447 lines
13 KiB
C
447 lines
13 KiB
C
|
/*
|
||
|
* General purpose implementation of a simple periodic countdown timer.
|
||
|
*
|
||
|
* Copyright (c) 2007 CodeSourcery.
|
||
|
*
|
||
|
* This code is licensed under the GNU LGPL.
|
||
|
*/
|
||
|
|
||
|
#include "qemu/osdep.h"
|
||
|
#include "qemu/timer.h"
|
||
|
#include "hw/ptimer.h"
|
||
|
#include "migration/vmstate.h"
|
||
|
#include "qemu/host-utils.h"
|
||
|
#include "sysemu/replay.h"
|
||
|
#include "sysemu/qtest.h"
|
||
|
#include "block/aio.h"
|
||
|
#include "sysemu/cpus.h"
|
||
|
|
||
|
#define DELTA_ADJUST 1
|
||
|
#define DELTA_NO_ADJUST -1
|
||
|
|
||
|
struct ptimer_state
|
||
|
{
|
||
|
uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */
|
||
|
uint64_t limit;
|
||
|
uint64_t delta;
|
||
|
uint32_t period_frac;
|
||
|
int64_t period;
|
||
|
int64_t last_event;
|
||
|
int64_t next_event;
|
||
|
uint8_t policy_mask;
|
||
|
QEMUTimer *timer;
|
||
|
ptimer_cb callback;
|
||
|
void *callback_opaque;
|
||
|
/*
|
||
|
* These track whether we're in a transaction block, and if we
|
||
|
* need to do a timer reload when the block finishes. They don't
|
||
|
* need to be migrated because migration can never happen in the
|
||
|
* middle of a transaction block.
|
||
|
*/
|
||
|
bool in_transaction;
|
||
|
bool need_reload;
|
||
|
};
|
||
|
|
||
|
/* Use a bottom-half routine to avoid reentrancy issues. */
|
||
|
static void ptimer_trigger(ptimer_state *s)
|
||
|
{
|
||
|
s->callback(s->callback_opaque);
|
||
|
}
|
||
|
|
||
|
static void ptimer_reload(ptimer_state *s, int delta_adjust)
|
||
|
{
|
||
|
uint32_t period_frac;
|
||
|
uint64_t period;
|
||
|
uint64_t delta;
|
||
|
bool suppress_trigger = false;
|
||
|
|
||
|
/*
|
||
|
* Note that if delta_adjust is 0 then we must be here because of
|
||
|
* a count register write or timer start, not because of timer expiry.
|
||
|
* In that case the policy might require us to suppress the timer trigger
|
||
|
* that we would otherwise generate for a zero delta.
|
||
|
*/
|
||
|
if (delta_adjust == 0 &&
|
||
|
(s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) {
|
||
|
suppress_trigger = true;
|
||
|
}
|
||
|
if (s->delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)
|
||
|
&& !suppress_trigger) {
|
||
|
ptimer_trigger(s);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Note that ptimer_trigger() might call the device callback function,
|
||
|
* which can then modify timer state, so we must not cache any fields
|
||
|
* from ptimer_state until after we have called it.
|
||
|
*/
|
||
|
delta = s->delta;
|
||
|
period = s->period;
|
||
|
period_frac = s->period_frac;
|
||
|
|
||
|
if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
|
||
|
delta = s->delta = s->limit;
|
||
|
}
|
||
|
|
||
|
if (s->period == 0) {
|
||
|
if (!qtest_enabled()) {
|
||
|
fprintf(stderr, "Timer with period zero, disabling\n");
|
||
|
}
|
||
|
timer_del(s->timer);
|
||
|
s->enabled = 0;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
|
||
|
if (delta_adjust != DELTA_NO_ADJUST) {
|
||
|
delta += delta_adjust;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
|
||
|
if (s->enabled == 1 && s->limit == 0) {
|
||
|
delta = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
|
||
|
if (delta_adjust != DELTA_NO_ADJUST) {
|
||
|
delta = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
|
||
|
if (s->enabled == 1 && s->limit != 0) {
|
||
|
delta = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (delta == 0) {
|
||
|
if (!qtest_enabled()) {
|
||
|
fprintf(stderr, "Timer with delta zero, disabling\n");
|
||
|
}
|
||
|
timer_del(s->timer);
|
||
|
s->enabled = 0;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Artificially limit timeout rate to something
|
||
|
* achievable under QEMU. Otherwise, QEMU spends all
|
||
|
* its time generating timer interrupts, and there
|
||
|
* is no forward progress.
