historical/toontown-classic.git/panda/include/plane_src.I

241 lines
6.7 KiB
Text
Raw Normal View History

2024-01-16 17:20:27 +00:00
/**
* PANDA 3D SOFTWARE
* Copyright (c) Carnegie Mellon University. All rights reserved.
*
* All use of this software is subject to the terms of the revised BSD
* license. You should have received a copy of this license along
* with this source code in a file named "LICENSE."
*
* @file plane_src.I
* @author mike
* @date 1997-01-09
*/
/**
* Creates a default plane. This plane happens to intersect the origin,
* perpendicular to the Z axis. It's not clear how useful a default plane is.
*/
INLINE_MATHUTIL FLOATNAME(LPlane)::
FLOATNAME(LPlane)() {
_v(0) = 0.0f;
_v(1) = 0.0f;
_v(2) = 1.0f;
_v(3) = 0.0f;
}
/**
*
*/
INLINE_MATHUTIL FLOATNAME(LPlane)::
FLOATNAME(LPlane)(const FLOATNAME(LVecBase4) &copy) :
FLOATNAME(LVecBase4)(copy)
{
}
/**
* Constructs a plane given three counter-clockwise points, as seen from the
* front of the plane (that is, viewed from the end of the normal vector,
* looking down).
*/
INLINE_MATHUTIL FLOATNAME(LPlane)::
FLOATNAME(LPlane)(const FLOATNAME(LPoint3) &a, const FLOATNAME(LPoint3) &b,
const FLOATNAME(LPoint3) &c) {
FLOATNAME(LVector3) u = b - a;
FLOATNAME(LVector3) v = c - a;
FLOATNAME(LVector3) p = ::normalize(cross(u, v));
_v(0) = p[0];
_v(1) = p[1];
_v(2) = p[2];
_v(3) = -::dot(p, a);
}
/**
* Constructs a plane given a surface normal vector and a point within the
* plane.
*/
INLINE_MATHUTIL FLOATNAME(LPlane)::
FLOATNAME(LPlane)(const FLOATNAME(LVector3) &normal,
const FLOATNAME(LPoint3) &point) {
FLOATNAME(LVector3) p = ::normalize(normal);
_v(0) = p[0];
_v(1) = p[1];
_v(2) = p[2];
_v(3) = -::dot(p, point);
}
/**
* Constructs a plane given the four terms of the plane equation.
*/
INLINE_MATHUTIL FLOATNAME(LPlane)::
FLOATNAME(LPlane)(FLOATTYPE a, FLOATTYPE b, FLOATTYPE c, FLOATTYPE d) :
FLOATNAME(LVecBase4)(a, b, c, d)
{
}
/**
* Transforms the plane by the indicated matrix.
*/
INLINE_MATHUTIL FLOATNAME(LPlane) FLOATNAME(LPlane)::
operator * (const FLOATNAME(LMatrix3) &mat) const {
FLOATNAME(LVector3) new_normal = mat.xform(get_normal());
return FLOATNAME(LPlane)(new_normal, get_point());
}
/**
* Transforms the plane by the indicated matrix.
*/
INLINE_MATHUTIL FLOATNAME(LPlane) FLOATNAME(LPlane)::
operator * (const FLOATNAME(LMatrix4) &mat) const {
FLOATNAME(LVector3) new_normal = mat.xform_vec_general(get_normal());
FLOATNAME(LPoint3) new_point = get_point() * mat;
return FLOATNAME(LPlane)(new_normal, new_point);
}
/**
* Transforms the plane by the indicated matrix.
*/
INLINE_MATHUTIL void FLOATNAME(LPlane)::
operator *= (const FLOATNAME(LMatrix4) &mat) {
(*this) = (*this) * mat;
}
/**
* Transforms the plane by the indicated matrix.
*/
INLINE_MATHUTIL void FLOATNAME(LPlane)::
xform(const FLOATNAME(LMatrix4) &mat) {
(*this) = (*this) * mat;
}
/**
* Returns the same plane facing the opposite direction.
*/
INLINE_MATHUTIL FLOATNAME(LPlane) FLOATNAME(LPlane)::
operator - () const {
return FLOATNAME(LPlane)(-_v(0), -_v(1), -_v(2), -_v(3));
}
/**
* Returns the surface normal of the plane.
