historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/target/arm/arch_dump.c

468 lines
14 KiB
C
Raw Normal View History

2024-01-16 11:20:27 -06:00
/* Support for writing ELF notes for ARM architectures
*
* Copyright (C) 2015 Red Hat Inc.
*
* Author: Andrew Jones <drjones@redhat.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "elf.h"
#include "sysemu/dump.h"
/* struct user_pt_regs from arch/arm64/include/uapi/asm/ptrace.h */
struct aarch64_user_regs {
uint64_t regs[31];
uint64_t sp;
uint64_t pc;
uint64_t pstate;
} QEMU_PACKED;
QEMU_BUILD_BUG_ON(sizeof(struct aarch64_user_regs) != 272);
/* struct elf_prstatus from include/uapi/linux/elfcore.h */
struct aarch64_elf_prstatus {
char pad1[32]; /* 32 == offsetof(struct elf_prstatus, pr_pid) */
uint32_t pr_pid;
char pad2[76]; /* 76 == offsetof(struct elf_prstatus, pr_reg) -
offsetof(struct elf_prstatus, pr_ppid) */
struct aarch64_user_regs pr_reg;
uint32_t pr_fpvalid;
char pad3[4];
} QEMU_PACKED;
QEMU_BUILD_BUG_ON(sizeof(struct aarch64_elf_prstatus) != 392);
/* struct user_fpsimd_state from arch/arm64/include/uapi/asm/ptrace.h
*
* While the vregs member of user_fpsimd_state is of type __uint128_t,
* QEMU uses an array of uint64_t, where the high half of the 128-bit
* value is always in the 2n+1'th index. Thus we also break the 128-
* bit values into two halves in this reproduction of user_fpsimd_state.
*/
struct aarch64_user_vfp_state {
uint64_t vregs[64];
uint32_t fpsr;
uint32_t fpcr;
char pad[8];
} QEMU_PACKED;
QEMU_BUILD_BUG_ON(sizeof(struct aarch64_user_vfp_state) != 528);
/* struct user_sve_header from arch/arm64/include/uapi/asm/ptrace.h */
struct aarch64_user_sve_header {
uint32_t size;
uint32_t max_size;
uint16_t vl;
uint16_t max_vl;
uint16_t flags;
uint16_t reserved;
} QEMU_PACKED;
struct aarch64_note {
Elf64_Nhdr hdr;
char name[8]; /* align_up(sizeof("CORE"), 4) */
union {
struct aarch64_elf_prstatus prstatus;
struct aarch64_user_vfp_state vfp;
struct aarch64_user_sve_header sve;
};
} QEMU_PACKED;
#define AARCH64_NOTE_HEADER_SIZE offsetof(struct aarch64_note, prstatus)
#define AARCH64_PRSTATUS_NOTE_SIZE \
(AARCH64_NOTE_HEADER_SIZE + sizeof(struct aarch64_elf_prstatus))
#define AARCH64_PRFPREG_NOTE_SIZE \
(AARCH64_NOTE_HEADER_SIZE + sizeof(struct aarch64_user_vfp_state))
#define AARCH64_SVE_NOTE_SIZE(env) \
(AARCH64_NOTE_HEADER_SIZE + sve_size(env))
static void aarch64_note_init(struct aarch64_note *note, DumpState *s,
const char *name, Elf64_Word namesz,
Elf64_Word type, Elf64_Word descsz)
{
memset(note, 0, sizeof(*note));
note->hdr.n_namesz = cpu_to_dump32(s, namesz);
note->hdr.n_descsz = cpu_to_dump32(s, descsz);
note->hdr.n_type = cpu_to_dump32(s, type);
memcpy(note->name, name, namesz);
}
static int aarch64_write_elf64_prfpreg(WriteCoreDumpFunction f,
CPUARMState *env, int cpuid,
DumpState *s)
{
struct aarch64_note note;
int ret, i;
aarch64_note_init(&note, s, "CORE", 5, NT_PRFPREG, sizeof(note.vfp));
for (i = 0; i < 32; ++i) {
uint64_t *q = aa64_vfp_qreg(env, i);
note.vfp.vregs[2*i + 0] = cpu_to_dump64(s, q[0]);
note.vfp.vregs[2*i + 1] = cpu_to_dump64(s, q[1]);
}
if (s->dump_info.d_endian == ELFDATA2MSB) {
/* For AArch64 we must always swap the vfp.regs's 2n and 2n+1
* entries when generating BE notes, because even big endian
* hosts use 2n+1 for the high half.