|
||
|
* About ten microseconds is the fastest that really works
|
||
|
* on the current generation of host machines.
|
||
|
*/
|
||
|
|
||
|
if (s->enabled == 1 && (delta * period < 10000) && !use_icount) {
|
||
|
period = 10000 / delta;
|
||
|
period_frac = 0;
|
||
|
}
|
||
|
|
||
|
s->last_event = s->next_event;
|
||
|
s->next_event = s->last_event + delta * period;
|
||
|
if (period_frac) {
|
||
|
s->next_event += ((int64_t)period_frac * delta) >> 32;
|
||
|
}
|
||
|
timer_mod(s->timer, s->next_event);
|
||
|
}
|
||
|
|
||
|
static void ptimer_tick(void *opaque)
|
||
|
{
|
||
|
ptimer_state *s = (ptimer_state *)opaque;
|
||
|
bool trigger = true;
|
||
|
|
||
|
/*
|
||
|
* We perform all the tick actions within a begin/commit block
|
||
|
* because the callback function that ptimer_trigger() calls
|
||
|
* might make calls into the ptimer APIs that provoke another
|
||
|
* trigger, and we want that to cause the callback function
|
||
|
* to be called iteratively, not recursively.
|
||
|
*/
|
||
|
ptimer_transaction_begin(s);
|
||
|
|
||
|
if (s->enabled == 2) {
|
||
|
s->delta = 0;
|
||
|
s->enabled = 0;
|
||
|
} else {
|
||
|
int delta_adjust = DELTA_ADJUST;
|
||
|
|
||
|
if (s->delta == 0 || s->limit == 0) {
|
||
|
/* If a "continuous trigger" policy is not used and limit == 0,
|
||
|
we should error out. delta == 0 means that this tick is
|
||
|
caused by a "no immediate reload" policy, so it shouldn't
|
||
|
be adjusted. */
|
||
|
delta_adjust = DELTA_NO_ADJUST;
|
||
|
}
|
||
|
|
||
|
if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
|
||
|
/* Avoid re-trigger on deferred reload if "no immediate trigger"
|
||
|
policy isn't used. */
|
||
|
trigger = (delta_adjust == DELTA_ADJUST);
|
||
|
}
|
||
|
|
||
|
s->delta = s->limit;
|
||
|
|
||
|
ptimer_reload(s, delta_adjust);
|
||
|
}
|
||
|
|
||
|
if (trigger) {
|
||
|
ptimer_trigger(s);
|
||
|
}
|
||
|
|
||
|
ptimer_transaction_commit(s);
|
||
|
}
|
||
|
|
||
|
uint64_t ptimer_get_count(ptimer_state *s)
|
||
|
{
|
||
|
uint64_t counter;
|
||
|
|
||
|
if (s->enabled && s->delta != 0) {
|
||
|
int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
||
|
int64_t next = s->next_event;
|
||
|
int64_t last = s->last_event;
|
||
|
bool expired = (now - next >= 0);
|
||
|
bool oneshot = (s->enabled == 2);
|
||
|
|
||
|
/* Figure out the current counter value. */
|
||
|
if (expired) {
|
||
|
/* Prevent timer underflowing if it should already have
|
||
|
triggered. */
|
||
|
counter = 0;
|
||
|
} else {
|
||
|
uint64_t rem;
|
||
|
uint64_t div;
|
||
|
int clz1, clz2;
|
||
|
int shift;
|
||
|
uint32_t period_frac = s->period_frac;
|
||
|
uint64_t period = s->period;
|
||
|
|
||
|
if (!oneshot && (s->delta * period < 10000) && !use_icount) {
|
||
|
period = 10000 / s->delta;
|
||
|
period_frac = 0;
|
||
|
}
|
||
|
|
||
|
/* We need to divide time by period, where time is stored in
|
||
|
rem (64-bit integer) and period is stored in period/period_frac
|
||
|
(64.32 fixed point).
