historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/hw/arm/xlnx-versal-virt.c

585 lines
21 KiB
C
Raw Normal View History

2024-01-16 17:20:27 +00:00
/*
* Xilinx Versal Virtual board.
*
* Copyright (c) 2018 Xilinx Inc.
* Written by Edgar E. Iglesias
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "sysemu/device_tree.h"
#include "exec/address-spaces.h"
#include "hw/boards.h"
#include "hw/sysbus.h"
#include "hw/arm/sysbus-fdt.h"
#include "hw/arm/fdt.h"
#include "cpu.h"
#include "hw/qdev-properties.h"
#include "hw/arm/xlnx-versal.h"
#define TYPE_XLNX_VERSAL_VIRT_MACHINE MACHINE_TYPE_NAME("xlnx-versal-virt")
#define XLNX_VERSAL_VIRT_MACHINE(obj) \
OBJECT_CHECK(VersalVirt, (obj), TYPE_XLNX_VERSAL_VIRT_MACHINE)
typedef struct VersalVirt {
MachineState parent_obj;
Versal soc;
void *fdt;
int fdt_size;
struct {
uint32_t gic;
uint32_t ethernet_phy[2];
uint32_t clk_125Mhz;
uint32_t clk_25Mhz;
} phandle;
struct arm_boot_info binfo;
struct {
bool secure;
} cfg;
} VersalVirt;
static void fdt_create(VersalVirt *s)
{
MachineClass *mc = MACHINE_GET_CLASS(s);
int i;
s->fdt = create_device_tree(&s->fdt_size);
if (!s->fdt) {
error_report("create_device_tree() failed");
exit(1);
}
/* Allocate all phandles. */
s->phandle.gic = qemu_fdt_alloc_phandle(s->fdt);
for (i = 0; i < ARRAY_SIZE(s->phandle.ethernet_phy); i++) {
s->phandle.ethernet_phy[i] = qemu_fdt_alloc_phandle(s->fdt);
}
s->phandle.clk_25Mhz = qemu_fdt_alloc_phandle(s->fdt);
s->phandle.clk_125Mhz = qemu_fdt_alloc_phandle(s->fdt);
/* Create /chosen node for load_dtb. */
qemu_fdt_add_subnode(s->fdt, "/chosen");
/* Header */
qemu_fdt_setprop_cell(s->fdt, "/", "interrupt-parent", s->phandle.gic);
qemu_fdt_setprop_cell(s->fdt, "/", "#size-cells", 0x2);
qemu_fdt_setprop_cell(s->fdt, "/", "#address-cells", 0x2);
qemu_fdt_setprop_string(s->fdt, "/", "model", mc->desc);
qemu_fdt_setprop_string(s->fdt, "/", "compatible", "xlnx-versal-virt");
}
static void fdt_add_clk_node(VersalVirt *s, const char *name,
unsigned int freq_hz, uint32_t phandle)
{
qemu_fdt_add_subnode(s->fdt, name);
qemu_fdt_setprop_cell(s->fdt, name, "phandle", phandle);
qemu_fdt_setprop_cell(s->fdt, name, "clock-frequency", freq_hz);
qemu_fdt_setprop_cell(s->fdt, name, "#clock-cells", 0x0);
qemu_fdt_setprop_string(s->fdt, name, "compatible", "fixed-clock");
qemu_fdt_setprop(s->fdt, name, "u-boot,dm-pre-reloc", NULL, 0);
}
static void fdt_add_cpu_nodes(VersalVirt *s, uint32_t psci_conduit)
{
int i;
qemu_fdt_add_subnode(s->fdt, "/cpus");
qemu_fdt_setprop_cell(s->fdt, "/cpus", "#size-cells", 0x0);
qemu_fdt_setprop_cell(s->fdt, "/cpus", "#address-cells", 1);
for (i = XLNX_VERSAL_NR_ACPUS - 1; i >= 0; i--) {
char *name = g_strdup_printf("/cpus/cpu@%d", i);
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i));
qemu_fdt_add_subnode(s->fdt, name);
qemu_fdt_setprop_cell(s->fdt, name, "reg", armcpu->mp_affinity);
if (psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
qemu_fdt_setprop_string(s->fdt, name, "enable-method", "psci");
}
qemu_fdt_setprop_string(s->fdt, name, "device_type", "cpu");
qemu_fdt_setprop_string(s->fdt, name, "compatible",
armcpu->dtb_compatible);
g_free(name);
}
}
static void fdt_add_gic_nodes(VersalVirt *s)
{
char *nodename;
nodename = g_strdup_printf("/gic@%x", MM_GIC_APU_DIST_MAIN);
qemu_fdt_add_subnode(s->fdt, nodename);
qemu_fdt_setprop_cell(s->fdt, nodename, "phandle", s->phandle.gic);
