208 lines
7 KiB
C
208 lines
7 KiB
C
|
/*
|
||
|
* ARM TLB (Translation lookaside buffer) helpers.
|
||
|
*
|
||
|
* This code is licensed under the GNU GPL v2 or later.
|
||
|
*
|
||
|
* SPDX-License-Identifier: GPL-2.0-or-later
|
||
|
*/
|
||
|
#include "qemu/osdep.h"
|
||
|
#include "cpu.h"
|
||
|
#include "internals.h"
|
||
|
#include "exec/exec-all.h"
|
||
|
|
||
|
static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
|
||
|
unsigned int target_el,
|
||
|
bool same_el, bool ea,
|
||
|
bool s1ptw, bool is_write,
|
||
|
int fsc)
|
||
|
{
|
||
|
uint32_t syn;
|
||
|
|
||
|
/*
|
||
|
* ISV is only set for data aborts routed to EL2 and
|
||
|
* never for stage-1 page table walks faulting on stage 2.
|
||
|
*
|
||
|
* Furthermore, ISV is only set for certain kinds of load/stores.
|
||
|
* If the template syndrome does not have ISV set, we should leave
|
||
|
* it cleared.
|
||
|
*
|
||
|
* See ARMv8 specs, D7-1974:
|
||
|
* ISS encoding for an exception from a Data Abort, the
|
||
|
* ISV field.
|
||
|
*/
|
||
|
if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
|
||
|
syn = syn_data_abort_no_iss(same_el, 0,
|
||
|
ea, 0, s1ptw, is_write, fsc);
|
||
|
} else {
|
||
|
/*
|
||
|
* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
|
||
|
* syndrome created at translation time.
|
||
|
* Now we create the runtime syndrome with the remaining fields.
|
||
|
*/
|
||
|
syn = syn_data_abort_with_iss(same_el,
|
||
|
0, 0, 0, 0, 0,
|
||
|
ea, 0, s1ptw, is_write, fsc,
|
||
|
true);
|
||
|
/* Merge the runtime syndrome with the template syndrome. */
|
||
|
syn |= template_syn;
|
||
|
}
|
||
|
return syn;
|
||
|
}
|
||
|
|
||
|
static void QEMU_NORETURN arm_deliver_fault(ARMCPU *cpu, vaddr addr,
|
||
|
MMUAccessType access_type,
|
||
|
int mmu_idx, ARMMMUFaultInfo *fi)
|
||
|
{
|
||
|
CPUARMState *env = &cpu->env;
|
||
|
int target_el;
|
||
|
bool same_el;
|
||
|
uint32_t syn, exc, fsr, fsc;
|
||
|
ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
|
||
|
|
||
|
target_el = exception_target_el(env);
|
||
|
if (fi->stage2) {
|
||
|
target_el = 2;
|
||
|
env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
|
||
|
}
|
||
|
same_el = (arm_current_el(env) == target_el);
|
||
|
|
||
|
if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
|
||
|
arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
|
||
|
/*
|
||
|
* LPAE format fault status register : bottom 6 bits are
|
||
|
* status code in the same form as needed for syndrome
|
||
|
*/
|
||
|
fsr = arm_fi_to_lfsc(fi);
|
||
|
fsc = extract32(fsr, 0, 6);
|
||
|
} else {
|
||
|
fsr = arm_fi_to_sfsc(fi);
|
||
|
/*
|
||
|
* Short format FSR : this fault will never actually be reported
|
||
|
* to an EL that uses a syndrome register. Use a (currently)
|
||
|
* reserved FSR code in case the constructed syndrome does leak
|
||
|
* into the guest somehow.
