historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/roms/edk2/NetworkPkg/Ip6Dxe/Ip6Output.c

1086 lines
31 KiB
C
Raw Normal View History

2024-01-16 11:20:27 -06:00
/** @file
The internal functions and routines to transmit the IP6 packet.
Copyright (c) 2009 - 2015, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "Ip6Impl.h"
UINT32 mIp6Id;
/**
Output all the available source addresses to a list entry head SourceList. The
number of source addresses are also returned.
@param[in] IpSb Points to an IP6 service binding instance.
@param[out] SourceList The list entry head of all source addresses.
It is the caller's responsibility to free the
resources.
@param[out] SourceCount The number of source addresses.
@retval EFI_SUCCESS The source addresses were copied to a list entry head
SourceList.
@retval EFI_OUT_OF_RESOURCES Failed to allocate resources to complete the operation.
**/
EFI_STATUS
Ip6CandidateSource (
IN IP6_SERVICE *IpSb,
OUT LIST_ENTRY *SourceList,
OUT UINT32 *SourceCount
)
{
IP6_INTERFACE *IpIf;
LIST_ENTRY *Entry;
LIST_ENTRY *Entry2;
IP6_ADDRESS_INFO *AddrInfo;
IP6_ADDRESS_INFO *Copy;
*SourceCount = 0;
if (IpSb->LinkLocalOk) {
Copy = AllocatePool (sizeof (IP6_ADDRESS_INFO));
if (Copy == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Copy->Signature = IP6_ADDR_INFO_SIGNATURE;
IP6_COPY_ADDRESS (&Copy->Address, &IpSb->LinkLocalAddr);
Copy->IsAnycast = FALSE;
Copy->PrefixLength = IP6_LINK_LOCAL_PREFIX_LENGTH;
Copy->ValidLifetime = (UINT32) IP6_INFINIT_LIFETIME;
Copy->PreferredLifetime = (UINT32) IP6_INFINIT_LIFETIME;
InsertTailList (SourceList, &Copy->Link);
(*SourceCount)++;
}
NET_LIST_FOR_EACH (Entry, &IpSb->Interfaces) {
IpIf = NET_LIST_USER_STRUCT (Entry, IP6_INTERFACE, Link);
NET_LIST_FOR_EACH (Entry2, &IpIf->AddressList) {
AddrInfo = NET_LIST_USER_STRUCT_S (Entry2, IP6_ADDRESS_INFO, Link, IP6_ADDR_INFO_SIGNATURE);
if (AddrInfo->IsAnycast) {
//
// Never use an anycast address.
//
continue;
}
Copy = AllocateCopyPool (sizeof (IP6_ADDRESS_INFO), AddrInfo);
if (Copy == NULL) {
return EFI_OUT_OF_RESOURCES;
}
InsertTailList (SourceList, &Copy->Link);
(*SourceCount)++;
}
}
return EFI_SUCCESS;
}
/**
Calculate how many bits are the same between two IPv6 addresses.
@param[in] AddressA Points to an IPv6 address.
@param[in] AddressB Points to another IPv6 address.
@return The common bits of the AddressA and AddressB.
**/
UINT8
Ip6CommonPrefixLen (
IN EFI_IPv6_ADDRESS *AddressA,
IN EFI_IPv6_ADDRESS *AddressB
)
{
UINT8 Count;
UINT8 Index;
UINT8 ByteA;
UINT8 ByteB;
UINT8 NumBits;
Count = 0;
Index = 0;
while (Index < 16) {
ByteA = AddressA->Addr[Index];
ByteB = AddressB->Addr[Index];
if (ByteA == ByteB) {
Count += 8;
Index++;
continue;
}
//
// Check how many bits are common between the two bytes.
//
NumBits = 8;
ByteA = (UINT8) (ByteA ^ ByteB);
while (ByteA != 0) {
NumBits--;
ByteA = (UINT8) (ByteA >> 1);
}
return (UINT8) (Count + NumBits);
}
return Count;
}
/**
Output all the available source addresses to a list entry head SourceList. The
number of source addresses are also returned.
@param[in] IpSb Points to a IP6 service binding instance.
@param[in] Destination The IPv6 destination address.
@param[out] Source The selected IPv6 source address according to
the Destination.