qemu_fdt_setprop_cells(s->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_PPI, VERSAL_GIC_MAINT_IRQ,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
qemu_fdt_setprop(s->fdt, nodename, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_sized_cells(s->fdt, nodename, "reg",
2, MM_GIC_APU_DIST_MAIN,
2, MM_GIC_APU_DIST_MAIN_SIZE,
2, MM_GIC_APU_REDIST_0,
2, MM_GIC_APU_REDIST_0_SIZE);
qemu_fdt_setprop_cell(s->fdt, nodename, "#interrupt-cells", 3);
qemu_fdt_setprop_string(s->fdt, nodename, "compatible", "arm,gic-v3");
g_free(nodename);
}
static void fdt_add_timer_nodes(VersalVirt *s)
{
const char compat[] = "arm,armv8-timer";
uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
qemu_fdt_add_subnode(s->fdt, "/timer");
qemu_fdt_setprop_cells(s->fdt, "/timer", "interrupts",
GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_S_EL1_IRQ, irqflags,
GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_NS_EL1_IRQ, irqflags,
GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_VIRT_IRQ, irqflags,
GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_NS_EL2_IRQ, irqflags);
qemu_fdt_setprop(s->fdt, "/timer", "compatible",
compat, sizeof(compat));
}
static void fdt_add_uart_nodes(VersalVirt *s)
{
uint64_t addrs[] = { MM_UART1, MM_UART0 };
unsigned int irqs[] = { VERSAL_UART1_IRQ_0, VERSAL_UART0_IRQ_0 };
const char compat[] = "arm,pl011\0arm,sbsa-uart";
const char clocknames[] = "uartclk\0apb_pclk";
int i;
for (i = 0; i < ARRAY_SIZE(addrs); i++) {
char *name = g_strdup_printf("/uart@%" PRIx64, addrs[i]);
qemu_fdt_add_subnode(s->fdt, name);
qemu_fdt_setprop_cell(s->fdt, name, "current-speed", 115200);
qemu_fdt_setprop_cells(s->fdt, name, "clocks",
s->phandle.clk_125Mhz, s->phandle.clk_125Mhz);
qemu_fdt_setprop(s->fdt, name, "clock-names",
clocknames, sizeof(clocknames));
qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irqs[i],
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
2, addrs[i], 2, 0x1000);
qemu_fdt_setprop(s->fdt, name, "compatible",
compat, sizeof(compat));
qemu_fdt_setprop(s->fdt, name, "u-boot,dm-pre-reloc", NULL, 0);
if (addrs[i] == MM_UART0) {
/* Select UART0. */
qemu_fdt_setprop_string(s->fdt, "/chosen", "stdout-path", name);
}
g_free(name);
}
}
static void fdt_add_fixed_link_nodes(VersalVirt *s, char *gemname,
uint32_t phandle)
{
char *name = g_strdup_printf("%s/fixed-link", gemname);
qemu_fdt_add_subnode(s->fdt, name);
qemu_fdt_setprop_cell(s->fdt, name, "phandle", phandle);
qemu_fdt_setprop(s->fdt, name, "full-duplex", NULL, 0);
qemu_fdt_setprop_cell(s->fdt, name, "speed", 1000);
g_free(name);
}
static void fdt_add_gem_nodes(VersalVirt *s)
{
uint64_t addrs[] = { MM_GEM1, MM_GEM0 };
unsigned int irqs[] = { VERSAL_GEM1_IRQ_0, VERSAL_GEM0_IRQ_0 };
const char clocknames[] = "pclk\0hclk\0tx_clk\0rx_clk";
const char compat_gem[] = "cdns,zynqmp-gem\0cdns,gem";
int i;
for (i = 0; i < ARRAY_SIZE(addrs); i++) {
char *name = g_strdup_printf("/ethernet@%" PRIx64, addrs[i]);
qemu_fdt_add_subnode(s->fdt, name);
fdt_add_fixed_link_nodes(s, name, s->phandle.ethernet_phy[i]);
qemu_fdt_setprop_string(s->fdt, name, "phy-mode", "rgmii-id");
qemu_fdt_setprop_cell(s->fdt, name, "phy-handle",
s->phandle.ethernet_phy[i]);
qemu_fdt_setprop_cells(s->fdt, name, "clocks",
s->phandle.clk_25Mhz, s->phandle.clk_25Mhz,
s->phandle.clk_25Mhz, s->phandle.clk_25Mhz);
qemu_fdt_setprop(s->fdt, name, "clock-names",
clocknames, sizeof(clocknames));
qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irqs[i],