*/
for (i = 0; i < 32; ++i) {
uint64_t tmp = note.vfp.vregs[2*i];
note.vfp.vregs[2*i] = note.vfp.vregs[2*i+1];
note.vfp.vregs[2*i+1] = tmp;
}
}
note.vfp.fpsr = cpu_to_dump32(s, vfp_get_fpsr(env));
note.vfp.fpcr = cpu_to_dump32(s, vfp_get_fpcr(env));
ret = f(&note, AARCH64_PRFPREG_NOTE_SIZE, s);
if (ret < 0) {
return -1;
}
return 0;
}
#ifdef TARGET_AARCH64
static off_t sve_zreg_offset(uint32_t vq, int n)
{
off_t off = sizeof(struct aarch64_user_sve_header);
return ROUND_UP(off, 16) + vq * 16 * n;
}
static off_t sve_preg_offset(uint32_t vq, int n)
{
return sve_zreg_offset(vq, 32) + vq * 16 / 8 * n;
}
static off_t sve_fpsr_offset(uint32_t vq)
{
off_t off = sve_preg_offset(vq, 17);
return ROUND_UP(off, 16);
}
static off_t sve_fpcr_offset(uint32_t vq)
{
return sve_fpsr_offset(vq) + sizeof(uint32_t);
}
static uint32_t sve_current_vq(CPUARMState *env)
{
return sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
}
static size_t sve_size_vq(uint32_t vq)
{
off_t off = sve_fpcr_offset(vq) + sizeof(uint32_t);
return ROUND_UP(off, 16);
}
static size_t sve_size(CPUARMState *env)
{
return sve_size_vq(sve_current_vq(env));
}
static int aarch64_write_elf64_sve(WriteCoreDumpFunction f,
CPUARMState *env, int cpuid,
DumpState *s)
{
struct aarch64_note *note;
ARMCPU *cpu = env_archcpu(env);
uint32_t vq = sve_current_vq(env);
uint64_t tmp[ARM_MAX_VQ * 2], *r;
uint32_t fpr;
uint8_t *buf;
int ret, i;
note = g_malloc0(AARCH64_SVE_NOTE_SIZE(env));
buf = (uint8_t *)&note->sve;
aarch64_note_init(note, s, "LINUX", 6, NT_ARM_SVE, sve_size_vq(vq));
note->sve.size = cpu_to_dump32(s, sve_size_vq(vq));
note->sve.max_size = cpu_to_dump32(s, sve_size_vq(cpu->sve_max_vq));
note->sve.vl = cpu_to_dump16(s, vq * 16);
note->sve.max_vl = cpu_to_dump16(s, cpu->sve_max_vq * 16);
note->sve.flags = cpu_to_dump16(s, 1);
for (i = 0; i < 32; ++i) {
r = sve_bswap64(tmp, &env->vfp.zregs[i].d[0], vq * 2);
memcpy(&buf[sve_zreg_offset(vq, i)], r, vq * 16);
}
for (i = 0; i < 17; ++i) {
r = sve_bswap64(tmp, r = &env->vfp.pregs[i].p[0],
DIV_ROUND_UP(vq * 2, 8));
memcpy(&buf[sve_preg_offset(vq, i)], r, vq * 16 / 8);
}
fpr = cpu_to_dump32(s, vfp_get_fpsr(env));
memcpy(&buf[sve_fpsr_offset(vq)], &fpr, sizeof(uint32_t));
fpr = cpu_to_dump32(s, vfp_get_fpcr(env));
memcpy(&buf[sve_fpcr_offset(vq)], &fpr, sizeof(uint32_t));
ret = f(note, AARCH64_SVE_NOTE_SIZE(env), s);
g_free(note);
if (ret < 0) {
return -1;
}
return 0;
}
#endif
int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
int cpuid, void *opaque)
{
struct aarch64_note note;
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
DumpState *s = opaque;
uint64_t pstate, sp;
int ret, i;
aarch64_note_init(&note, s, "CORE", 5, NT_PRSTATUS, sizeof(note.prstatus));