@retval EFI_SUCCESS The source addresses were copied to a list entry
head SourceList.
@retval EFI_NO_MAPPING The IPv6 stack is not auto configured.
**/
EFI_STATUS
Ip6SelectSourceAddress (
IN IP6_SERVICE *IpSb,
IN EFI_IPv6_ADDRESS *Destination,
OUT EFI_IPv6_ADDRESS *Source
)
{
EFI_STATUS Status;
LIST_ENTRY SourceList;
UINT32 SourceCount;
UINT8 ScopeD;
LIST_ENTRY *Entry;
IP6_ADDRESS_INFO *AddrInfo;
IP6_PREFIX_LIST_ENTRY *Prefix;
UINT8 LastCommonLength;
UINT8 CurrentCommonLength;
EFI_IPv6_ADDRESS *TmpAddress;
NET_CHECK_SIGNATURE (IpSb, IP6_SERVICE_SIGNATURE);
Status = EFI_SUCCESS;
InitializeListHead (&SourceList);
if (!IpSb->LinkLocalOk) {
return EFI_NO_MAPPING;
}
//
// Rule 1: Prefer same address.
//
if (Ip6IsOneOfSetAddress (IpSb, Destination, NULL, NULL)) {
IP6_COPY_ADDRESS (Source, Destination);
goto Exit;
}
//
// Rule 2: Prefer appropriate scope.
//
if (IP6_IS_MULTICAST (Destination)) {
ScopeD = (UINT8) (Destination->Addr[1] >> 4);
} else if (NetIp6IsLinkLocalAddr (Destination)) {
ScopeD = 0x2;
} else {
ScopeD = 0xE;
}
if (ScopeD <= 0x2) {
//
// Return the link-local address if it exists
// One IP6_SERVICE only has one link-local address.
//
IP6_COPY_ADDRESS (Source, &IpSb->LinkLocalAddr);
goto Exit;
}
//
// All candidate source addresses are global unicast address.
//
Ip6CandidateSource (IpSb, &SourceList, &SourceCount);
if (SourceCount == 0) {
Status = EFI_NO_MAPPING;
goto Exit;
}
IP6_COPY_ADDRESS (Source, &IpSb->LinkLocalAddr);
if (SourceCount == 1) {
goto Exit;
}
//
// Rule 3: Avoid deprecated addresses.
// TODO: check the "deprecated" state of the stateful configured address
//
NET_LIST_FOR_EACH (Entry, &IpSb->AutonomousPrefix) {
Prefix = NET_LIST_USER_STRUCT (Entry, IP6_PREFIX_LIST_ENTRY, Link);
if (Prefix->PreferredLifetime == 0) {
Ip6RemoveAddr (NULL, &SourceList, &SourceCount, &Prefix->Prefix, Prefix->PrefixLength);
if (SourceCount == 1) {
goto Exit;
}
}
}
//
// TODO: Rule 4: Prefer home addresses.
// TODO: Rule 5: Prefer outgoing interface.
// TODO: Rule 6: Prefer matching label.
// TODO: Rule 7: Prefer public addresses.
//
//
// Rule 8: Use longest matching prefix.
//
LastCommonLength = Ip6CommonPrefixLen (Source, Destination);
TmpAddress = NULL;
for (Entry = SourceList.ForwardLink; Entry != &SourceList; Entry = Entry->ForwardLink) {
AddrInfo = NET_LIST_USER_STRUCT_S (Entry, IP6_ADDRESS_INFO, Link, IP6_ADDR_INFO_SIGNATURE);
CurrentCommonLength = Ip6CommonPrefixLen (&AddrInfo->Address, Destination);
if (CurrentCommonLength > LastCommonLength) {
LastCommonLength = CurrentCommonLength;
TmpAddress = &AddrInfo->Address;
}
}
if (TmpAddress != NULL) {
IP6_COPY_ADDRESS (Source, TmpAddress);
}
Exit:
Ip6RemoveAddr (NULL, &SourceList, &SourceCount, NULL, 0);
return Status;
}
/**
Select an interface to send the packet generated in the IP6 driver
itself: that is, not by the requests of the IP6 child's consumer. Such
packets include the ICMPv6 echo replies and other ICMPv6 error packets.
@param[in] IpSb The IP4 service that wants to send the packets.
