historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/roms/edk2/MdeModulePkg/Universal/FaultTolerantWriteDxe/FaultTolerantWriteSmm.c

637 lines
22 KiB
C
Raw Normal View History

2024-01-16 17:20:27 +00:00
/** @file
This is a simple fault tolerant write driver that is intended to use in the SMM environment.
This boot service protocol only provides fault tolerant write capability for
block devices. The protocol has internal non-volatile intermediate storage
of the data and private information. It should be able to recover
automatically from a critical fault, such as power failure.
The implementation uses an FTW (Fault Tolerant Write) Work Space.
This work space is a memory copy of the work space on the Working Block,
the size of the work space is the FTW_WORK_SPACE_SIZE bytes.
The work space stores each write record as EFI_FTW_RECORD structure.
The spare block stores the write buffer before write to the target block.
The write record has three states to specify the different phase of write operation.
1) WRITE_ALLOCATED is that the record is allocated in write space.
The information of write operation is stored in write record structure.
2) SPARE_COMPLETED is that the data from write buffer is writed into the spare block as the backup.
3) WRITE_COMPLETED is that the data is copied from the spare block to the target block.
This driver operates the data as the whole size of spare block.
It first read the SpareAreaLength data from the target block into the spare memory buffer.
Then copy the write buffer data into the spare memory buffer.
Then write the spare memory buffer into the spare block.
Final copy the data from the spare block to the target block.
To make this drive work well, the following conditions must be satisfied:
1. The write NumBytes data must be fit within Spare area.
Offset + NumBytes <= SpareAreaLength
2. The whole flash range has the same block size.
3. Working block is an area which contains working space in its last block and has the same size as spare block.
4. Working Block area must be in the single one Firmware Volume Block range which FVB protocol is produced on.
5. Spare area must be in the single one Firmware Volume Block range which FVB protocol is produced on.
6. Any write data area (SpareAreaLength Area) which the data will be written into must be
in the single one Firmware Volume Block range which FVB protocol is produced on.
7. If write data area (such as Variable range) is enlarged, the spare area range must be enlarged.
The spare area must be enough large to store the write data before write them into the target range.
If one of them is not satisfied, FtwWrite may fail.
Usually, Spare area only takes one block. That's SpareAreaLength = BlockSize, NumberOfSpareBlock = 1.
Caution: This module requires additional review when modified.
This driver need to make sure the CommBuffer is not in the SMRAM range.
Copyright (c) 2010 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <PiMm.h>
#include <Library/MmServicesTableLib.h>
#include <Library/BaseLib.h>
#include <Protocol/SmmSwapAddressRange.h>
#include "FaultTolerantWrite.h"
#include "FaultTolerantWriteSmmCommon.h"
#include <Protocol/MmEndOfDxe.h>
EFI_EVENT mFvbRegistration = NULL;
EFI_FTW_DEVICE *mFtwDevice = NULL;
///
/// The flag to indicate whether the platform has left the DXE phase of execution.
///
BOOLEAN mEndOfDxe = FALSE;
/**
Retrieve the SMM FVB protocol interface by HANDLE.
@param[in] FvBlockHandle The handle of SMM FVB protocol that provides services for
reading, writing, and erasing the target block.
@param[out] FvBlock The interface of SMM FVB protocol
@retval EFI_SUCCESS The interface information for the specified protocol was returned.
@retval EFI_UNSUPPORTED The device does not support the SMM FVB protocol.
@retval EFI_INVALID_PARAMETER FvBlockHandle is not a valid EFI_HANDLE or FvBlock is NULL.
**/
EFI_STATUS
FtwGetFvbByHandle (
IN EFI_HANDLE FvBlockHandle,
OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvBlock
)
{
//
// To get the SMM FVB protocol interface on the handle
//
return gMmst->MmHandleProtocol (
FvBlockHandle,
&gEfiSmmFirmwareVolumeBlockProtocolGuid,
(VOID **) FvBlock
);
}
/**
Retrieve the SMM Swap Address Range protocol interface.
@param[out] SarProtocol The interface of SMM SAR protocol
@retval EFI_SUCCESS The SMM SAR protocol instance was found and returned in SarProtocol.
@retval EFI_NOT_FOUND The SMM SAR protocol instance was not found.
@retval EFI_INVALID_PARAMETER SarProtocol is NULL.
**/
EFI_STATUS
FtwGetSarProtocol (
OUT VOID **SarProtocol
)
{
EFI_STATUS Status;
//
// Locate Smm Swap Address Range protocol
//
Status = gMmst->MmLocateProtocol (
&gEfiSmmSwapAddressRangeProtocolGuid,
NULL,
SarProtocol
);
return Status;
}
/**
Function returns an array of handles that support the SMM FVB protocol
in a buffer allocated from pool.
