_ANALOG_PLL_AUDIO_CLR:
return "PLL_AUDIO_CLR";
case CCM_ANALOG_PLL_AUDIO_TOG:
return "PLL_AUDIO_TOG";
case CCM_ANALOG_PLL_AUDIO_NUM:
return "PLL_AUDIO_NUM";
case CCM_ANALOG_PLL_AUDIO_DENOM:
return "PLL_AUDIO_DENOM";
case CCM_ANALOG_PLL_VIDEO:
return "PLL_VIDEO";
case CCM_ANALOG_PLL_VIDEO_SET:
return "PLL_VIDEO_SET";
case CCM_ANALOG_PLL_VIDEO_CLR:
return "PLL_VIDEO_CLR";
case CCM_ANALOG_PLL_VIDEO_TOG:
return "PLL_VIDEO_TOG";
case CCM_ANALOG_PLL_VIDEO_NUM:
return "PLL_VIDEO_NUM";
case CCM_ANALOG_PLL_VIDEO_DENOM:
return "PLL_VIDEO_DENOM";
case CCM_ANALOG_PLL_MLB:
return "PLL_MLB";
case CCM_ANALOG_PLL_MLB_SET:
return "PLL_MLB_SET";
case CCM_ANALOG_PLL_MLB_CLR:
return "PLL_MLB_CLR";
case CCM_ANALOG_PLL_MLB_TOG:
return "PLL_MLB_TOG";
case CCM_ANALOG_PLL_ENET:
return "PLL_ENET";
case CCM_ANALOG_PLL_ENET_SET:
return "PLL_ENET_SET";
case CCM_ANALOG_PLL_ENET_CLR:
return "PLL_ENET_CLR";
case CCM_ANALOG_PLL_ENET_TOG:
return "PLL_ENET_TOG";
case CCM_ANALOG_PFD_480:
return "PFD_480";
case CCM_ANALOG_PFD_480_SET:
return "PFD_480_SET";
case CCM_ANALOG_PFD_480_CLR:
return "PFD_480_CLR";
case CCM_ANALOG_PFD_480_TOG:
return "PFD_480_TOG";
case CCM_ANALOG_PFD_528:
return "PFD_528";
case CCM_ANALOG_PFD_528_SET:
return "PFD_528_SET";
case CCM_ANALOG_PFD_528_CLR:
return "PFD_528_CLR";
case CCM_ANALOG_PFD_528_TOG:
return "PFD_528_TOG";
case CCM_ANALOG_MISC0:
return "MISC0";
case CCM_ANALOG_MISC0_SET:
return "MISC0_SET";
case CCM_ANALOG_MISC0_CLR:
return "MISC0_CLR";
case CCM_ANALOG_MISC0_TOG:
return "MISC0_TOG";
case CCM_ANALOG_MISC2:
return "MISC2";
case CCM_ANALOG_MISC2_SET:
return "MISC2_SET";
case CCM_ANALOG_MISC2_CLR:
return "MISC2_CLR";
case CCM_ANALOG_MISC2_TOG:
return "MISC2_TOG";
case PMU_REG_1P1:
return "PMU_REG_1P1";
case PMU_REG_3P0:
return "PMU_REG_3P0";
case PMU_REG_2P5:
return "PMU_REG_2P5";
case PMU_REG_CORE:
return "PMU_REG_CORE";
case PMU_MISC1:
return "PMU_MISC1";
case PMU_MISC1_SET:
return "PMU_MISC1_SET";
case PMU_MISC1_CLR:
return "PMU_MISC1_CLR";
case PMU_MISC1_TOG:
return "PMU_MISC1_TOG";
case USB_ANALOG_DIGPROG:
return "USB_ANALOG_DIGPROG";
default:
sprintf(unknown, "%d ?", reg);
return unknown;
}
}
#define CKIH_FREQ 24000000 /* 24MHz crystal input */
static const VMStateDescription vmstate_imx6_ccm = {
.name = TYPE_IMX6_CCM,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(ccm, IMX6CCMState, CCM_MAX),
VMSTATE_UINT32_ARRAY(analog, IMX6CCMState, CCM_ANALOG_MAX),
VMSTATE_END_OF_LIST()
},
};
static uint64_t imx6_analog_get_pll2_clk(IMX6CCMState *dev)
{
uint64_t freq = 24000000;