GIC_FDT_IRQ_FLAGS_LEVEL_HI,
GIC_FDT_IRQ_TYPE_SPI, irqs[i],
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
2, addrs[i], 2, 0x1000);
qemu_fdt_setprop(s->fdt, name, "compatible",
compat_gem, sizeof(compat_gem));
qemu_fdt_setprop_cell(s->fdt, name, "#address-cells", 1);
qemu_fdt_setprop_cell(s->fdt, name, "#size-cells", 0);
g_free(name);
}
}
static void fdt_add_zdma_nodes(VersalVirt *s)
{
const char clocknames[] = "clk_main\0clk_apb";
const char compat[] = "xlnx,zynqmp-dma-1.0";
int i;
for (i = XLNX_VERSAL_NR_ADMAS - 1; i >= 0; i--) {
uint64_t addr = MM_ADMA_CH0 + MM_ADMA_CH0_SIZE * i;
char *name = g_strdup_printf("/dma@%" PRIx64, addr);
qemu_fdt_add_subnode(s->fdt, name);
qemu_fdt_setprop_cell(s->fdt, name, "xlnx,bus-width", 64);
qemu_fdt_setprop_cells(s->fdt, name, "clocks",
s->phandle.clk_25Mhz, s->phandle.clk_25Mhz);
qemu_fdt_setprop(s->fdt, name, "clock-names",
clocknames, sizeof(clocknames));
qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, VERSAL_ADMA_IRQ_0 + i,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
2, addr, 2, 0x1000);
qemu_fdt_setprop(s->fdt, name, "compatible", compat, sizeof(compat));
g_free(name);
}
}
static void fdt_add_sd_nodes(VersalVirt *s)
{
const char clocknames[] = "clk_xin\0clk_ahb";
const char compat[] = "arasan,sdhci-8.9a";
int i;
for (i = ARRAY_SIZE(s->soc.pmc.iou.sd) - 1; i >= 0; i--) {
uint64_t addr = MM_PMC_SD0 + MM_PMC_SD0_SIZE * i;
char *name = g_strdup_printf("/sdhci@%" PRIx64, addr);
qemu_fdt_add_subnode(s->fdt, name);
qemu_fdt_setprop_cells(s->fdt, name, "clocks",
s->phandle.clk_25Mhz, s->phandle.clk_25Mhz);
qemu_fdt_setprop(s->fdt, name, "clock-names",
clocknames, sizeof(clocknames));
qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, VERSAL_SD0_IRQ_0 + i * 2,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
2, addr, 2, MM_PMC_SD0_SIZE);
qemu_fdt_setprop(s->fdt, name, "compatible", compat, sizeof(compat));
g_free(name);
}
}
static void fdt_add_rtc_node(VersalVirt *s)
{
const char compat[] = "xlnx,zynqmp-rtc";
const char interrupt_names[] = "alarm\0sec";
char *name = g_strdup_printf("/rtc@%x", MM_PMC_RTC);
qemu_fdt_add_subnode(s->fdt, name);
qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, VERSAL_RTC_ALARM_IRQ,
GIC_FDT_IRQ_FLAGS_LEVEL_HI,
GIC_FDT_IRQ_TYPE_SPI, VERSAL_RTC_SECONDS_IRQ,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
qemu_fdt_setprop(s->fdt, name, "interrupt-names",
interrupt_names, sizeof(interrupt_names));
qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
2, MM_PMC_RTC, 2, MM_PMC_RTC_SIZE);
qemu_fdt_setprop(s->fdt, name, "compatible", compat, sizeof(compat));
g_free(name);
}
static void fdt_nop_memory_nodes(void *fdt, Error **errp)
{
Error *err = NULL;
char **node_path;
int n = 0;
node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
if (err) {
error_propagate(errp, err);
return;
}
while (node_path[n]) {
if (g_str_has_prefix(node_path[n], "/memory")) {
qemu_fdt_nop_node(fdt, node_path[n]);
}
n++;
}
g_strfreev(node_path);
}
static void fdt_add_memory_nodes(VersalVirt *s, void *fdt, uint64_t ram_size)
{
/* Describes the various split DDR access regions. */
static const struct {
uint64_t base;
uint64_t size;
} addr_ranges[] = {
{ MM_TOP_DDR, MM_TOP_DDR_SIZE },
{ MM_TOP_DDR_2, MM_TOP_DDR_2_SIZE },
{ MM_TOP_DDR_3, MM_TOP_DDR_3_SIZE },
{ MM_TOP_DDR_4, MM_TOP_DDR_4_SIZE }
};
uint64_t mem_reg_prop[8] = {0};
uint64_t size = ram_size;
Error *err = NULL;