@param[out] NumberHandles The number of handles returned in Buffer.
@param[out] Buffer A pointer to the buffer to return the requested
array of handles that support SMM FVB protocol.
@retval EFI_SUCCESS The array of handles was returned in Buffer, and the number of
handles in Buffer was returned in NumberHandles.
@retval EFI_NOT_FOUND No SMM FVB handle was found.
@retval EFI_OUT_OF_RESOURCES There is not enough pool memory to store the matching results.
@retval EFI_INVALID_PARAMETER NumberHandles is NULL or Buffer is NULL.
**/
EFI_STATUS
GetFvbCountAndBuffer (
OUT UINTN *NumberHandles,
OUT EFI_HANDLE **Buffer
)
{
EFI_STATUS Status;
UINTN BufferSize;
if ((NumberHandles == NULL) || (Buffer == NULL)) {
return EFI_INVALID_PARAMETER;
}
BufferSize = 0;
*NumberHandles = 0;
*Buffer = NULL;
Status = gMmst->MmLocateHandle (
ByProtocol,
&gEfiSmmFirmwareVolumeBlockProtocolGuid,
NULL,
&BufferSize,
*Buffer
);
if (EFI_ERROR(Status) && Status != EFI_BUFFER_TOO_SMALL) {
return EFI_NOT_FOUND;
}
*Buffer = AllocatePool (BufferSize);
if (*Buffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Status = gMmst->MmLocateHandle (
ByProtocol,
&gEfiSmmFirmwareVolumeBlockProtocolGuid,
NULL,
&BufferSize,
*Buffer
);
*NumberHandles = BufferSize / sizeof(EFI_HANDLE);
if (EFI_ERROR(Status)) {
*NumberHandles = 0;
FreePool (*Buffer);
*Buffer = NULL;
}
return Status;
}
/**
Get the handle of the SMM FVB protocol by the FVB base address and attributes.
@param[in] Address The base address of SMM FVB protocol.
@param[in] Attributes The attributes of the SMM FVB protocol.
@param[out] SmmFvbHandle The handle of the SMM FVB protocol.
@retval EFI_SUCCESS The FVB handle is found.
@retval EFI_ABORTED The FVB protocol is not found.
**/
EFI_STATUS
GetFvbByAddressAndAttribute (
IN EFI_PHYSICAL_ADDRESS Address,
IN EFI_FVB_ATTRIBUTES_2 Attributes,
OUT EFI_HANDLE *SmmFvbHandle
)
{
EFI_STATUS Status;
EFI_HANDLE *HandleBuffer;
UINTN HandleCount;
UINTN Index;
EFI_PHYSICAL_ADDRESS FvbBaseAddress;
EFI_FVB_ATTRIBUTES_2 FvbAttributes;
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
HandleBuffer = NULL;
//
// Locate all handles of SMM Fvb protocol.
//
Status = GetFvbCountAndBuffer (&HandleCount, &HandleBuffer);
if (EFI_ERROR (Status)) {
return EFI_ABORTED;
}
//
// Find the proper SMM Fvb handle by the address and attributes.
//
for (Index = 0; Index < HandleCount; Index++) {
Status = FtwGetFvbByHandle (HandleBuffer[Index], &Fvb);
if (EFI_ERROR (Status)) {
break;
}
//
// Compare the address.
//
Status = Fvb->GetPhysicalAddress (Fvb, &FvbBaseAddress);
if (EFI_ERROR (Status)) {
continue;
}
if (Address != FvbBaseAddress) {
continue;
}
//
// Compare the attribute.
//
Status = Fvb->GetAttributes (Fvb, &FvbAttributes);
if (EFI_ERROR (Status)) {
continue;
}
if (Attributes != FvbAttributes) {
continue;
}
//
// Found the proper FVB handle.
//
*SmmFvbHandle = HandleBuffer[Index];
FreePool (HandleBuffer);
return EFI_SUCCESS;
}
FreePool (HandleBuffer);
return EFI_ABORTED;
}
/**
Communication service SMI Handler entry.
This SMI handler provides services for the fault tolerant write wrapper driver.
Caution: This function requires additional review when modified.
This driver need to make sure the CommBuffer is not in the SMRAM range.
Also in FTW_FUNCTION_GET_LAST_WRITE case, check SmmFtwGetLastWriteHeader->Data +
SmmFtwGetLastWriteHeader->PrivateDataSize within communication buffer.