note.prstatus.pr_pid = cpu_to_dump32(s, cpuid);
note.prstatus.pr_fpvalid = cpu_to_dump32(s, 1);
if (!is_a64(env)) {
aarch64_sync_32_to_64(env);
pstate = cpsr_read(env);
sp = 0;
} else {
pstate = pstate_read(env);
sp = env->xregs[31];
}
for (i = 0; i < 31; ++i) {
note.prstatus.pr_reg.regs[i] = cpu_to_dump64(s, env->xregs[i]);
}
note.prstatus.pr_reg.sp = cpu_to_dump64(s, sp);
note.prstatus.pr_reg.pc = cpu_to_dump64(s, env->pc);
note.prstatus.pr_reg.pstate = cpu_to_dump64(s, pstate);
ret = f(&note, AARCH64_PRSTATUS_NOTE_SIZE, s);
if (ret < 0) {
return -1;
}
ret = aarch64_write_elf64_prfpreg(f, env, cpuid, s);
if (ret) {
return ret;
}
#ifdef TARGET_AARCH64
if (cpu_isar_feature(aa64_sve, cpu)) {
ret = aarch64_write_elf64_sve(f, env, cpuid, s);
}
#endif
return ret;
}
/* struct pt_regs from arch/arm/include/asm/ptrace.h */
struct arm_user_regs {
uint32_t regs[17];
char pad[4];
} QEMU_PACKED;
QEMU_BUILD_BUG_ON(sizeof(struct arm_user_regs) != 72);
/* struct elf_prstatus from include/uapi/linux/elfcore.h */
struct arm_elf_prstatus {
char pad1[24]; /* 24 == offsetof(struct elf_prstatus, pr_pid) */
uint32_t pr_pid;
char pad2[44]; /* 44 == offsetof(struct elf_prstatus, pr_reg) -
offsetof(struct elf_prstatus, pr_ppid) */
struct arm_user_regs pr_reg;
uint32_t pr_fpvalid;
} QEMU_PACKED arm_elf_prstatus;
QEMU_BUILD_BUG_ON(sizeof(struct arm_elf_prstatus) != 148);
/* struct user_vfp from arch/arm/include/asm/user.h */
struct arm_user_vfp_state {
uint64_t vregs[32];
uint32_t fpscr;
} QEMU_PACKED;
QEMU_BUILD_BUG_ON(sizeof(struct arm_user_vfp_state) != 260);
struct arm_note {
Elf32_Nhdr hdr;
char name[8]; /* align_up(sizeof("LINUX"), 4) */
union {
struct arm_elf_prstatus prstatus;
struct arm_user_vfp_state vfp;
};
} QEMU_PACKED;
#define ARM_NOTE_HEADER_SIZE offsetof(struct arm_note, prstatus)
#define ARM_PRSTATUS_NOTE_SIZE \
(ARM_NOTE_HEADER_SIZE + sizeof(struct arm_elf_prstatus))
#define ARM_VFP_NOTE_SIZE \
(ARM_NOTE_HEADER_SIZE + sizeof(struct arm_user_vfp_state))
static void arm_note_init(struct arm_note *note, DumpState *s,
const char *name, Elf32_Word namesz,
Elf32_Word type, Elf32_Word descsz)
{
memset(note, 0, sizeof(*note));
note->hdr.n_namesz = cpu_to_dump32(s, namesz);
note->hdr.n_descsz = cpu_to_dump32(s, descsz);
note->hdr.n_type = cpu_to_dump32(s, type);
memcpy(note->name, name, namesz);
}
static int arm_write_elf32_vfp(WriteCoreDumpFunction f, CPUARMState *env,
int cpuid, DumpState *s)
{
struct arm_note note;
int ret, i;
arm_note_init(&note, s, "LINUX", 6, NT_ARM_VFP, sizeof(note.vfp));
for (i = 0; i < 32; ++i) {
note.vfp.vregs[i] = cpu_to_dump64(s, *aa32_vfp_dreg(env, i));
}
note.vfp.fpscr = cpu_to_dump32(s, vfp_get_fpscr(env));
ret = f(&note, ARM_VFP_NOTE_SIZE, s);