char *name;
int i;
fdt_nop_memory_nodes(fdt, &err);
if (err) {
error_report_err(err);
return;
}
name = g_strdup_printf("/memory@%x", MM_TOP_DDR);
for (i = 0; i < ARRAY_SIZE(addr_ranges) && size; i++) {
uint64_t mapsize;
mapsize = size < addr_ranges[i].size ? size : addr_ranges[i].size;
mem_reg_prop[i * 2] = addr_ranges[i].base;
mem_reg_prop[i * 2 + 1] = mapsize;
size -= mapsize;
}
qemu_fdt_add_subnode(fdt, name);
qemu_fdt_setprop_string(fdt, name, "device_type", "memory");
switch (i) {
case 1:
qemu_fdt_setprop_sized_cells(fdt, name, "reg",
2, mem_reg_prop[0],
2, mem_reg_prop[1]);
break;
case 2:
qemu_fdt_setprop_sized_cells(fdt, name, "reg",
2, mem_reg_prop[0],
2, mem_reg_prop[1],
2, mem_reg_prop[2],
2, mem_reg_prop[3]);
break;
case 3:
qemu_fdt_setprop_sized_cells(fdt, name, "reg",
2, mem_reg_prop[0],
2, mem_reg_prop[1],
2, mem_reg_prop[2],
2, mem_reg_prop[3],
2, mem_reg_prop[4],
2, mem_reg_prop[5]);
break;
case 4:
qemu_fdt_setprop_sized_cells(fdt, name, "reg",
2, mem_reg_prop[0],
2, mem_reg_prop[1],
2, mem_reg_prop[2],
2, mem_reg_prop[3],
2, mem_reg_prop[4],
2, mem_reg_prop[5],
2, mem_reg_prop[6],
2, mem_reg_prop[7]);
break;
default:
g_assert_not_reached();
}
g_free(name);
}
static void versal_virt_modify_dtb(const struct arm_boot_info *binfo,
void *fdt)
{
VersalVirt *s = container_of(binfo, VersalVirt, binfo);
fdt_add_memory_nodes(s, fdt, binfo->ram_size);
}
static void *versal_virt_get_dtb(const struct arm_boot_info *binfo,
int *fdt_size)
{
const VersalVirt *board = container_of(binfo, VersalVirt, binfo);
*fdt_size = board->fdt_size;
return board->fdt;
}
#define NUM_VIRTIO_TRANSPORT 8
static void create_virtio_regions(VersalVirt *s)
{
int virtio_mmio_size = 0x200;
int i;
for (i = 0; i < NUM_VIRTIO_TRANSPORT; i++) {
char *name = g_strdup_printf("virtio%d", i);
hwaddr base = MM_TOP_RSVD + i * virtio_mmio_size;
int irq = VERSAL_RSVD_IRQ_FIRST + i;
MemoryRegion *mr;
DeviceState *dev;
qemu_irq pic_irq;
pic_irq = qdev_get_gpio_in(DEVICE(&s->soc.fpd.apu.gic), irq);
dev = qdev_new("virtio-mmio");
object_property_add_child(OBJECT(&s->soc), name, OBJECT(dev));
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic_irq);
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
memory_region_add_subregion(&s->soc.mr_ps, base, mr);
g_free(name);
}
for (i = 0; i < NUM_VIRTIO_TRANSPORT; i++) {
hwaddr base = MM_TOP_RSVD + i * virtio_mmio_size;
int irq = VERSAL_RSVD_IRQ_FIRST + i;
char *name = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
qemu_fdt_add_subnode(s->fdt, name);
qemu_fdt_setprop(s->fdt, name, "dma-coherent", NULL, 0);
qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
2, base, 2, virtio_mmio_size);
qemu_fdt_setprop_string(s->fdt, name, "compatible", "virtio,mmio");
g_free(name);
}
}
static void sd_plugin_card(SDHCIState *sd, DriveInfo *di)
{
BlockBackend *blk = di ? blk_by_legacy_dinfo(di) : NULL;
DeviceState *card;
card = qdev_new(TYPE_SD_CARD);
object_property_add_child(OBJECT(sd), "card[*]", OBJECT(card));
qdev_prop_set_drive_err(card, "drive", blk, &error_fatal);
qdev_realize_and_unref(card, qdev_get_child_bus(DEVICE(sd), "sd-bus"),
&error_fatal);
}
static void versal_virt_init(MachineState *machine)
{
VersalVirt *s = XLNX_VERSAL_VIRT_MACHINE(machine);
int psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
int i;
/*
* If the user provides an Operating System to be loaded, we expect them
* to use the -kernel command line option.