if (EXTRACT(dev->analog[CCM_ANALOG_PLL_SYS], DIV_SELECT)) {
freq *= 22;
} else {
freq *= 20;
}
DPRINTF("freq = %d\n", (uint32_t)freq);
return freq;
}
static uint64_t imx6_analog_get_pll2_pfd0_clk(IMX6CCMState *dev)
{
uint64_t freq = 0;
freq = imx6_analog_get_pll2_clk(dev) * 18
/ EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD0_FRAC);
DPRINTF("freq = %d\n", (uint32_t)freq);
return freq;
}
static uint64_t imx6_analog_get_pll2_pfd2_clk(IMX6CCMState *dev)
{
uint64_t freq = 0;
freq = imx6_analog_get_pll2_clk(dev) * 18
/ EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD2_FRAC);
DPRINTF("freq = %d\n", (uint32_t)freq);
return freq;
}
static uint64_t imx6_analog_get_periph_clk(IMX6CCMState *dev)
{
uint64_t freq = 0;
switch (EXTRACT(dev->ccm[CCM_CBCMR], PRE_PERIPH_CLK_SEL)) {
case 0:
freq = imx6_analog_get_pll2_clk(dev);
break;
case 1:
freq = imx6_analog_get_pll2_pfd2_clk(dev);
break;
case 2:
freq = imx6_analog_get_pll2_pfd0_clk(dev);
break;
case 3:
freq = imx6_analog_get_pll2_pfd2_clk(dev) / 2;
break;
default:
/* We should never get there */
g_assert_not_reached();
break;
}
DPRINTF("freq = %d\n", (uint32_t)freq);
return freq;
}
static uint64_t imx6_ccm_get_ahb_clk(IMX6CCMState *dev)
{
uint64_t freq = 0;
freq = imx6_analog_get_periph_clk(dev)
/ (1 + EXTRACT(dev->ccm[CCM_CBCDR], AHB_PODF));
DPRINTF("freq = %d\n", (uint32_t)freq);
return freq;
}
static uint64_t imx6_ccm_get_ipg_clk(IMX6CCMState *dev)
{
uint64_t freq = 0;
freq = imx6_ccm_get_ahb_clk(dev)
/ (1 + EXTRACT(dev->ccm[CCM_CBCDR], IPG_PODF));
DPRINTF("freq = %d\n", (uint32_t)freq);
return freq;
}
static uint64_t imx6_ccm_get_per_clk(IMX6CCMState *dev)
{
uint64_t freq = 0;
freq = imx6_ccm_get_ipg_clk(dev)
/ (1 + EXTRACT(dev->ccm[CCM_CSCMR1], PERCLK_PODF));
DPRINTF("freq = %d\n", (uint32_t)freq);
return freq;
}
static uint32_t imx6_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock)
{
uint32_t freq = 0;
IMX6CCMState *s = IMX6_CCM(dev);
switch (clock) {
case CLK_NONE:
break;
case CLK_IPG:
freq = imx6_ccm_get_ipg_clk(s);
break;
case CLK_IPG_HIGH:
freq = imx6_ccm_get_per_clk(s);
break;
case CLK_32k:
freq = CKIL_FREQ;
break;
case CLK_HIGH:
freq = 24000000;
break;
case CLK_HIGH_DIV:
freq = 24000000 / 8;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n",
TYPE_IMX6_CCM, __func__, clock);
break;
}
DPRINTF("Clock = %d) = %d\n", clock, freq);
return freq;
}
static void imx6_ccm_reset(DeviceState *dev)
{
IMX6CCMState *s = IMX6_CCM(dev);
DPRINTF("\n");
s->ccm[CCM_CCR] = 0x040116FF;
s->ccm[CCM_CCDR] = 0x00000000;
s->ccm[CCM_CSR] = 0x00000010;
s->ccm[CCM_CCSR] = 0x00000100;