@param[in] Destination The destination of the packet.
@param[in, out] Source The source of the packet.
@return NULL if no proper interface is found, otherwise, the interface that
can be used to send the system packet from.
**/
IP6_INTERFACE *
Ip6SelectInterface (
IN IP6_SERVICE *IpSb,
IN EFI_IPv6_ADDRESS *Destination,
IN OUT EFI_IPv6_ADDRESS *Source
)
{
EFI_STATUS Status;
EFI_IPv6_ADDRESS SelectedSource;
IP6_INTERFACE *IpIf;
BOOLEAN Exist;
NET_CHECK_SIGNATURE (IpSb, IP6_SERVICE_SIGNATURE);
ASSERT (Destination != NULL && Source != NULL);
if (NetIp6IsUnspecifiedAddr (Destination)) {
return NULL;
}
if (!NetIp6IsUnspecifiedAddr (Source)) {
Exist = Ip6IsOneOfSetAddress (IpSb, Source, &IpIf, NULL);
ASSERT (Exist);
return IpIf;
}
//
// If source is unspecified, select a source according to the destination.
//
Status = Ip6SelectSourceAddress (IpSb, Destination, &SelectedSource);
if (EFI_ERROR (Status)) {
return IpSb->DefaultInterface;
}
Ip6IsOneOfSetAddress (IpSb, &SelectedSource, &IpIf, NULL);
IP6_COPY_ADDRESS (Source, &SelectedSource);
return IpIf;
}
/**
The default callback function for the system generated packet.
It will free the packet.
@param[in] Packet The packet that transmitted.
@param[in] IoStatus The result of the transmission, succeeded or failed.
@param[in] LinkFlag Not used when transmitted. Check IP6_FRAME_CALLBACK
for reference.
@param[in] Context The context provided by us.
**/
VOID
Ip6SysPacketSent (
NET_BUF *Packet,
EFI_STATUS IoStatus,
UINT32 LinkFlag,
VOID *Context
)
{
NetbufFree (Packet);
Packet = NULL;
}
/**
Prefix an IP6 basic head and unfragmentable extension headers and a fragment header
to the Packet. Used for IP6 fragmentation.
@param[in] IpSb The IP6 service instance to transmit the packet.
@param[in] Packet The packet to prefix the IP6 header to.
@param[in] Head The caller supplied header.
@param[in] FragmentOffset The fragment offset of the data following the header.
@param[in] ExtHdrs The length of the original extension header.
@param[in] ExtHdrsLen The length of the extension headers.
@param[in] LastHeader The pointer of next header of last extension header.
@param[in] HeadLen The length of the unfragmented part of the IP6 header.
@retval EFI_BAD_BUFFER_SIZE There is no enough room in the head space of
Packet.
@retval EFI_SUCCESS The operation performed successfully.
**/
EFI_STATUS
Ip6PrependHead (
IN IP6_SERVICE *IpSb,
IN NET_BUF *Packet,
IN EFI_IP6_HEADER *Head,
IN UINT16 FragmentOffset,
IN UINT8 *ExtHdrs,
IN UINT32 ExtHdrsLen,
IN UINT8 LastHeader,
IN UINT32 HeadLen
)
{
UINT32 Len;
UINT32 UnFragExtHdrsLen;
EFI_IP6_HEADER *PacketHead;
UINT8 *UpdatedExtHdrs;
EFI_STATUS Status;
UINT8 NextHeader;
UpdatedExtHdrs = NULL;
//
// HeadLen is the length of the fixed part of the sequences of fragments, i.e.
// the unfragment part.
//
PacketHead = (EFI_IP6_HEADER *) NetbufAllocSpace (Packet, HeadLen, NET_BUF_HEAD);
if (PacketHead == NULL) {
return EFI_BAD_BUFFER_SIZE;
}
//
// Set the head up, convert the host byte order to network byte order
//
CopyMem (PacketHead, Head, sizeof (EFI_IP6_HEADER));
PacketHead->PayloadLength = HTONS ((UINT16) (Packet->TotalSize - sizeof (EFI_IP6_HEADER)));
Packet->Ip.Ip6 = PacketHead;
Len = HeadLen - sizeof (EFI_IP6_HEADER);
UnFragExtHdrsLen = Len - sizeof (IP6_FRAGMENT_HEADER);
if (UnFragExtHdrsLen == 0) {
PacketHead->NextHeader = IP6_FRAGMENT;
}
//
// Append the extension headers: firstly copy the unfragmentable headers, then append
// fragmentation header.