*
* Users can load firmware or boot-loaders with the -device loader options.
*
* When loading an OS, we generate a dtb and let arm_load_kernel() select
* where it gets loaded. This dtb will be passed to the kernel in x0.
*
* If there's no -kernel option, we generate a DTB and place it at 0x1000
* for the bootloaders or firmware to pick up.
*
* If users want to provide their own DTB, they can use the -dtb option.
* These dtb's will have their memory nodes modified to match QEMU's
* selected ram_size option before they get passed to the kernel or fw.
*
* When loading an OS, we turn on QEMU's PSCI implementation with SMC
* as the PSCI conduit. When there's no -kernel, we assume the user
* provides EL3 firmware to handle PSCI.
*/
if (machine->kernel_filename) {
psci_conduit = QEMU_PSCI_CONDUIT_SMC;
}
object_initialize_child(OBJECT(machine), "xlnx-versal", &s->soc,
TYPE_XLNX_VERSAL);
object_property_set_link(OBJECT(&s->soc), "ddr", OBJECT(machine->ram),
&error_abort);
object_property_set_int(OBJECT(&s->soc), "psci-conduit", psci_conduit,
&error_abort);
sysbus_realize(SYS_BUS_DEVICE(&s->soc), &error_fatal);
fdt_create(s);
create_virtio_regions(s);
fdt_add_gem_nodes(s);
fdt_add_uart_nodes(s);
fdt_add_gic_nodes(s);
fdt_add_timer_nodes(s);
fdt_add_zdma_nodes(s);
fdt_add_sd_nodes(s);
fdt_add_rtc_node(s);
fdt_add_cpu_nodes(s, psci_conduit);
fdt_add_clk_node(s, "/clk125", 125000000, s->phandle.clk_125Mhz);
fdt_add_clk_node(s, "/clk25", 25000000, s->phandle.clk_25Mhz);
/* Make the APU cpu address space visible to virtio and other
* modules unaware of muliple address-spaces. */
memory_region_add_subregion_overlap(get_system_memory(),
0, &s->soc.fpd.apu.mr, 0);
/* Plugin SD cards. */
for (i = 0; i < ARRAY_SIZE(s->soc.pmc.iou.sd); i++) {
sd_plugin_card(&s->soc.pmc.iou.sd[i], drive_get_next(IF_SD));
}
s->binfo.ram_size = machine->ram_size;
s->binfo.loader_start = 0x0;
s->binfo.get_dtb = versal_virt_get_dtb;
s->binfo.modify_dtb = versal_virt_modify_dtb;
if (machine->kernel_filename) {
arm_load_kernel(&s->soc.fpd.apu.cpu[0], machine, &s->binfo);
} else {
AddressSpace *as = arm_boot_address_space(&s->soc.fpd.apu.cpu[0],
&s->binfo);
/* Some boot-loaders (e.g u-boot) don't like blobs at address 0 (NULL).
* Offset things by 4K. */
s->binfo.loader_start = 0x1000;
s->binfo.dtb_limit = 0x1000000;
if (arm_load_dtb(s->binfo.loader_start,
&s->binfo, s->binfo.dtb_limit, as, machine) < 0) {
exit(EXIT_FAILURE);
}
}
}
static void versal_virt_machine_instance_init(Object *obj)
{
}
static void versal_virt_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Xilinx Versal Virtual development board";
mc->init = versal_virt_init;
mc->max_cpus = XLNX_VERSAL_NR_ACPUS;
mc->default_cpus = XLNX_VERSAL_NR_ACPUS;
mc->no_cdrom = true;
mc->default_ram_id = "ddr";
}
static const TypeInfo versal_virt_machine_init_typeinfo = {
.name = TYPE_XLNX_VERSAL_VIRT_MACHINE,
.parent = TYPE_MACHINE,
.class_init = versal_virt_machine_class_init,
.instance_init = versal_virt_machine_instance_init,
.instance_size = sizeof(VersalVirt),
};
static void versal_virt_machine_init_register_types(void)
{
type_register_static(&versal_virt_machine_init_typeinfo);
}
type_init(versal_virt_machine_init_register_types)