@param[in] DispatchHandle The unique handle assigned to this handler by SmiHandlerRegister().
@param[in] RegisterContext Points to an optional handler context which was specified when the
handler was registered.
@param[in, out] CommBuffer A pointer to a collection of data in memory that will be conveyed
from a non-SMM environment into an SMM environment.
@param[in, out] CommBufferSize The size of the CommBuffer.
@retval EFI_SUCCESS The interrupt was handled and quiesced. No other handlers
should still be called.
@retval EFI_WARN_INTERRUPT_SOURCE_QUIESCED The interrupt has been quiesced but other handlers should
still be called.
@retval EFI_WARN_INTERRUPT_SOURCE_PENDING The interrupt is still pending and other handlers should still
be called.
@retval EFI_INTERRUPT_PENDING The interrupt could not be quiesced.
**/
EFI_STATUS
EFIAPI
SmmFaultTolerantWriteHandler (
IN EFI_HANDLE DispatchHandle,
IN CONST VOID *RegisterContext,
IN OUT VOID *CommBuffer,
IN OUT UINTN *CommBufferSize
)
{
EFI_STATUS Status;
SMM_FTW_COMMUNICATE_FUNCTION_HEADER *SmmFtwFunctionHeader;
SMM_FTW_GET_MAX_BLOCK_SIZE_HEADER *SmmGetMaxBlockSizeHeader;
SMM_FTW_ALLOCATE_HEADER *SmmFtwAllocateHeader;
SMM_FTW_WRITE_HEADER *SmmFtwWriteHeader;
SMM_FTW_RESTART_HEADER *SmmFtwRestartHeader;
SMM_FTW_GET_LAST_WRITE_HEADER *SmmFtwGetLastWriteHeader;
VOID *PrivateData;
EFI_HANDLE SmmFvbHandle;
UINTN InfoSize;
UINTN CommBufferPayloadSize;
UINTN PrivateDataSize;
UINTN Length;
UINTN TempCommBufferSize;
//
// If input is invalid, stop processing this SMI
//
if (CommBuffer == NULL || CommBufferSize == NULL) {
return EFI_SUCCESS;
}
TempCommBufferSize = *CommBufferSize;
if (TempCommBufferSize < SMM_FTW_COMMUNICATE_HEADER_SIZE) {
DEBUG ((EFI_D_ERROR, "SmmFtwHandler: SMM communication buffer size invalid!\n"));
return EFI_SUCCESS;
}
CommBufferPayloadSize = TempCommBufferSize - SMM_FTW_COMMUNICATE_HEADER_SIZE;
if (!FtwSmmIsBufferOutsideSmmValid ((UINTN)CommBuffer, TempCommBufferSize)) {
DEBUG ((EFI_D_ERROR, "SmmFtwHandler: SMM communication buffer in SMRAM or overflow!\n"));
return EFI_SUCCESS;
}
SmmFtwFunctionHeader = (SMM_FTW_COMMUNICATE_FUNCTION_HEADER *)CommBuffer;
if (mEndOfDxe) {
//
// It will be not safe to expose the operations after End Of Dxe.
//
DEBUG ((EFI_D_ERROR, "SmmFtwHandler: Not safe to do the operation: %x after End Of Dxe, so access denied!\n", SmmFtwFunctionHeader->Function));
SmmFtwFunctionHeader->ReturnStatus = EFI_ACCESS_DENIED;
return EFI_SUCCESS;
}
switch (SmmFtwFunctionHeader->Function) {
case FTW_FUNCTION_GET_MAX_BLOCK_SIZE:
if (CommBufferPayloadSize < sizeof (SMM_FTW_GET_MAX_BLOCK_SIZE_HEADER)) {
DEBUG ((EFI_D_ERROR, "GetMaxBlockSize: SMM communication buffer size invalid!\n"));
return EFI_SUCCESS;
}
SmmGetMaxBlockSizeHeader = (SMM_FTW_GET_MAX_BLOCK_SIZE_HEADER *) SmmFtwFunctionHeader->Data;
Status = FtwGetMaxBlockSize (
&mFtwDevice->FtwInstance,
&SmmGetMaxBlockSizeHeader->BlockSize
);
break;
case FTW_FUNCTION_ALLOCATE:
if (CommBufferPayloadSize < sizeof (SMM_FTW_ALLOCATE_HEADER)) {
DEBUG ((EFI_D_ERROR, "Allocate: SMM communication buffer size invalid!\n"));
return EFI_SUCCESS;
}
SmmFtwAllocateHeader = (SMM_FTW_ALLOCATE_HEADER *) SmmFtwFunctionHeader->Data;
Status = FtwAllocate (
&mFtwDevice->FtwInstance,
&SmmFtwAllocateHeader->CallerId,
SmmFtwAllocateHeader->PrivateDataSize,
SmmFtwAllocateHeader->NumberOfWrites
);
break;
case FTW_FUNCTION_WRITE:
