historical/toontown-classic.git/panda/include/collisionPolygon.I

216 lines
5.4 KiB
Text
Raw Normal View History

2024-01-16 11:20:27 -06:00
/**
* PANDA 3D SOFTWARE
* Copyright (c) Carnegie Mellon University. All rights reserved.
*
* All use of this software is subject to the terms of the revised BSD
* license. You should have received a copy of this license along
* with this source code in a file named "LICENSE."
*
* @file collisionPolygon.I
* @author drose
* @date 2000-04-25
*/
/**
*
*/
INLINE CollisionPolygon::
CollisionPolygon(const LVecBase3 &a, const LVecBase3 &b,
const LVecBase3 &c) {
LPoint3 array[3];
array[0] = a;
array[1] = b;
array[2] = c;
setup_points(array, array + 3);
}
/**
*
*/
INLINE CollisionPolygon::
CollisionPolygon(const LVecBase3 &a, const LVecBase3 &b,
const LVecBase3 &c, const LVecBase3 &d) {
LPoint3 array[4];
array[0] = a;
array[1] = b;
array[2] = c;
array[3] = d;
setup_points(array, array + 4);
}
/**
*
*/
INLINE CollisionPolygon::
CollisionPolygon(const LPoint3 *begin, const LPoint3 *end) {
setup_points(begin, end);
}
/**
* Creates an invalid polygon. Only used when reading from a bam file.
*/
INLINE CollisionPolygon::
CollisionPolygon() {
}
/**
* Returns the number of vertices of the CollisionPolygon.
*/
INLINE size_t CollisionPolygon::
get_num_points() const {
return _points.size();
}
/**
* Returns the nth vertex of the CollisionPolygon, expressed in 3-D space.
*/
INLINE LPoint3 CollisionPolygon::
get_point(size_t n) const {
nassertr(n < _points.size(), LPoint3::zero());
LMatrix4 to_3d_mat;
rederive_to_3d_mat(to_3d_mat);
return to_3d(_points[n]._p, to_3d_mat);
}
/**
* Verifies that the indicated set of points will define a valid
* CollisionPolygon: that is, at least three non-collinear points, with no
* points repeated.
*/
INLINE bool CollisionPolygon::
verify_points(const LPoint3 &a, const LPoint3 &b,
const LPoint3 &c) {
LPoint3 array[3];
array[0] = a;
array[1] = b;
array[2] = c;
return verify_points(array, array + 3);
}
/**
* Verifies that the indicated set of points will define a valid
* CollisionPolygon: that is, at least three non-collinear points, with no
* points repeated.
*/
INLINE bool CollisionPolygon::
verify_points(const LPoint3 &a, const LPoint3 &b,
const LPoint3 &c, const LPoint3 &d) {
LPoint3 array[4];
array[0] = a;
array[1] = b;
array[2] = c;
array[3] = d;
return verify_points(array, array + 4);
}
/**
* Flushes the PStatCollectors used during traversal.
*/
INLINE void CollisionPolygon::
flush_level() {
_volume_pcollector.flush_level();
_test_pcollector.flush_level();
}
/**
* Returns true if the 2-d v1 is to the right of v2.
*/
INLINE bool CollisionPolygon::
is_right(const LVector2 &v1, const LVector2 &v2) {
return (v1[0] * v2[1] - v1[1] * v2[0]) > 1.0e-6f;
}
/**
* Returns the linear distance of p to the line defined by f and f+v, where v
* is a normalized vector. The result is negative if p is left of the line,
* positive if it is right of the line.
*/
INLINE PN_stdfloat CollisionPolygon::
dist_to_line(const LPoint2 &p,
const LPoint2 &f, const LVector2 &v) {
LVector2 v1 = (p - f);
return (v1[0] * v[1] - v1[1] * v[0]);
}
/**
* Assuming the indicated point in 3-d space lies within the polygon's plane,
* returns the corresponding point in the polygon's 2-d definition space.
*/
INLINE LPoint2 CollisionPolygon::
to_2d(const LVecBase3 &point3d) const {
LPoint3 point = LPoint3(point3d) * _to_2d_mat;
return LPoint2(point[0], point[2]);
}
/**
* Fills the indicated matrix with the appropriate rotation transform to move
* points from the 2-d plane into the 3-d (X, 0, Z) plane.
*/
INLINE void CollisionPolygon::
calc_to_3d_mat(LMatrix4 &to_3d_mat) const {
// We have to be explicit about the coordinate system--we specifically mean
// CS_zup_right, because that points the forward vector down the Y axis and
// moves the coords in (X, 0, Z). We want this effect regardless of the
// user's coordinate system of choice.
// The up vector, on the other hand, is completely arbitrary.
look_at(to_3d_mat, -get_plane().get_normal(),
LVector3(0.0f, 0.0f, 1.0f), CS_zup_right);
to_3d_mat.set_row(3, get_plane().get_point());
}
/**
* Fills the indicated matrix with the appropriate rotation transform to move
* points from the 2-d plane into the 3-d (X, 0, Z) plane.
*
* This is essentially similar to calc_to_3d_mat, except that the matrix is
* rederived from whatever is stored in _to_2d_mat, guaranteeing that it will
* match whatever algorithm produced that one, even if it was produced on a
* different machine with different numerical precision.
*/
INLINE void CollisionPolygon::
rederive_to_3d_mat(LMatrix4 &to_3d_mat) const {
to_3d_mat.invert_from(_to_2d_mat);
}
/**
* Extrude the indicated point in the polygon's 2-d definition space back into
* 3-d coordinates.
*/
INLINE LPoint3 CollisionPolygon::
to_3d(const LVecBase2 &point2d, const LMatrix4 &to_3d_mat) {
return LPoint3(point2d[0], 0.0f, point2d[1]) * to_3d_mat;
}
/**
*
*/
INLINE CollisionPolygon::PointDef::
PointDef(const LPoint2 &p, const LVector2 &v) : _p(p), _v(v) {
}
/**
*
*/
INLINE CollisionPolygon::PointDef::
PointDef(PN_stdfloat x, PN_stdfloat y) : _p(x, y), _v(0.0f, 0.0f) {
}
/**
*
*/
INLINE CollisionPolygon::PointDef::
PointDef(const CollisionPolygon::PointDef &copy) : _p(copy._p), _v(copy._v) {
}
/**
*
*/
INLINE void CollisionPolygon::PointDef::
operator = (const CollisionPolygon::PointDef &copy) {
_p = copy._p;
_v = copy._v;
}