s->ccm[CCM_CACRR] = 0x00000000;
s->ccm[CCM_CBCDR] = 0x00018D40;
s->ccm[CCM_CBCMR] = 0x00022324;
s->ccm[CCM_CSCMR1] = 0x00F00000;
s->ccm[CCM_CSCMR2] = 0x02B92F06;
s->ccm[CCM_CSCDR1] = 0x00490B00;
s->ccm[CCM_CS1CDR] = 0x0EC102C1;
s->ccm[CCM_CS2CDR] = 0x000736C1;
s->ccm[CCM_CDCDR] = 0x33F71F92;
s->ccm[CCM_CHSCCDR] = 0x0002A150;
s->ccm[CCM_CSCDR2] = 0x0002A150;
s->ccm[CCM_CSCDR3] = 0x00014841;
s->ccm[CCM_CDHIPR] = 0x00000000;
s->ccm[CCM_CTOR] = 0x00000000;
s->ccm[CCM_CLPCR] = 0x00000079;
s->ccm[CCM_CISR] = 0x00000000;
s->ccm[CCM_CIMR] = 0xFFFFFFFF;
s->ccm[CCM_CCOSR] = 0x000A0001;
s->ccm[CCM_CGPR] = 0x0000FE62;
s->ccm[CCM_CCGR0] = 0xFFFFFFFF;
s->ccm[CCM_CCGR1] = 0xFFFFFFFF;
s->ccm[CCM_CCGR2] = 0xFC3FFFFF;
s->ccm[CCM_CCGR3] = 0xFFFFFFFF;
s->ccm[CCM_CCGR4] = 0xFFFFFFFF;
s->ccm[CCM_CCGR5] = 0xFFFFFFFF;
s->ccm[CCM_CCGR6] = 0xFFFFFFFF;
s->ccm[CCM_CMEOR] = 0xFFFFFFFF;
s->analog[CCM_ANALOG_PLL_ARM] = 0x00013042;
s->analog[CCM_ANALOG_PLL_USB1] = 0x00012000;
s->analog[CCM_ANALOG_PLL_USB2] = 0x00012000;
s->analog[CCM_ANALOG_PLL_SYS] = 0x00013001;
s->analog[CCM_ANALOG_PLL_SYS_SS] = 0x00000000;
s->analog[CCM_ANALOG_PLL_SYS_NUM] = 0x00000000;
s->analog[CCM_ANALOG_PLL_SYS_DENOM] = 0x00000012;
s->analog[CCM_ANALOG_PLL_AUDIO] = 0x00011006;
s->analog[CCM_ANALOG_PLL_AUDIO_NUM] = 0x05F5E100;
s->analog[CCM_ANALOG_PLL_AUDIO_DENOM] = 0x2964619C;
s->analog[CCM_ANALOG_PLL_VIDEO] = 0x0001100C;
s->analog[CCM_ANALOG_PLL_VIDEO_NUM] = 0x05F5E100;
s->analog[CCM_ANALOG_PLL_VIDEO_DENOM] = 0x10A24447;
s->analog[CCM_ANALOG_PLL_MLB] = 0x00010000;
s->analog[CCM_ANALOG_PLL_ENET] = 0x00011001;
s->analog[CCM_ANALOG_PFD_480] = 0x1311100C;
s->analog[CCM_ANALOG_PFD_528] = 0x1018101B;
s->analog[PMU_REG_1P1] = 0x00001073;
s->analog[PMU_REG_3P0] = 0x00000F74;
s->analog[PMU_REG_2P5] = 0x00005071;
s->analog[PMU_REG_CORE] = 0x00402010;
s->analog[PMU_MISC0] = 0x04000000;
s->analog[PMU_MISC1] = 0x00000000;
s->analog[PMU_MISC2] = 0x00272727;
s->analog[USB_ANALOG_USB1_VBUS_DETECT] = 0x00000004;
s->analog[USB_ANALOG_USB1_CHRG_DETECT] = 0x00000000;
s->analog[USB_ANALOG_USB1_VBUS_DETECT_STAT] = 0x00000000;
s->analog[USB_ANALOG_USB1_CHRG_DETECT_STAT] = 0x00000000;
s->analog[USB_ANALOG_USB1_MISC] = 0x00000002;
s->analog[USB_ANALOG_USB2_VBUS_DETECT] = 0x00000004;
s->analog[USB_ANALOG_USB2_CHRG_DETECT] = 0x00000000;
s->analog[USB_ANALOG_USB2_MISC] = 0x00000002;
s->analog[USB_ANALOG_DIGPROG] = 0x00000000;
/* all PLLs need to be locked */
s->analog[CCM_ANALOG_PLL_ARM] |= CCM_ANALOG_PLL_LOCK;
s->analog[CCM_ANALOG_PLL_USB1] |= CCM_ANALOG_PLL_LOCK;
s->analog[CCM_ANALOG_PLL_USB2] |= CCM_ANALOG_PLL_LOCK;