|
||
|
*/
|
||
|
fsc = 0x3f;
|
||
|
}
|
||
|
|
||
|
if (access_type == MMU_INST_FETCH) {
|
||
|
syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
|
||
|
exc = EXCP_PREFETCH_ABORT;
|
||
|
} else {
|
||
|
syn = merge_syn_data_abort(env->exception.syndrome, target_el,
|
||
|
same_el, fi->ea, fi->s1ptw,
|
||
|
access_type == MMU_DATA_STORE,
|
||
|
fsc);
|
||
|
if (access_type == MMU_DATA_STORE
|
||
|
&& arm_feature(env, ARM_FEATURE_V6)) {
|
||
|
fsr |= (1 << 11);
|
||
|
}
|
||
|
exc = EXCP_DATA_ABORT;
|
||
|
}
|
||
|
|
||
|
env->exception.vaddress = addr;
|
||
|
env->exception.fsr = fsr;
|
||
|
raise_exception(env, exc, syn, target_el);
|
||
|
}
|
||
|
|
||
|
/* Raise a data fault alignment exception for the specified virtual address */
|
||
|
void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
|
||
|
MMUAccessType access_type,
|
||
|
int mmu_idx, uintptr_t retaddr)
|
||
|
{
|
||
|
ARMCPU *cpu = ARM_CPU(cs);
|
||
|
ARMMMUFaultInfo fi = {};
|
||
|
|
||
|
/* now we have a real cpu fault */
|
||
|
cpu_restore_state(cs, retaddr, true);
|
||
|
|
||
|
fi.type = ARMFault_Alignment;
|
||
|
arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
|
||
|
}
|
||
|
|
||
|
#if !defined(CONFIG_USER_ONLY)
|
||
|
|
||
|
/*
|
||
|
* arm_cpu_do_transaction_failed: handle a memory system error response
|
||
|
* (eg "no device/memory present at address") by raising an external abort
|
||
|
* exception
|
||
|
*/
|
||
|
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
|
||
|
vaddr addr, unsigned size,
|
||
|
MMUAccessType access_type,
|
||
|
int mmu_idx, MemTxAttrs attrs,
|
||
|
MemTxResult response, uintptr_t retaddr)
|
||
|
{
|
||
|
ARMCPU *cpu = ARM_CPU(cs);
|
||
|
ARMMMUFaultInfo fi = {};
|
||
|
|
||
|
/* now we have a real cpu fault */
|
||
|
cpu_restore_state(cs, retaddr, true);
|
||
|
|
||
|
fi.ea = arm_extabort_type(response);
|
||
|
fi.type = ARMFault_SyncExternal;
|
||
|
arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
|
||
|
}
|
||
|
|
||
|
#endif /* !defined(CONFIG_USER_ONLY) */
|
||
|
|
||
|
bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
|
||
|
MMUAccessType access_type, int mmu_idx,
|
||
|
bool probe, uintptr_t retaddr)
|
||
|
{
|
||
|
ARMCPU *cpu = ARM_CPU(cs);
|
||
|
|
||
|
#ifdef CONFIG_USER_ONLY
|
||
|
cpu->env.exception.vaddress = address;
|
||
|
if (access_type == MMU_INST_FETCH) {
|
||
|
cs->exception_index = EXCP_PREFETCH_ABORT;
|
||
|
} else {
|
||
|
cs->exception_index = EXCP_DATA_ABORT;
|
||
|
}
|
||
|
cpu_loop_exit_restore(cs, retaddr);
|
||
|
#else
|
||
|
hwaddr phys_addr;
|
||
|
target_ulong page_size;
|
||
|
int prot, ret;
|
||
|
MemTxAttrs attrs = {};
|
||
|
ARMMMUFaultInfo fi = {};
|
||
|
ARMCacheAttrs cacheattrs = {};
|
||
|
|
||
|
/*
|
||
|
* Walk the page table and (if the mapping exists) add the page
|
||
|
* to the TLB. On success, return true. Otherwise, if probing,
|
||
|
* return false. Otherwise populate fsr with ARM DFSR/IFSR fault
|
||
|
* register format, and signal the fault.
|
||
|
*/
|
||
|
ret = get_phys_addr(&cpu->env, address, access_type,
|
||
|
core_to_arm_mmu_idx(&cpu->env, mmu_idx),
|
||
|
&phys_addr, &attrs, &prot, &page_size,
|
||
|
&fi, &cacheattrs);
|
||
|
if (likely(!ret)) {
|
||
|
/*
|
||
|
* Map a single [sub]page. Regions smaller than our declared
|
||
|
* target page size are handled specially, so for those we
|
||
|
* pass in the exact addresses.
|
||
|
*/
|
||
|
if (page_size >= TARGET_PAGE_SIZE) {
|
||
|
phys_addr &= TARGET_PAGE_MASK;
|
||
|
address &= TARGET_PAGE_MASK;
|
||
|
}
|
||
|
/* Notice and record tagged memory. */
|
||
|
if (cpu_isar_feature(aa64_mte, cpu) && cacheattrs.attrs == 0xf0) {
|
||
|
arm_tlb_mte_tagged(&attrs) = true;
|
||
|
}
|
||
|
|
||
|
tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
|
||
|
prot, mmu_idx, page_size);
|
||
|
return true;
|
||
|
} else if (probe) {
|
||
|
return false;
|
||
|
} else {
|
||
|
/* now we have a real cpu fault */
|
||
|
cpu_restore_state(cs, retaddr, true);
|
||
|
arm_deliver_fault(cpu, address, access_type, mmu_idx, &fi);
|
||
|
}
|
||
|
#endif
|
||
|
}
|