if (ret < 0) {
return -1;
}
return 0;
}
int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
int cpuid, void *opaque)
{
struct arm_note note;
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
DumpState *s = opaque;
int ret, i;
bool fpvalid = cpu_isar_feature(aa32_vfp_simd, cpu);
arm_note_init(&note, s, "CORE", 5, NT_PRSTATUS, sizeof(note.prstatus));
note.prstatus.pr_pid = cpu_to_dump32(s, cpuid);
note.prstatus.pr_fpvalid = cpu_to_dump32(s, fpvalid);
for (i = 0; i < 16; ++i) {
note.prstatus.pr_reg.regs[i] = cpu_to_dump32(s, env->regs[i]);
}
note.prstatus.pr_reg.regs[16] = cpu_to_dump32(s, cpsr_read(env));
ret = f(&note, ARM_PRSTATUS_NOTE_SIZE, s);
if (ret < 0) {
return -1;
} else if (fpvalid) {
return arm_write_elf32_vfp(f, env, cpuid, s);
}
return 0;
}
int cpu_get_dump_info(ArchDumpInfo *info,
const GuestPhysBlockList *guest_phys_blocks)
{
ARMCPU *cpu;
CPUARMState *env;
GuestPhysBlock *block;
hwaddr lowest_addr = ULLONG_MAX;
if (first_cpu == NULL) {
return -1;
}
cpu = ARM_CPU(first_cpu);
env = &cpu->env;
/* Take a best guess at the phys_base. If we get it wrong then crash
* will need '--machdep phys_offset=<phys-offset>' added to its command
* line, which isn't any worse than assuming we can use zero, but being
* wrong. This is the same algorithm the crash utility uses when
* attempting to guess as it loads non-dumpfile formatted files.
*/
QTAILQ_FOREACH(block, &guest_phys_blocks->head, next) {
if (block->target_start < lowest_addr) {
lowest_addr = block->target_start;
}
}
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
info->d_machine = EM_AARCH64;
info->d_class = ELFCLASS64;
info->page_size = (1 << 16); /* aarch64 max pagesize */
if (lowest_addr != ULLONG_MAX) {
info->phys_base = lowest_addr;
}
} else {
info->d_machine = EM_ARM;
info->d_class = ELFCLASS32;
info->page_size = (1 << 12);
if (lowest_addr < UINT_MAX) {
info->phys_base = lowest_addr;
}
}
/* We assume the relevant endianness is that of EL1; this is right
* for kernels, but might give the wrong answer if you're trying to
* dump a hypervisor that happens to be running an opposite-endian
* kernel.
*/
info->d_endian = (env->cp15.sctlr_el[1] & SCTLR_EE) != 0
? ELFDATA2MSB : ELFDATA2LSB;
return 0;
}
ssize_t cpu_get_note_size(int class, int machine, int nr_cpus)
{
ARMCPU *cpu = ARM_CPU(first_cpu);
size_t note_size;
if (class == ELFCLASS64) {
note_size = AARCH64_PRSTATUS_NOTE_SIZE;
note_size += AARCH64_PRFPREG_NOTE_SIZE;
#ifdef TARGET_AARCH64
if (cpu_isar_feature(aa64_sve, cpu)) {
note_size += AARCH64_SVE_NOTE_SIZE(&cpu->env);
}
#endif
} else {
note_size = ARM_PRSTATUS_NOTE_SIZE;
if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
note_size += ARM_VFP_NOTE_SIZE;
}
}
return note_size * nr_cpus;
}