s->analog[CCM_ANALOG_PLL_SYS] |= CCM_ANALOG_PLL_LOCK;
s->analog[CCM_ANALOG_PLL_AUDIO] |= CCM_ANALOG_PLL_LOCK;
s->analog[CCM_ANALOG_PLL_VIDEO] |= CCM_ANALOG_PLL_LOCK;
s->analog[CCM_ANALOG_PLL_MLB] |= CCM_ANALOG_PLL_LOCK;
s->analog[CCM_ANALOG_PLL_ENET] |= CCM_ANALOG_PLL_LOCK;
}
static uint64_t imx6_ccm_read(void *opaque, hwaddr offset, unsigned size)
{
uint32_t value = 0;
uint32_t index = offset >> 2;
IMX6CCMState *s = (IMX6CCMState *)opaque;
value = s->ccm[index];
DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_ccm_reg_name(index), value);
return (uint64_t)value;
}
static void imx6_ccm_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
uint32_t index = offset >> 2;
IMX6CCMState *s = (IMX6CCMState *)opaque;
DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_ccm_reg_name(index),
(uint32_t)value);
/*
* We will do a better implementation later. In particular some bits
* cannot be written to.
*/
s->ccm[index] = (uint32_t)value;
}
static uint64_t imx6_analog_read(void *opaque, hwaddr offset, unsigned size)
{
uint32_t value;
uint32_t index = offset >> 2;
IMX6CCMState *s = (IMX6CCMState *)opaque;
switch (index) {
case CCM_ANALOG_PLL_ARM_SET:
case CCM_ANALOG_PLL_USB1_SET:
case CCM_ANALOG_PLL_USB2_SET:
case CCM_ANALOG_PLL_SYS_SET:
case CCM_ANALOG_PLL_AUDIO_SET:
case CCM_ANALOG_PLL_VIDEO_SET:
case CCM_ANALOG_PLL_MLB_SET:
case CCM_ANALOG_PLL_ENET_SET:
case CCM_ANALOG_PFD_480_SET:
case CCM_ANALOG_PFD_528_SET:
case CCM_ANALOG_MISC0_SET:
case PMU_MISC1_SET:
case CCM_ANALOG_MISC2_SET:
case USB_ANALOG_USB1_VBUS_DETECT_SET:
case USB_ANALOG_USB1_CHRG_DETECT_SET:
case USB_ANALOG_USB1_MISC_SET:
case USB_ANALOG_USB2_VBUS_DETECT_SET:
case USB_ANALOG_USB2_CHRG_DETECT_SET:
case USB_ANALOG_USB2_MISC_SET:
/*
* All REG_NAME_SET register access are in fact targeting the
* the REG_NAME register.
*/
value = s->analog[index - 1];
break;
case CCM_ANALOG_PLL_ARM_CLR:
case CCM_ANALOG_PLL_USB1_CLR:
case CCM_ANALOG_PLL_USB2_CLR:
case CCM_ANALOG_PLL_SYS_CLR:
case CCM_ANALOG_PLL_AUDIO_CLR:
case CCM_ANALOG_PLL_VIDEO_CLR:
case CCM_ANALOG_PLL_MLB_CLR:
case CCM_ANALOG_PLL_ENET_CLR:
case CCM_ANALOG_PFD_480_CLR:
case CCM_ANALOG_PFD_528_CLR:
case CCM_ANALOG_MISC0_CLR:
case PMU_MISC1_CLR:
case CCM_ANALOG_MISC2_CLR:
case USB_ANALOG_USB1_VBUS_DETECT_CLR:
case USB_ANALOG_USB1_CHRG_DETECT_CLR:
case USB_ANALOG_USB1_MISC_CLR:
case USB_ANALOG_USB2_VBUS_DETECT_CLR:
case USB_ANALOG_USB2_CHRG_DETECT_CLR:
case USB_ANALOG_USB2_MISC_CLR:
/*
* All REG_NAME_CLR register access are in fact targeting the
* the REG_NAME register.