//
if ((FragmentOffset & IP6_FRAGMENT_OFFSET_MASK) == 0) {
NextHeader = Head->NextHeader;
} else {
NextHeader = PacketHead->NextHeader;
}
Status = Ip6FillFragmentHeader (
IpSb,
NextHeader,
LastHeader,
ExtHdrs,
ExtHdrsLen,
FragmentOffset,
&UpdatedExtHdrs
);
if (EFI_ERROR (Status)) {
return Status;
}
CopyMem (
(UINT8 *) (PacketHead + 1),
UpdatedExtHdrs,
UnFragExtHdrsLen + sizeof (IP6_FRAGMENT_HEADER)
);
FreePool (UpdatedExtHdrs);
return EFI_SUCCESS;
}
/**
Transmit an IP6 packet. The packet comes either from the IP6
child's consumer (IpInstance != NULL) or the IP6 driver itself
(IpInstance == NULL). It will route the packet, fragment it,
then transmit all the fragments through an interface.
@param[in] IpSb The IP6 service instance to transmit the packet.
@param[in] Interface The IP6 interface to transmit the packet. Ignored
if NULL.
@param[in] IpInstance The IP6 child that issues the transmission. It is
NULL if the packet is from the system.
@param[in] Packet The user data to send, excluding the IP header.
@param[in] Head The caller supplied header. The caller should set
the following header fields: NextHeader, HopLimit,
Src, Dest, FlowLabel, PayloadLength. This function
will fill in the Ver, TrafficClass.
@param[in] ExtHdrs The extension headers to append to the IPv6 basic
header.
@param[in] ExtHdrsLen The length of the extension headers.
@param[in] Callback The callback function to issue when transmission
completed.
@param[in] Context The opaque context for the callback.
@retval EFI_INVALID_PARAMETER Any input parameter or the packet is invalid.
@retval EFI_NO_MAPPING There is no interface to the destination.
@retval EFI_NOT_FOUND There is no route to the destination.
@retval EFI_SUCCESS The packet successfully transmitted.
@retval EFI_OUT_OF_RESOURCES Failed to finish the operation due to lack of
resources.
@retval Others Failed to transmit the packet.
**/
EFI_STATUS
Ip6Output (
IN IP6_SERVICE *IpSb,
IN IP6_INTERFACE *Interface OPTIONAL,
IN IP6_PROTOCOL *IpInstance OPTIONAL,
IN NET_BUF *Packet,
IN EFI_IP6_HEADER *Head,
IN UINT8 *ExtHdrs,
IN UINT32 ExtHdrsLen,
IN IP6_FRAME_CALLBACK Callback,
IN VOID *Context
)
{
IP6_INTERFACE *IpIf;
EFI_IPv6_ADDRESS NextHop;
IP6_NEIGHBOR_ENTRY *NeighborCache;
IP6_ROUTE_CACHE_ENTRY *RouteCache;
EFI_STATUS Status;
UINT32 Mtu;
UINT32 HeadLen;
UINT16 FragmentOffset;
UINT8 *LastHeader;
UINT32 UnFragmentLen;
UINT32 UnFragmentHdrsLen;
UINT32 FragmentHdrsLen;
UINT16 *Checksum;
UINT16 PacketChecksum;
UINT16 PseudoChecksum;
UINT32 Index;
UINT32 PacketLen;
UINT32 RealExtLen;
UINT32 Offset;
NET_BUF *TmpPacket;
NET_BUF *Fragment;
UINT32 Num;
UINT8 *Buf;
EFI_IP6_HEADER *PacketHead;
IP6_ICMP_HEAD *IcmpHead;
IP6_TXTOKEN_WRAP *Wrap;
IP6_ROUTE_ENTRY *RouteEntry;
UINT8 *UpdatedExtHdrs;
UINT8 NextHeader;
UINT8 LastHeaderBackup;
BOOLEAN FragmentHeadInserted;
UINT8 *ExtHdrsBackup;
UINT8 NextHeaderBackup;
EFI_IPv6_ADDRESS Source;
EFI_IPv6_ADDRESS Destination;
NET_CHECK_SIGNATURE (IpSb, IP6_SERVICE_SIGNATURE);
//
// RFC2460: Each extension header is an integer multiple of 8 octets long,
// in order to retain 8-octet alignment for subsequent headers.
