historical/toontown-classic.git/panda/direct/distributed/CartesianGridBase.py

126 lines
5.3 KiB
Python
Raw Normal View History

2024-01-16 17:20:27 +00:00
from panda3d.core import Vec3
# Utility functions that are useful to both AI and client CartesianGrid code
class CartesianGridBase:
def isValidZone(self, zoneId):
def checkBounds(self=self, zoneId=zoneId):
if ((zoneId < self.startingZone) or
(zoneId > self.startingZone + self.gridSize * self.gridSize - 1)):
return 0
return 1
if self.style == "Cartesian":
return checkBounds()
elif self.style == "CartesianStated":
if zoneId >= 0 and zoneId < self.startingZone:
return 1
else:
return checkBounds()
else:
return 0
def getZoneFromXYZ(self, pos, wantRowAndCol=False):
# NOTE: pos should be relative to our own grid origin
# Convert a 3d position to a zone
dx = self.cellWidth * self.gridSize * .5
x = pos[0] + dx
y = pos[1] + dx
col = x // self.cellWidth
row = y // self.cellWidth
# Compute which zone we are in
zoneId = int(self.startingZone + ((row * self.gridSize) + col))
if (wantRowAndCol):
return (zoneId,col,row)
else:
return zoneId
def getGridSizeFromSphereRadius(self, sphereRadius, cellWidth, gridRadius):
# NOTE: This ensures that the grid is at least a "gridRadius" number
# of cells larger than the trigger sphere that loads the grid. This
# gives us some room to start setting interest to the grid before we
# expect to see any objects on it.
sphereRadius = max(sphereRadius, gridRadius*cellWidth)
return 2 * (sphereRadius // cellWidth)
def getGridSizeFromSphere(self, sphereRadius, spherePos, cellWidth, gridRadius):
# NOTE: This ensures that the grid is at least a "gridRadius" number
# of cells larger than the trigger sphere that loads the grid. This
# gives us some room to start setting interest to the grid before we
# expect to see any objects on it.
xMax = abs(spherePos[0])+sphereRadius
yMax = abs(spherePos[1])+sphereRadius
sphereRadius = Vec3(xMax,yMax,0).length()
# sphereRadius = max(sphereRadius, gridRadius*cellWidth)
return max(2 * (sphereRadius // cellWidth), 1)
def getZoneCellOrigin(self, zoneId):
# It returns the origin of the zoneCell
# Origin is the top-left corner of zoneCell
dx = self.cellWidth * self.gridSize * .5
zone = zoneId - self.startingZone
row = zone // self.gridSize
col = zone % self.gridSize
x = col * self.cellWidth - dx
y = row * self.cellWidth - dx
return (x, y, 0)
def getZoneCellOriginCenter(self, zoneId):
# Variant of the getZoneCellOrigin. It
# returns the center of the zoneCell
dx = self.cellWidth * self.gridSize * .5
center = self.cellWidth * 0.5
zone = zoneId - self.startingZone
row = zone // self.gridSize
col = zone % self.gridSize
x = col * self.cellWidth - dx + center
y = row * self.cellWidth - dx + center
return (x, y, 0)
#--------------------------------------------------------------------------
# Function: utility function to get all zones in a ring of given radius
# around the given zoneId (so if given a zoneId 34342 and a
# radius of 3, a list of all zones exactly 3 grids away from
# zone 34342 will be returned)
# Parameters: zoneId, center zone to find surrounding zones of
# radius, how far from zoneId to find zones of for it them
# Changes:
# Returns:
#--------------------------------------------------------------------------
def getConcentricZones(self, zoneId, radius):
zones = []
#currZone = zoneId + radius
#numZones = (2 * radius * 8) + 2
# start at upper left
zone = zoneId - self.startingZone
row = zone // self.gridSize
col = zone % self.gridSize
leftOffset = min(col, radius)
rightOffset = min(self.gridSize - (col + 1), radius)
topOffset = min(row, radius)
bottomOffset = min(self.gridSize - (row + 1), radius)
#print "starting examination of grid circle of radius %s"%radius
ulZone = zoneId - leftOffset - topOffset * self.gridSize
#print "left offset is %s and radius is %s"%(leftOffset,radius)
for currCol in range(int(rightOffset + leftOffset + 1)):
if ((currCol == 0 and leftOffset == radius) or (currCol == rightOffset + leftOffset and rightOffset == radius)):
# at either left or right edge of area, look at all rows
possibleRows = range(int(bottomOffset + topOffset + 1))
else:
# in a middle column, only look at top and bottom rows
possibleRows = []
if (topOffset == radius):
possibleRows.append(0)
if (bottomOffset == radius):
possibleRows.append(bottomOffset + topOffset)
#print "on column %s and looking at rows %s"%(currCol,possibleRows)
for currRow in possibleRows:
newZone = ulZone + (currRow * self.gridSize) + currCol
zones.append(int(newZone))
#print " examining zone %s"%newZone
return zones