if (CommBufferPayloadSize < OFFSET_OF (SMM_FTW_WRITE_HEADER, Data)) {
DEBUG ((EFI_D_ERROR, "Write: SMM communication buffer size invalid!\n"));
return EFI_SUCCESS;
}
SmmFtwWriteHeader = (SMM_FTW_WRITE_HEADER *) SmmFtwFunctionHeader->Data;
Length = SmmFtwWriteHeader->Length;
PrivateDataSize = SmmFtwWriteHeader->PrivateDataSize;
if (((UINTN)(~0) - Length < OFFSET_OF (SMM_FTW_WRITE_HEADER, Data)) ||
((UINTN)(~0) - PrivateDataSize < OFFSET_OF (SMM_FTW_WRITE_HEADER, Data) + Length)) {
//
// Prevent InfoSize overflow
//
Status = EFI_ACCESS_DENIED;
break;
}
InfoSize = OFFSET_OF (SMM_FTW_WRITE_HEADER, Data) + Length + PrivateDataSize;
//
// SMRAM range check already covered before
//
if (InfoSize > CommBufferPayloadSize) {
DEBUG ((EFI_D_ERROR, "Write: Data size exceed communication buffer size limit!\n"));
Status = EFI_ACCESS_DENIED;
break;
}
if (PrivateDataSize == 0) {
PrivateData = NULL;
} else {
PrivateData = (VOID *)&SmmFtwWriteHeader->Data[Length];
}
Status = GetFvbByAddressAndAttribute (
SmmFtwWriteHeader->FvbBaseAddress,
SmmFtwWriteHeader->FvbAttributes,
&SmmFvbHandle
);
if (!EFI_ERROR (Status)) {
//
// The SpeculationBarrier() call here is to ensure the previous
// range/content checks for the CommBuffer have been completed before
// calling into FtwWrite().
//
SpeculationBarrier ();
Status = FtwWrite(
&mFtwDevice->FtwInstance,
SmmFtwWriteHeader->Lba,
SmmFtwWriteHeader->Offset,
Length,
PrivateData,
SmmFvbHandle,
SmmFtwWriteHeader->Data
);
}
break;
case FTW_FUNCTION_RESTART:
if (CommBufferPayloadSize < sizeof (SMM_FTW_RESTART_HEADER)) {
DEBUG ((EFI_D_ERROR, "Restart: SMM communication buffer size invalid!\n"));
return EFI_SUCCESS;
}
SmmFtwRestartHeader = (SMM_FTW_RESTART_HEADER *) SmmFtwFunctionHeader->Data;
Status = GetFvbByAddressAndAttribute (
SmmFtwRestartHeader->FvbBaseAddress,
SmmFtwRestartHeader->FvbAttributes,
&SmmFvbHandle
);
if (!EFI_ERROR (Status)) {
Status = FtwRestart (&mFtwDevice->FtwInstance, SmmFvbHandle);
}
break;
case FTW_FUNCTION_ABORT:
Status = FtwAbort (&mFtwDevice->FtwInstance);
break;
case FTW_FUNCTION_GET_LAST_WRITE:
if (CommBufferPayloadSize < OFFSET_OF (SMM_FTW_GET_LAST_WRITE_HEADER, Data)) {
DEBUG ((EFI_D_ERROR, "GetLastWrite: SMM communication buffer size invalid!\n"));
return EFI_SUCCESS;
}
SmmFtwGetLastWriteHeader = (SMM_FTW_GET_LAST_WRITE_HEADER *) SmmFtwFunctionHeader->Data;
PrivateDataSize = SmmFtwGetLastWriteHeader->PrivateDataSize;
if ((UINTN)(~0) - PrivateDataSize < OFFSET_OF (SMM_FTW_GET_LAST_WRITE_HEADER, Data)){
//
// Prevent InfoSize overflow
//
Status = EFI_ACCESS_DENIED;
break;
}
InfoSize = OFFSET_OF (SMM_FTW_GET_LAST_WRITE_HEADER, Data) + PrivateDataSize;
//
// SMRAM range check already covered before
//
if (InfoSize > CommBufferPayloadSize) {
DEBUG ((EFI_D_ERROR, "Data size exceed communication buffer size limit!\n"));
Status = EFI_ACCESS_DENIED;
break;
}
Status = FtwGetLastWrite (
&mFtwDevice->FtwInstance,
&SmmFtwGetLastWriteHeader->CallerId,
&SmmFtwGetLastWriteHeader->Lba,
&SmmFtwGetLastWriteHeader->Offset,
&SmmFtwGetLastWriteHeader->Length,
&PrivateDataSize,
(VOID *)SmmFtwGetLastWriteHeader->Data,
&SmmFtwGetLastWriteHeader->Complete
);
SmmFtwGetLastWriteHeader->PrivateDataSize = PrivateDataSize;
break;
default:
Status = EFI_UNSUPPORTED;
}
SmmFtwFunctionHeader->ReturnStatus = Status;
return EFI_SUCCESS;
}
/**
SMM Firmware Volume Block Protocol notification event handler.
