394 lines
9.4 KiB
Text
394 lines
9.4 KiB
Text
|
/**
|
||
|
* PANDA 3D SOFTWARE
|
||
|
* Copyright (c) Carnegie Mellon University. All rights reserved.
|
||
|
*
|
||
|
* All use of this software is subject to the terms of the revised BSD
|
||
|
* license. You should have received a copy of this license along
|
||
|
* with this source code in a file named "LICENSE."
|
||
|
*
|
||
|
* @file lvector3_src.I
|
||
|
* @author drose
|
||
|
* @date 1999-09-24
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector3)::
|
||
|
FLOATNAME(LVector3)(const FLOATNAME(LVecBase3) ©) : FLOATNAME(LVecBase3)(copy) {
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector3)::
|
||
|
FLOATNAME(LVector3)(FLOATTYPE fill_value) :
|
||
|
FLOATNAME(LVecBase3)(fill_value)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector3)::
|
||
|
FLOATNAME(LVector3)(FLOATTYPE x, FLOATTYPE y, FLOATTYPE z) :
|
||
|
FLOATNAME(LVecBase3)(x, y, z)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector3)::
|
||
|
FLOATNAME(LVector3)(const FLOATNAME(LVecBase2) ©, FLOATTYPE z) :
|
||
|
FLOATNAME(LVecBase3)(copy, z)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a zero-length vector.
|
||
|
*/
|
||
|
INLINE_LINMATH const FLOATNAME(LVector3) &FLOATNAME(LVector3)::
|
||
|
zero() {
|
||
|
return (const FLOATNAME(LVector3) &)FLOATNAME(LVecBase3)::zero();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a unit X vector.
|
||
|
*/
|
||
|
INLINE_LINMATH const FLOATNAME(LVector3) &FLOATNAME(LVector3)::
|
||
|
unit_x() {
|
||
|
return (const FLOATNAME(LVector3) &)FLOATNAME(LVecBase3)::unit_x();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a unit Y vector.
|
||
|
*/
|
||
|
INLINE_LINMATH const FLOATNAME(LVector3) &FLOATNAME(LVector3)::
|
||
|
unit_y() {
|
||
|
return (const FLOATNAME(LVector3) &)FLOATNAME(LVecBase3)::unit_y();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a unit Z vector.
|
||
|
*/
|
||
|
INLINE_LINMATH const FLOATNAME(LVector3) &FLOATNAME(LVector3)::
|
||
|
unit_z() {
|
||
|
return (const FLOATNAME(LVector3) &)FLOATNAME(LVecBase3)::unit_z();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a 2-component vector that shares just the first two components of
|
||
|
* this vector.
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector2) FLOATNAME(LVector3)::
|
||
|
get_xy() const {
|
||
|
return FLOATNAME(LVector2)(_v(0), _v(1));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a 2-component vector that shares just the first and last components
|
||
|
* of this vector.
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector2) FLOATNAME(LVector3)::
|
||
|
get_xz() const {
|
||
|
return FLOATNAME(LVector2)(_v(0), _v(2));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a 2-component vector that shares just the last two components of
|
||
|
* this vector.
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector2) FLOATNAME(LVector3)::
|
||
|
get_yz() const {
|
||
|
return FLOATNAME(LVector2)(_v(1), _v(2));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
|
||
|
operator - () const {
|
||
|
return FLOATNAME(LVecBase3)::operator - ();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVecBase3) FLOATNAME(LVector3)::
|
||
|
operator + (const FLOATNAME(LVecBase3) &other) const {
|
||
|
return FLOATNAME(LVecBase3)::operator + (other);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
|
||
|
operator + (const FLOATNAME(LVector3) &other) const {
|
||
|
return FLOATNAME(LVecBase3)::operator + (other);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVecBase3) FLOATNAME(LVector3)::
|
||
|
operator - (const FLOATNAME(LVecBase3) &other) const {
|
||
|
return FLOATNAME(LVecBase3)::operator - (other);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
|
||
|
operator - (const FLOATNAME(LVector3) &other) const {
|
||
|
return FLOATNAME(LVecBase3)::operator - (other);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
|
||
|
cross(const FLOATNAME(LVecBase3) &other) const {
|
||
|
return FLOATNAME(LVecBase3)::cross(other);
|
||
|
}
|
||
|
|
||
|
#ifndef FLOATTYPE_IS_INT
|
||
|
|
||
|
/**
|
||
|
* Normalizes the vector and returns the normalized vector as a copy. If the
|
||
|
* vector was a zero-length vector, a zero length vector will be returned.