//
if ((ExtHdrsLen & 0x7) != 0) {
return EFI_INVALID_PARAMETER;
}
LastHeader = NULL;
Ip6IsExtsValid (
NULL,
NULL,
&Head->NextHeader,
ExtHdrs,
ExtHdrsLen,
FALSE,
NULL,
&LastHeader,
NULL,
NULL,
NULL
);
//
// Select an interface/source for system packet, application
// should select them itself.
//
IpIf = Interface;
if (IpIf == NULL) {
//
// IpInstance->Interface is NULL when IpInstance is configured with both stationaddress
// and destinationaddress is unspecified.
//
if (IpInstance == NULL || IpInstance->Interface == NULL) {
IpIf = Ip6SelectInterface (IpSb, &Head->DestinationAddress, &Head->SourceAddress);
if (IpInstance != NULL) {
IpInstance->Interface = IpIf;
}
} else {
IpIf = IpInstance->Interface;
}
}
if (IpIf == NULL) {
return EFI_NO_MAPPING;
}
//
// Update the common field in Head here.
//
Head->Version = 6;
Head->TrafficClassL = 0;
Head->TrafficClassH = 0;
Checksum = NULL;
NextHeader = *LastHeader;
switch (NextHeader) {
case EFI_IP_PROTO_UDP:
Packet->Udp = (EFI_UDP_HEADER *) NetbufGetByte (Packet, 0, NULL);
ASSERT (Packet->Udp != NULL);
if (Packet->Udp->Checksum == 0) {
Checksum = &Packet->Udp->Checksum;
}
break;
case EFI_IP_PROTO_TCP:
Packet->Tcp = (TCP_HEAD *) NetbufGetByte (Packet, 0, NULL);
ASSERT (Packet->Tcp != NULL);
if (Packet->Tcp->Checksum == 0) {
Checksum = &Packet->Tcp->Checksum;
}
break;
case IP6_ICMP:
//
// Don't send ICMP packet to an IPv6 anycast address.
//
if (Ip6IsAnycast (IpSb, &Head->DestinationAddress)) {
return EFI_INVALID_PARAMETER;
}
IcmpHead = (IP6_ICMP_HEAD *) NetbufGetByte (Packet, 0, NULL);
ASSERT (IcmpHead != NULL);
if (IcmpHead->Checksum == 0) {
Checksum = &IcmpHead->Checksum;
}
break;
default:
break;
}
if (Checksum != NULL) {
//
// Calculate the checksum for upper layer protocol if it is not calculated due to lack of
// IPv6 source address.
//
PacketChecksum = NetbufChecksum (Packet);
PseudoChecksum = NetIp6PseudoHeadChecksum (
&Head->SourceAddress,
&Head->DestinationAddress,
NextHeader,
Packet->TotalSize
);
*Checksum = (UINT16) ~NetAddChecksum (PacketChecksum, PseudoChecksum);
}
Status = Ip6IpSecProcessPacket (
IpSb,
&Head,
LastHeader, // no need get the lasthead value for output
&Packet,
&ExtHdrs,
&ExtHdrsLen,
EfiIPsecOutBound,
Context
);
if (EFI_ERROR(Status)) {
return Status;
}
LastHeader = NULL;
//
// Check incoming parameters.
//
if (!Ip6IsExtsValid (
IpSb,
Packet,
&Head->NextHeader,
ExtHdrs,
ExtHdrsLen,
FALSE,
NULL,
&LastHeader,
&RealExtLen,
&UnFragmentHdrsLen,
NULL
)) {
return EFI_INVALID_PARAMETER;
}
if ((RealExtLen & 0x7) != 0) {
return EFI_INVALID_PARAMETER;
}
LastHeaderBackup = *LastHeader;
//
// Perform next hop determination:
// For multicast packets, the next-hop is always the destination address and
// is considered to be on-link.