*/
value = s->analog[index - 2];
break;
case CCM_ANALOG_PLL_ARM_TOG:
case CCM_ANALOG_PLL_USB1_TOG:
case CCM_ANALOG_PLL_USB2_TOG:
case CCM_ANALOG_PLL_SYS_TOG:
case CCM_ANALOG_PLL_AUDIO_TOG:
case CCM_ANALOG_PLL_VIDEO_TOG:
case CCM_ANALOG_PLL_MLB_TOG:
case CCM_ANALOG_PLL_ENET_TOG:
case CCM_ANALOG_PFD_480_TOG:
case CCM_ANALOG_PFD_528_TOG:
case CCM_ANALOG_MISC0_TOG:
case PMU_MISC1_TOG:
case CCM_ANALOG_MISC2_TOG:
case USB_ANALOG_USB1_VBUS_DETECT_TOG:
case USB_ANALOG_USB1_CHRG_DETECT_TOG:
case USB_ANALOG_USB1_MISC_TOG:
case USB_ANALOG_USB2_VBUS_DETECT_TOG:
case USB_ANALOG_USB2_CHRG_DETECT_TOG:
case USB_ANALOG_USB2_MISC_TOG:
/*
* All REG_NAME_TOG register access are in fact targeting the
* the REG_NAME register.
*/
value = s->analog[index - 3];
break;
default:
value = s->analog[index];
break;
}
DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_analog_reg_name(index), value);
return (uint64_t)value;
}
static void imx6_analog_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
uint32_t index = offset >> 2;
IMX6CCMState *s = (IMX6CCMState *)opaque;
DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_analog_reg_name(index),
(uint32_t)value);
switch (index) {
case CCM_ANALOG_PLL_ARM_SET:
case CCM_ANALOG_PLL_USB1_SET:
case CCM_ANALOG_PLL_USB2_SET:
case CCM_ANALOG_PLL_SYS_SET:
case CCM_ANALOG_PLL_AUDIO_SET:
case CCM_ANALOG_PLL_VIDEO_SET:
case CCM_ANALOG_PLL_MLB_SET:
case CCM_ANALOG_PLL_ENET_SET:
case CCM_ANALOG_PFD_480_SET:
case CCM_ANALOG_PFD_528_SET:
case CCM_ANALOG_MISC0_SET:
case PMU_MISC1_SET:
case CCM_ANALOG_MISC2_SET:
case USB_ANALOG_USB1_VBUS_DETECT_SET:
case USB_ANALOG_USB1_CHRG_DETECT_SET:
case USB_ANALOG_USB1_MISC_SET:
case USB_ANALOG_USB2_VBUS_DETECT_SET:
case USB_ANALOG_USB2_CHRG_DETECT_SET:
case USB_ANALOG_USB2_MISC_SET:
/*
* All REG_NAME_SET register access are in fact targeting the
* the REG_NAME register. So we change the value of the
* REG_NAME register, setting bits passed in the value.
*/
s->analog[index - 1] |= value;
break;
case CCM_ANALOG_PLL_ARM_CLR:
case CCM_ANALOG_PLL_USB1_CLR:
case CCM_ANALOG_PLL_USB2_CLR:
case CCM_ANALOG_PLL_SYS_CLR:
case CCM_ANALOG_PLL_AUDIO_CLR:
case CCM_ANALOG_PLL_VIDEO_CLR:
case CCM_ANALOG_PLL_MLB_CLR:
case CCM_ANALOG_PLL_ENET_CLR:
case CCM_ANALOG_PFD_480_CLR:
case CCM_ANALOG_PFD_528_CLR:
case CCM_ANALOG_MISC0_CLR:
case PMU_MISC1_CLR:
case CCM_ANALOG_MISC2_CLR:
case USB_ANALOG_USB1_VBUS_DETECT_CLR:
case USB_ANALOG_USB1_CHRG_DETECT_CLR:
case USB_ANALOG_USB1_MISC_CLR:
case USB_ANALOG_USB2_VBUS_DETECT_CLR:
case USB_ANALOG_USB2_CHRG_DETECT_CLR:
case USB_ANALOG_USB2_MISC_CLR:
/*
* All REG_NAME_CLR register access are in fact targeting the
* the REG_NAME register. So we change the value of the
* REG_NAME register, unsetting bits passed in the value.