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
|
||
|
normalized() const {
|
||
|
return FLOATNAME(LVecBase3)::normalized();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a new vector representing the projection of this vector onto
|
||
|
* another one. The resulting vector will be a scalar multiple of onto.
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
|
||
|
project(const FLOATNAME(LVecBase3) &onto) const {
|
||
|
return FLOATNAME(LVecBase3)::project(onto);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the unsigned angle between this vector and the other one, expressed
|
||
|
* in radians. Both vectors should be initially normalized.
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATTYPE FLOATNAME(LVector3)::
|
||
|
angle_rad(const FLOATNAME(LVector3) &other) const {
|
||
|
// This algorithm yields better results than acos(dot(other)), which behaves
|
||
|
// poorly as dot(other) approaches 1.0.
|
||
|
if (dot(other) < 0.0f) {
|
||
|
FLOATTYPE a = ((*this)+other).length() / 2.0f;
|
||
|
return MathNumbers::cpi((FLOATTYPE)0.0f) - 2.0f * casin(std::min(a, (FLOATTYPE)1.0));
|
||
|
} else {
|
||
|
FLOATTYPE a = ((*this)-other).length() / 2.0f;
|
||
|
return 2.0f * casin(std::min(a, (FLOATTYPE)1.0));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the angle between this vector and the other one, expressed in
|
||
|
* degrees. Both vectors should be initially normalized.
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATTYPE FLOATNAME(LVector3)::
|
||
|
angle_deg(const FLOATNAME(LVector3) &other) const {
|
||
|
return rad_2_deg(angle_rad(other));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* returns the signed angle between two vectors. The angle is positive if the
|
||
|
* rotation from this vector to other is clockwise when looking in the
|
||
|
* direction of the ref vector.
|
||
|
*
|
||
|
* Vectors (except the ref vector) should be initially normalized.
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATTYPE FLOATNAME(LVector3)::
|
||
|
signed_angle_rad(const FLOATNAME(LVector3) &other,
|
||
|
const FLOATNAME(LVector3) &ref) const {
|
||
|
FLOATTYPE angle = angle_rad(other);
|
||
|
if (cross(other).dot(ref) < 0.0f) {
|
||
|
angle = -angle;
|
||
|
}
|
||
|
return angle;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the signed angle between two vectors. The angle is positive if the
|
||
|
* rotation from this vector to other is clockwise when looking in the
|
||
|
* direction of the ref vector.
|
||
|
*
|
||
|
* Vectors (except the ref vector) should be initially normalized.
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATTYPE FLOATNAME(LVector3)::
|
||
|
signed_angle_deg(const FLOATNAME(LVector3) &other,
|
||
|
const FLOATNAME(LVector3) &ref) const {
|
||
|
return rad_2_deg(signed_angle_rad(other, ref));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This method is deprecated. Do not use.
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATTYPE FLOATNAME(LVector3)::
|
||
|
relative_angle_rad(const FLOATNAME(LVector3) &other) const {
|
||
|
return atan2((_v(0)*other._v(1))-(_v(1)*other._v(0)), dot(other));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This method is deprecated. Do not use.
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATTYPE FLOATNAME(LVector3)::
|
||
|
relative_angle_deg(const FLOATNAME(LVector3) &other) const {
|
||
|
return relative_angle_rad(other) * FLOATCONST(180.0) / FLOATCONST(3.1415926535);
|
||
|
}
|
||
|
#endif // FLOATTYPE_IS_INT
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
|
||
|
operator * (FLOATTYPE scalar) const {
|
||
|
return FLOATNAME(LVector3)(FLOATNAME(LVecBase3)::operator * (scalar));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
|
||
|
operator / (FLOATTYPE scalar) const {
|
||
|
return FLOATNAME(LVector3)(FLOATNAME(LVecBase3)::operator / (scalar));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the up vector for the given coordinate system.