|
||
|
|
||
|
Doing full precision division is hard, so scale values and
|
||
|
do a 64-bit division. The result should be rounded down,
|
||
|
so that the rounding error never causes the timer to go
|
||
|
backwards.
|
||
|
*/
|
||
|
|
||
|
rem = next - now;
|
||
|
div = period;
|
||
|
|
||
|
clz1 = clz64(rem);
|
||
|
clz2 = clz64(div);
|
||
|
shift = clz1 < clz2 ? clz1 : clz2;
|
||
|
|
||
|
rem <<= shift;
|
||
|
div <<= shift;
|
||
|
if (shift >= 32) {
|
||
|
div |= ((uint64_t)period_frac << (shift - 32));
|
||
|
} else {
|
||
|
if (shift != 0)
|
||
|
div |= (period_frac >> (32 - shift));
|
||
|
/* Look at remaining bits of period_frac and round div up if
|
||
|
necessary. */
|
||
|
if ((uint32_t)(period_frac << shift))
|
||
|
div += 1;
|
||
|
}
|
||
|
counter = rem / div;
|
||
|
|
||
|
if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
|
||
|
/* Before wrapping around, timer should stay with counter = 0
|
||
|
for a one period. */
|
||
|
if (!oneshot && s->delta == s->limit) {
|
||
|
if (now == last) {
|
||
|
/* Counter == delta here, check whether it was
|
||
|
adjusted and if it was, then right now it is
|
||
|
that "one period". */
|
||
|
if (counter == s->limit + DELTA_ADJUST) {
|
||
|
return 0;
|
||
|
}
|
||
|
} else if (counter == s->limit) {
|
||
|
/* Since the counter is rounded down and now != last,
|
||
|
the counter == limit means that delta was adjusted
|
||
|
by +1 and right now it is that adjusted period. */
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
|
||
|
/* If now == last then delta == limit, i.e. the counter already
|
||
|
represents the correct value. It would be rounded down a 1ns
|
||
|
later. */
|
||
|
if (now != last) {
|
||
|
counter += 1;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
counter = s->delta;
|
||
|
}
|
||
|
return counter;
|
||
|
}
|
||
|
|
||
|
void ptimer_set_count(ptimer_state *s, uint64_t count)
|
||
|
{
|
||
|
assert(s->in_transaction);
|
||
|
s->delta = count;
|
||
|
if (s->enabled) {
|
||
|
s->need_reload = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ptimer_run(ptimer_state *s, int oneshot)
|
||
|
{
|
||
|
bool was_disabled = !s->enabled;
|
||
|
|
||
|
assert(s->in_transaction);
|
||
|
|
||
|
if (was_disabled && s->period == 0) {
|
||
|
if (!qtest_enabled()) {
|
||
|
fprintf(stderr, "Timer with period zero, disabling\n");
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
s->enabled = oneshot ? 2 : 1;
|
||
|
if (was_disabled) {
|
||
|
s->need_reload = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Pause a timer. Note that this may cause it to "lose" time, even if it
|
||
|
is immediately restarted. */
|
||
|
void ptimer_stop(ptimer_state *s)
|
||
|
{
|
||
|
assert(s->in_transaction);
|
||
|
|
||
|
if (!s->enabled)
|
||
|
return;
|
||
|
|
||
|
s->delta = ptimer_get_count(s);
|
||
|
timer_del(s->timer);
|
||
|
s->enabled = 0;
|
||
|
s->need_reload = false;
|
||
|
}
|
||
|
|
||
|
/* Set counter increment interval in nanoseconds. */
|
||
|
void ptimer_set_period(ptimer_state *s, int64_t period)
|
||
|
{
|
||
|
assert(s->in_transaction);
|
||
|
s->delta = ptimer_get_count(s);
|
||
|
s->period = period;
|
||
|
s->period_frac = 0;
|
||
|
if (s->enabled) {
|
||
|
s->need_reload = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Set counter frequency in Hz. */
|