*/
s->analog[index - 2] &= ~value;
break;
case CCM_ANALOG_PLL_ARM_TOG:
case CCM_ANALOG_PLL_USB1_TOG:
case CCM_ANALOG_PLL_USB2_TOG:
case CCM_ANALOG_PLL_SYS_TOG:
case CCM_ANALOG_PLL_AUDIO_TOG:
case CCM_ANALOG_PLL_VIDEO_TOG:
case CCM_ANALOG_PLL_MLB_TOG:
case CCM_ANALOG_PLL_ENET_TOG:
case CCM_ANALOG_PFD_480_TOG:
case CCM_ANALOG_PFD_528_TOG:
case CCM_ANALOG_MISC0_TOG:
case PMU_MISC1_TOG:
case CCM_ANALOG_MISC2_TOG:
case USB_ANALOG_USB1_VBUS_DETECT_TOG:
case USB_ANALOG_USB1_CHRG_DETECT_TOG:
case USB_ANALOG_USB1_MISC_TOG:
case USB_ANALOG_USB2_VBUS_DETECT_TOG:
case USB_ANALOG_USB2_CHRG_DETECT_TOG:
case USB_ANALOG_USB2_MISC_TOG:
/*
* All REG_NAME_TOG register access are in fact targeting the
* the REG_NAME register. So we change the value of the
* REG_NAME register, toggling bits passed in the value.
*/
s->analog[index - 3] ^= value;
break;
default:
/*
* We will do a better implementation later. In particular some bits
* cannot be written to.
*/
s->analog[index] = value;
break;
}
}
static const struct MemoryRegionOps imx6_ccm_ops = {
.read = imx6_ccm_read,
.write = imx6_ccm_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
/*
* Our device would not work correctly if the guest was doing
* unaligned access. This might not be a limitation on the real
* device but in practice there is no reason for a guest to access
* this device unaligned.
*/
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
};
static const struct MemoryRegionOps imx6_analog_ops = {
.read = imx6_analog_read,
.write = imx6_analog_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
/*
* Our device would not work correctly if the guest was doing
* unaligned access. This might not be a limitation on the real
* device but in practice there is no reason for a guest to access
* this device unaligned.
*/
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
};
static void imx6_ccm_init(Object *obj)
{
DeviceState *dev = DEVICE(obj);
SysBusDevice *sd = SYS_BUS_DEVICE(obj);
IMX6CCMState *s = IMX6_CCM(obj);
/* initialize a container for the all memory range */
memory_region_init(&s->container, OBJECT(dev), TYPE_IMX6_CCM, 0x5000);
/* We initialize an IO memory region for the CCM part */
memory_region_init_io(&s->ioccm, OBJECT(dev), &imx6_ccm_ops, s,
TYPE_IMX6_CCM ".ccm", CCM_MAX * sizeof(uint32_t));
/* Add the CCM as a subregion at offset 0 */
memory_region_add_subregion(&s->container, 0, &s->ioccm);
/* We initialize an IO memory region for the ANALOG part */
memory_region_init_io(&s->ioanalog, OBJECT(dev), &imx6_analog_ops, s,
TYPE_IMX6_CCM ".analog",
CCM_ANALOG_MAX * sizeof(uint32_t));
/* Add the ANALOG as a subregion at offset 0x4000 */
memory_region_add_subregion(&s->container, 0x4000, &s->ioanalog);
sysbus_init_mmio(sd, &s->container);
}
static void imx6_ccm_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
IMXCCMClass *ccm = IMX_CCM_CLASS(klass);
dc->reset = imx6_ccm_reset;
dc->vmsd = &vmstate_imx6_ccm;
dc->desc = "i.MX6 Clock Control Module";
ccm->get_clock_frequency = imx6_ccm_get_clock_frequency;
}
static const TypeInfo imx6_ccm_info = {
.name = TYPE_IMX6_CCM,
.parent = TYPE_IMX_CCM,
.instance_size = sizeof(IMX6CCMState),
.instance_init = imx6_ccm_init,
.class_init = imx6_ccm_class_init,
};
static void imx6_ccm_register_types(void)
{
type_register_static(&imx6_ccm_info);
}
type_init(imx6_ccm_register_types)