*/
INLINE_MATHUTIL FLOATNAME(LVector3) FLOATNAME(LPlane)::
get_normal() const {
return FLOATNAME(LVector3)(_v(0), _v(1), _v(2));
}
/**
* Returns the straight-line shortest distance from the point to the plane.
* The returned value is positive if the point is in front of the plane (on
* the side with the normal), or negative in the point is behind the plane (on
* the opposite side from the normal). It's zero if the point is exactly in
* the plane.
*/
INLINE_MATHUTIL FLOATTYPE FLOATNAME(LPlane)::
dist_to_plane(const FLOATNAME(LPoint3) &point) const {
return (_v(0) * point[0] + _v(1) * point[1] + _v(2) * point[2] + _v(3));
}
/**
* Normalizes the plane in place. Returns true if the plane was normalized,
* false if the plane had a zero-length normal vector.
*/
INLINE_MATHUTIL bool FLOATNAME(LPlane)::
normalize() {
FLOATTYPE l2 = get_normal().length_squared();
if (l2 == (FLOATTYPE)0.0f) {
return false;
} else if (!IS_THRESHOLD_EQUAL(l2, 1.0f, NEARLY_ZERO(FLOATTYPE) * NEARLY_ZERO(FLOATTYPE))) {
(*this) /= csqrt(l2);
}
return true;
}
/**
* Normalizes the plane and returns the normalized plane as a copy. If the
* plane's normal was a zero-length vector, the same plane is returned.
*/
INLINE_MATHUTIL FLOATNAME(LPlane) FLOATNAME(LPlane)::
normalized() const {
FLOATTYPE l2 = get_normal().length_squared();
if (l2 != (FLOATTYPE)0.0f) {
return (*this) / csqrt(l2);
} else {
return (*this);
}
}
/**
* Returns the point within the plane nearest to the indicated point in space.
*/
INLINE_MATHUTIL FLOATNAME(LPoint3) FLOATNAME(LPlane)::
project(const FLOATNAME(LPoint3) &point) const {
return point - get_normal() * dist_to_plane(point);
}
/**
* Convenience method that flips the plane in-place. This is done by simply
* flipping the normal vector.
*/
INLINE_MATHUTIL void FLOATNAME(LPlane)::
flip() {
_v(0) = -_v(0);
_v(1) = -_v(1);
_v(2) = -_v(2);
_v(3) = -_v(3);
}
/**
* Returns true if the plane intersects the infinite line passing through
* points p1 and p2, false if the line is parallel. The points p1 and p2 are
* used only to define the Euclidean line; they have no other bearing on the
* intersection test. If true, sets intersection_point to the point of
* intersection.
*/
INLINE_MATHUTIL bool FLOATNAME(LPlane)::
intersects_line(FLOATNAME(LPoint3) &intersection_point,
const FLOATNAME(LPoint3) &p1,
const FLOATNAME(LPoint3) &p2) const {
FLOATTYPE t;
if (!intersects_line(t, p1, p2 - p1)) {
return false;
}
intersection_point = p1 + t * (p2 - p1);
return true;
}
/**
* This flavor of intersects_line() returns a bit more information about the
* nature of the intersecting point. The line is defined via the parametric
* equation from + t * delta for all real values of t.
*
* If there is no intersection with the plane, the function returns false and
* leaves t undefined. If there is an intersection with the plane, the
* function returns true and sets t to the parametric value that defines the
* point of intersection. That is, t == 0.0f implies that the intersection
* occurred exactly at point from, and t == 1.0f implies at point from +
* delta, with other values of t accordingly.
*/
INLINE_MATHUTIL bool FLOATNAME(LPlane)::
intersects_line(FLOATTYPE &t,
const FLOATNAME(LPoint3) &from,
const FLOATNAME(LVector3) &delta) const {
FLOATTYPE denom = ::dot(get_normal(), delta);
if (IS_NEARLY_ZERO(denom)) {
t = 0.0f;
return false;
}
t = -(dist_to_plane(from) / denom);
return true;
}
INLINE_MATHUTIL std::ostream &
operator << (std::ostream &out, const FLOATNAME(LPlane) &p) {
p.output(out);
return out;
}