//
if (IP6_IS_MULTICAST (&Head->DestinationAddress)) {
IP6_COPY_ADDRESS (&NextHop, &Head->DestinationAddress);
} else {
//
// For unicast packets, use a combination of the Destination Cache, the Prefix List
// and the Default Router List to determine the IP address of the appropriate next hop.
//
NeighborCache = Ip6FindNeighborEntry (IpSb, &Head->DestinationAddress);
if (NeighborCache != NULL) {
//
// Hit Neighbor Cache.
//
IP6_COPY_ADDRESS (&NextHop, &Head->DestinationAddress);
} else {
//
// Not in Neighbor Cache, check Router cache
//
RouteCache = Ip6Route (IpSb, &Head->DestinationAddress, &Head->SourceAddress);
if (RouteCache == NULL) {
return EFI_NOT_FOUND;
}
IP6_COPY_ADDRESS (&NextHop, &RouteCache->NextHop);
Ip6FreeRouteCacheEntry (RouteCache);
}
}
//
// Examines the Neighbor Cache for link-layer information about that neighbor.
// DO NOT create neighbor cache if neighbor is itself - when reporting ICMP error.
//
if (!IP6_IS_MULTICAST (&NextHop) && !EFI_IP6_EQUAL (&Head->DestinationAddress, &Head->SourceAddress)) {
NeighborCache = Ip6FindNeighborEntry (IpSb, &NextHop);
if (NeighborCache == NULL) {
NeighborCache = Ip6CreateNeighborEntry (IpSb, Ip6OnArpResolved, &NextHop, NULL);
if (NeighborCache == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// Send out multicast neighbor solicitation for address resolution immediately.
//
Ip6CreateSNMulticastAddr (&NeighborCache->Neighbor, &Destination);
Status = Ip6SelectSourceAddress (IpSb, &NeighborCache->Neighbor, &Source);
if (EFI_ERROR (Status)) {
return Status;
}
Status = Ip6SendNeighborSolicit (
IpSb,
&Source,
&Destination,
&NeighborCache->Neighbor,
&IpSb->SnpMode.CurrentAddress
);
if (EFI_ERROR (Status)) {
return Status;
}
--NeighborCache->Transmit;
NeighborCache->Ticks = IP6_GET_TICKS (IpSb->RetransTimer) + 1;
}
NeighborCache->Interface = IpIf;
}
UpdatedExtHdrs = NULL;
ExtHdrsBackup = NULL;
NextHeaderBackup = 0;
FragmentHeadInserted = FALSE;
//
// Check whether we received Packet Too Big message for the packet sent to the
// Destination. If yes include a Fragment Header in the subsequent packets.
//
RouteEntry = Ip6FindRouteEntry (
IpSb->RouteTable,
&Head->DestinationAddress,
NULL
);
if (RouteEntry != NULL) {
if ((RouteEntry->Flag & IP6_PACKET_TOO_BIG) == IP6_PACKET_TOO_BIG) {
//
// FragmentHead is inserted after Hop-by-Hop Options header, Destination
// Options header (first occur), Routing header, and before Fragment header,
// Authentication header, Encapsulating Security Payload header, and
// Destination Options header (last occur), and upper-layer header.
//
Status = Ip6FillFragmentHeader (
IpSb,
Head->NextHeader,
LastHeaderBackup,
ExtHdrs,
ExtHdrsLen,
0,
&UpdatedExtHdrs
);
if (EFI_ERROR (Status)) {
return Status;
}
if ((ExtHdrs == NULL) && (ExtHdrsLen == 0)) {
NextHeaderBackup = Head->NextHeader;
Head->NextHeader = IP6_FRAGMENT;
}
ExtHdrsBackup = ExtHdrs;
ExtHdrs = UpdatedExtHdrs;
ExtHdrsLen = ExtHdrsLen + sizeof (IP6_FRAGMENT_HEADER);
RealExtLen = RealExtLen + sizeof (IP6_FRAGMENT_HEADER);
mIp6Id++;
FragmentHeadInserted = TRUE;
}
Ip6FreeRouteEntry (RouteEntry);
}
//
// OK, selected the source and route, fragment the packet then send
// them. Tag each fragment other than the first one as spawn from it.
// Each extension header is an integer multiple of 8 octets long, in
// order to retain 8-octet alignment for subsequent headers.