@param[in] Protocol Points to the protocol's unique identifier
@param[in] Interface Points to the interface instance
@param[in] Handle The handle on which the interface was installed
@retval EFI_SUCCESS SmmEventCallback runs successfully
**/
EFI_STATUS
EFIAPI
FvbNotificationEvent (
IN CONST EFI_GUID *Protocol,
IN VOID *Interface,
IN EFI_HANDLE Handle
)
{
EFI_STATUS Status;
EFI_SMM_FAULT_TOLERANT_WRITE_PROTOCOL *FtwProtocol;
EFI_HANDLE SmmFtwHandle;
//
// Just return to avoid install SMM FaultTolerantWriteProtocol again
// if SMM Fault Tolerant Write protocol had been installed.
//
Status = gMmst->MmLocateProtocol (
&gEfiSmmFaultTolerantWriteProtocolGuid,
NULL,
(VOID **) &FtwProtocol
);
if (!EFI_ERROR (Status)) {
return EFI_SUCCESS;
}
//
// Found proper FVB protocol and initialize FtwDevice for protocol installation
//
Status = InitFtwProtocol (mFtwDevice);
if (EFI_ERROR(Status)) {
return Status;
}
//
// Install protocol interface
//
Status = gMmst->MmInstallProtocolInterface (
&mFtwDevice->Handle,
&gEfiSmmFaultTolerantWriteProtocolGuid,
EFI_NATIVE_INTERFACE,
&mFtwDevice->FtwInstance
);
ASSERT_EFI_ERROR (Status);
///
/// Register SMM FTW SMI handler
///
Status = gMmst->MmiHandlerRegister (SmmFaultTolerantWriteHandler, &gEfiSmmFaultTolerantWriteProtocolGuid, &SmmFtwHandle);
ASSERT_EFI_ERROR (Status);
//
// Notify the Ftw wrapper driver SMM Ftw is ready
//
FtwNotifySmmReady ();
return EFI_SUCCESS;
}
/**
SMM END_OF_DXE protocol notification event handler.
@param Protocol Points to the protocol's unique identifier
@param Interface Points to the interface instance
@param Handle The handle on which the interface was installed
@retval EFI_SUCCESS SmmEndOfDxeCallback runs successfully
**/
EFI_STATUS
EFIAPI
MmEndOfDxeCallback (
IN CONST EFI_GUID *Protocol,
IN VOID *Interface,
IN EFI_HANDLE Handle
)
{
mEndOfDxe = TRUE;
return EFI_SUCCESS;
}
/**
Shared entry point of the module
@retval EFI_SUCCESS The initialization finished successfully.
@retval EFI_OUT_OF_RESOURCES Allocate memory error
@retval EFI_INVALID_PARAMETER Workspace or Spare block does not exist
**/
EFI_STATUS
MmFaultTolerantWriteInitialize (
VOID
)
{
EFI_STATUS Status;
VOID *MmEndOfDxeRegistration;
//
// Allocate private data structure for SMM FTW protocol and do some initialization
//
Status = InitFtwDevice (&mFtwDevice);
if (EFI_ERROR(Status)) {
return Status;
}
//
// Register EFI_SMM_END_OF_DXE_PROTOCOL_GUID notify function.
//
Status = gMmst->MmRegisterProtocolNotify (
&gEfiMmEndOfDxeProtocolGuid,
MmEndOfDxeCallback,
&MmEndOfDxeRegistration
);
ASSERT_EFI_ERROR (Status);
//
// Register FvbNotificationEvent () notify function.
//
Status = gMmst->MmRegisterProtocolNotify (
&gEfiSmmFirmwareVolumeBlockProtocolGuid,
FvbNotificationEvent,
&mFvbRegistration
);
ASSERT_EFI_ERROR (Status);
FvbNotificationEvent (NULL, NULL, NULL);
return EFI_SUCCESS;
}