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
|
||
|
up(CoordinateSystem cs) {
|
||
|
if (cs == CS_default) {
|
||
|
cs = get_default_coordinate_system();
|
||
|
}
|
||
|
switch (cs) {
|
||
|
case CS_zup_right:
|
||
|
case CS_zup_left:
|
||
|
return FLOATNAME(LVector3)(0, 0, 1);
|
||
|
|
||
|
case CS_yup_right:
|
||
|
case CS_yup_left:
|
||
|
return FLOATNAME(LVector3)(0, 1, 0);
|
||
|
|
||
|
default:
|
||
|
linmath_cat.error()
|
||
|
<< "Invalid coordinate system!\n";
|
||
|
return FLOATNAME(LVector3)(0, 0, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the right vector for the given coordinate system.
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
|
||
|
right(CoordinateSystem) {
|
||
|
return FLOATNAME(LVector3)(1, 0, 0);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the forward vector for the given coordinate system.
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
|
||
|
forward(CoordinateSystem cs) {
|
||
|
if (cs == CS_default) {
|
||
|
cs = get_default_coordinate_system();
|
||
|
}
|
||
|
switch (cs) {
|
||
|
case CS_zup_right:
|
||
|
return FLOATNAME(LVector3)(0, 1, 0);
|
||
|
|
||
|
case CS_zup_left:
|
||
|
return FLOATNAME(LVector3)(0, -1, 0);
|
||
|
|
||
|
case CS_yup_right:
|
||
|
return FLOATNAME(LVector3)(0, 0, -1);
|
||
|
|
||
|
case CS_yup_left:
|
||
|
return FLOATNAME(LVector3)(0, 0, 1);
|
||
|
|
||
|
default:
|
||
|
linmath_cat.error()
|
||
|
<< "Invalid coordinate system!\n";
|
||
|
return FLOATNAME(LVector3)(0, 0, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the down vector for the given coordinate system.
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
|
||
|
down(CoordinateSystem cs) {
|
||
|
return -up(cs);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the left vector for the given coordinate system.
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
|
||
|
left(CoordinateSystem cs) {
|
||
|
return -right(cs);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the back vector for the given coordinate system.
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
|
||
|
back(CoordinateSystem cs) {
|
||
|
return -forward(cs);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a vector that is described by its right, forward, and up
|
||
|
* components, in whatever way the coordinate system represents that vector.
|
||
|
*/
|
||
|
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
|
||
|
rfu(FLOATTYPE right_v, FLOATTYPE fwd_v, FLOATTYPE up_v,
|
||
|
CoordinateSystem cs) {
|
||
|
|
||
|
/* return forward(cs) * fwd_v + up(cs) * up_v + right(cs) * right_v; */
|
||
|
|
||
|
// fast implementation of above for axis-aligned coordinate systems
|
||
|
if (cs == CS_default) {
|
||
|
cs = get_default_coordinate_system();
|
||
|
}
|
||
|
|
||
|
FLOATTYPE vy, vz;
|
||
|
switch(cs) {
|
||
|
case CS_yup_right:
|
||
|
vz = -fwd_v;
|
||
|
vy = up_v;
|
||
|
break;
|
||
|
|
||
|
case CS_yup_left:
|
||
|
vz = fwd_v;
|
||
|
vy = up_v;
|
||
|
break;
|
||
|
|
||
|
case CS_zup_right:
|
||
|
vy = fwd_v;
|
||
|
vz = up_v;
|
||
|
break;
|
||
|
|
||
|
case CS_zup_left:
|
||
|
vy = -fwd_v;
|
||
|
vz = up_v;
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
linmath_cat.error()
|
||
|
<< "Invalid coordinate system!\n";
|
||
|
return FLOATNAME(LVector3)(0);
|
||
|
}
|
||
|
|
||
|
return FLOATNAME(LVector3)(right_v, vy, vz);
|
||
|
}
|