//
Mtu = IpSb->MaxPacketSize + sizeof (EFI_IP6_HEADER);
HeadLen = sizeof (EFI_IP6_HEADER) + RealExtLen;
if (Packet->TotalSize + HeadLen > Mtu) {
//
// Remove the inserted Fragment Header since we need fragment the packet.
//
if (FragmentHeadInserted) {
ExtHdrs = ExtHdrsBackup;
ExtHdrsLen = ExtHdrsLen - sizeof (IP6_FRAGMENT_HEADER);
if ((ExtHdrs == NULL) && (ExtHdrsLen == 0)) {
Head->NextHeader = NextHeaderBackup;
}
}
FragmentHdrsLen = ExtHdrsLen - UnFragmentHdrsLen;
//
// The packet is beyond the maximum which can be described through the
// fragment offset field in Fragment header.
//
if ((((Packet->TotalSize + FragmentHdrsLen) >> 3) & (~0x1fff)) != 0) {
Status = EFI_BAD_BUFFER_SIZE;
goto Error;
}
if (FragmentHdrsLen != 0) {
//
// Append the fragmentable extension hdrs before the upper layer payload
// to form a new NET_BUF. This NET_BUF contains all the buffer which will
// be fragmented below.
//
TmpPacket = NetbufGetFragment (Packet, 0, Packet->TotalSize, FragmentHdrsLen);
ASSERT (TmpPacket != NULL);
//
// Allocate the space to contain the fragmentable hdrs and copy the data.
//
Buf = NetbufAllocSpace (TmpPacket, FragmentHdrsLen, TRUE);
ASSERT (Buf != NULL);
CopyMem (Buf, ExtHdrs + UnFragmentHdrsLen, FragmentHdrsLen);
//
// Free the old Packet.
//
NetbufFree (Packet);
Packet = TmpPacket;
}
//
// The unfragment part which appears in every fragmented IPv6 packet includes
// the IPv6 header, the unfragmentable extension hdrs and the fragment header.
//
UnFragmentLen = sizeof (EFI_IP6_HEADER) + UnFragmentHdrsLen + sizeof (IP6_FRAGMENT_HEADER);
//
// Mtu now is the length of the fragment part in a full-length fragment.
//
Mtu = (Mtu - UnFragmentLen) & (~0x07);
Num = (Packet->TotalSize + Mtu - 1) / Mtu;
for (Index = 0, Offset = 0, PacketLen = Mtu; Index < Num; Index++) {
//
// Get fragment from the Packet, append UnFragnmentLen spare buffer
// before the fragmented data, the corresponding data is filled in later.
//
Fragment = NetbufGetFragment (Packet, Offset, PacketLen, UnFragmentLen);
if (Fragment == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto Error;
}
FragmentOffset = (UINT16) ((UINT16) Offset | 0x1);
if (Index == Num - 1){
//
// The last fragment, clear the M flag.
//
FragmentOffset &= (~0x1);
}
Status = Ip6PrependHead (
IpSb,
Fragment,
Head,
FragmentOffset,
ExtHdrs,
ExtHdrsLen,
LastHeaderBackup,
UnFragmentLen
);
ASSERT (Status == EFI_SUCCESS);
Status = Ip6SendFrame (
IpIf,
IpInstance,
Fragment,
&NextHop,
Ip6SysPacketSent,
Packet
);
if (EFI_ERROR (Status)) {
goto Error;
}
//
// The last fragment of upper layer packet, update the IP6 token status.
//
if ((Index == Num -1) && (Context != NULL)) {
Wrap = (IP6_TXTOKEN_WRAP *) Context;
Wrap->Token->Status = Status;
}
Offset += PacketLen;
PacketLen = Packet->TotalSize - Offset;
if (PacketLen > Mtu) {
PacketLen = Mtu;
}
}
NetbufFree (Packet);
mIp6Id++;
if (UpdatedExtHdrs != NULL) {
FreePool (UpdatedExtHdrs);
}
return EFI_SUCCESS;
}
//
// Need not fragment the packet, send it in one frame.