||
|
void ptimer_set_freq(ptimer_state *s, uint32_t freq)
|
||
|
{
|
||
|
assert(s->in_transaction);
|
||
|
s->delta = ptimer_get_count(s);
|
||
|
s->period = 1000000000ll / freq;
|
||
|
s->period_frac = (1000000000ll << 32) / freq;
|
||
|
if (s->enabled) {
|
||
|
s->need_reload = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Set the initial countdown value. If reload is nonzero then also set
|
||
|
count = limit. */
|
||
|
void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
|
||
|
{
|
||
|
assert(s->in_transaction);
|
||
|
s->limit = limit;
|
||
|
if (reload)
|
||
|
s->delta = limit;
|
||
|
if (s->enabled && reload) {
|
||
|
s->need_reload = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
uint64_t ptimer_get_limit(ptimer_state *s)
|
||
|
{
|
||
|
return s->limit;
|
||
|
}
|
||
|
|
||
|
void ptimer_transaction_begin(ptimer_state *s)
|
||
|
{
|
||
|
assert(!s->in_transaction);
|
||
|
s->in_transaction = true;
|
||
|
s->need_reload = false;
|
||
|
}
|
||
|
|
||
|
void ptimer_transaction_commit(ptimer_state *s)
|
||
|
{
|
||
|
assert(s->in_transaction);
|
||
|
/*
|
||
|
* We must loop here because ptimer_reload() can call the callback
|
||
|
* function, which might then update ptimer state in a way that
|
||
|
* means we need to do another reload and possibly another callback.
|
||
|
* A disabled timer never needs reloading (and if we don't check
|
||
|
* this then we loop forever if ptimer_reload() disables the timer).
|
||
|
*/
|
||
|
while (s->need_reload && s->enabled) {
|
||
|
s->need_reload = false;
|
||
|
s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
||
|
ptimer_reload(s, 0);
|
||
|
}
|
||
|
/* Now we've finished reload we can leave the transaction block. */
|
||
|
s->in_transaction = false;
|
||
|
}
|
||
|
|
||
|
const VMStateDescription vmstate_ptimer = {
|
||
|
.name = "ptimer",
|
||
|
.version_id = 1,
|
||
|
.minimum_version_id = 1,
|
||
|
.fields = (VMStateField[]) {
|
||
|
VMSTATE_UINT8(enabled, ptimer_state),
|
||
|
VMSTATE_UINT64(limit, ptimer_state),
|
||
|
VMSTATE_UINT64(delta, ptimer_state),
|
||
|
VMSTATE_UINT32(period_frac, ptimer_state),
|
||
|
VMSTATE_INT64(period, ptimer_state),
|
||
|
VMSTATE_INT64(last_event, ptimer_state),
|
||
|
VMSTATE_INT64(next_event, ptimer_state),
|
||
|
VMSTATE_TIMER_PTR(timer, ptimer_state),
|
||
|
VMSTATE_END_OF_LIST()
|
||
|
}
|
||
|
};
|
||
|
|
||
|
ptimer_state *ptimer_init(ptimer_cb callback, void *callback_opaque,
|
||
|
uint8_t policy_mask)
|
||
|
{
|
||
|
ptimer_state *s;
|
||
|
|
||
|
/* The callback function is mandatory. */
|
||
|
assert(callback);
|
||
|
|
||
|
s = g_new0(ptimer_state, 1);
|
||
|
s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
|
||
|
s->policy_mask = policy_mask;
|
||
|
s->callback = callback;
|
||
|
s->callback_opaque = callback_opaque;
|
||
|
|
||
|
/*
|
||
|
* These two policies are incompatible -- trigger-on-decrement implies
|
||
|
* a timer trigger when the count becomes 0, but no-immediate-trigger
|
||
|
* implies a trigger when the count stops being 0.
|
||
|
*/
|
||
|
assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
|
||
|
(policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
|
||
|
return s;
|
||
|
}
|
||
|
|
||
|
void ptimer_free(ptimer_state *s)
|
||
|
{
|
||
|
timer_free(s->timer);
|
||
|
g_free(s);
|
||
|
}
|