//
PacketHead = (EFI_IP6_HEADER *) NetbufAllocSpace (Packet, HeadLen, NET_BUF_HEAD);
if (PacketHead == NULL) {
Status = EFI_BAD_BUFFER_SIZE;
goto Error;
}
CopyMem (PacketHead, Head, sizeof (EFI_IP6_HEADER));
Packet->Ip.Ip6 = PacketHead;
if (ExtHdrs != NULL) {
Buf = (UINT8 *) (PacketHead + 1);
CopyMem (Buf, ExtHdrs, ExtHdrsLen);
}
if (UpdatedExtHdrs != NULL) {
//
// A Fragment Header is inserted to the packet, update the payload length.
//
PacketHead->PayloadLength = (UINT16) (NTOHS (PacketHead->PayloadLength) +
sizeof (IP6_FRAGMENT_HEADER));
PacketHead->PayloadLength = HTONS (PacketHead->PayloadLength);
FreePool (UpdatedExtHdrs);
}
return Ip6SendFrame (
IpIf,
IpInstance,
Packet,
&NextHop,
Callback,
Context
);
Error:
if (UpdatedExtHdrs != NULL) {
FreePool (UpdatedExtHdrs);
}
Ip6CancelPacket (IpIf, Packet, Status);
return Status;
}
/**
The filter function to find a packet and all its fragments.
The packet's fragments have their Context set to the packet.
@param[in] Frame The frames hold by the low level interface.
@param[in] Context Context to the function, which is the packet.
@retval TRUE This is the packet to cancel or its fragments.
@retval FALSE This is an unrelated packet.
**/
BOOLEAN
Ip6CancelPacketFragments (
IN IP6_LINK_TX_TOKEN *Frame,
IN VOID *Context
)
{
if ((Frame->Packet == (NET_BUF *) Context) || (Frame->Context == Context)) {
return TRUE;
}
return FALSE;
}
/**
Remove all the frames on the interface that pass the FrameToCancel,
either queued on ARP queues or that have already been delivered to
MNP and not yet recycled.
@param[in] Interface Interface to remove the frames from.
@param[in] IoStatus The transmit status returned to the frames' callback.
@param[in] FrameToCancel Function to select the frame to cancel; NULL to select all.
@param[in] Context Opaque parameters passed to FrameToCancel. Ignored if
FrameToCancel is NULL.
**/
VOID
Ip6CancelFrames (
IN IP6_INTERFACE *Interface,
IN EFI_STATUS IoStatus,
IN IP6_FRAME_TO_CANCEL FrameToCancel OPTIONAL,
IN VOID *Context OPTIONAL
)
{
LIST_ENTRY *Entry;
LIST_ENTRY *Next;
IP6_LINK_TX_TOKEN *Token;
IP6_SERVICE *IpSb;
IP6_NEIGHBOR_ENTRY *ArpQue;
EFI_STATUS Status;
IpSb = Interface->Service;
NET_CHECK_SIGNATURE (IpSb, IP6_SERVICE_SIGNATURE);
//
// Cancel all the pending frames on ARP requests
//
NET_LIST_FOR_EACH_SAFE (Entry, Next, &Interface->ArpQues) {
ArpQue = NET_LIST_USER_STRUCT (Entry, IP6_NEIGHBOR_ENTRY, ArpList);
Status = Ip6FreeNeighborEntry (
IpSb,
ArpQue,
FALSE,
FALSE,
IoStatus,
FrameToCancel,
Context
);
ASSERT_EFI_ERROR (Status);
}
//
// Cancel all the frames that have been delivered to MNP
// but not yet recycled.
//
NET_LIST_FOR_EACH_SAFE (Entry, Next, &Interface->SentFrames) {
Token = NET_LIST_USER_STRUCT (Entry, IP6_LINK_TX_TOKEN, Link);
if ((FrameToCancel == NULL) || FrameToCancel (Token, Context)) {
IpSb->Mnp->Cancel (IpSb->Mnp, &Token->MnpToken);
}
}
}
/**
Cancel the Packet and all its fragments.
@param[in] IpIf The interface from which the Packet is sent.
@param[in] Packet The Packet to cancel.
@param[in] IoStatus The status returns to the sender.
**/
VOID
Ip6CancelPacket (
IN IP6_INTERFACE *IpIf,
IN NET_BUF *Packet,
IN EFI_STATUS IoStatus
)
{
Ip6CancelFrames (IpIf, IoStatus, Ip6CancelPacketFragments, Packet);
}