historical/toontown-classic.git/panda/direct/directtools/DirectSelection.py

797 lines
28 KiB
Python
Raw Normal View History

2024-01-16 17:20:27 +00:00
from direct.showbase.DirectObject import DirectObject
from .DirectGlobals import *
from .DirectUtil import *
from .DirectGeometry import *
COA_ORIGIN = 0
COA_CENTER = 1
# MRM: To do: handle broken node paths in selected and deselected dicts
class DirectNodePath(NodePath):
# A node path augmented with info, bounding box, and utility methods
def __init__(self, nodePath, bboxColor=None):
# Initialize the superclass
NodePath.__init__(self)
self.assign(nodePath)
# Create a bounding box
self.bbox = DirectBoundingBox(self, bboxColor)
center = self.bbox.getCenter()
# Create matrix to hold the offset between the nodepath
# and its center of action (COA)
self.mCoa2Dnp = Mat4(Mat4.identMat())
if base.direct.coaMode == COA_CENTER:
self.mCoa2Dnp.setRow(3, Vec4(center[0], center[1], center[2], 1))
# Transform from nodePath to widget
self.tDnp2Widget = TransformState.makeIdentity()
def highlight(self, fRecompute = 1):
if fRecompute:
pass
#self.bbox.recompute()
self.bbox.show()
def dehighlight(self):
self.bbox.hide()
def getCenter(self):
return self.bbox.getCenter()
def getRadius(self):
return self.bbox.getRadius()
def getMin(self):
return self.bbox.getMin()
def getMax(self):
return self.bbox.getMax()
class SelectedNodePaths(DirectObject):
def __init__(self):
self.reset()
self.tagList = []
def addTag(self, tag):
if tag not in self.tagList:
self.tagList.append(tag)
def removeTag(self, tag):
self.tagList.remove(tag)
def reset(self):
self.selectedDict = {}
self.selectedList = [] # [gjeon] to maintain selected order
self.deselectedDict = {}
__builtins__["last"] = self.last = None
def select(self, nodePath, fMultiSelect = 0, fSelectTag = 1):
""" Select the specified node path. Multiselect as required """
# Do nothing if nothing selected
if not nodePath:
print('Nothing selected!!')
return None
# Reset selected objects and highlight if multiSelect is false
if not fMultiSelect:
self.deselectAll()
# Select tagged object if present
if fSelectTag:
for tag in self.tagList:
if nodePath.hasNetTag(tag):
nodePath = nodePath.findNetTag(tag)
break
# Get this pointer
id = nodePath.get_key()
# First see if its already in the selected dictionary
dnp = self.getSelectedDict(id)
# If so, deselect it
if dnp:
self.deselect(nodePath)
return None
else:
# See if it is in the deselected dictionary
dnp = self.getDeselectedDict(id)
if dnp:
# Remove it from the deselected dictionary
del(self.deselectedDict[id])
# Show its bounding box
dnp.highlight()
else:
# Didn't find it, create a new selectedNodePath instance
dnp = DirectNodePath(nodePath)
# Show its bounding box
dnp.highlight(fRecompute = 0)
# Add it to the selected dictionary
self.selectedDict[dnp.get_key()] = dnp
self.selectedList.append(dnp) # [gjeon]
# And update last
__builtins__["last"] = self.last = dnp
# Update cluster servers if this is a cluster client
if base.direct.clusterMode == 'client':
cluster.selectNodePath(dnp)
return dnp
def deselect(self, nodePath):
""" Deselect the specified node path """
# Get this pointer
id = nodePath.get_key()
# See if it is in the selected dictionary
dnp = self.getSelectedDict(id)
if dnp:
# It was selected:
# Hide its bounding box
dnp.dehighlight()
# Remove it from the selected dictionary
del(self.selectedDict[id])
if dnp in self.selectedList: # [gjeon]
self.selectedList.remove(dnp)
# And keep track of it in the deselected dictionary
self.deselectedDict[id] = dnp
# Send a message
messenger.send('DIRECT_deselectedNodePath', [dnp])
# Update cluster servers if this is a cluster client
if base.direct.clusterMode == 'client':
cluster.deselectNodePath(dnp)
return dnp
def getSelectedAsList(self):
"""
Return a list of all selected node paths. No verification of
connectivity is performed on the members of the list
"""
#return self.selectedDict.values()[:]
return self.selectedList[:] # [gjeon] now return the list with selected order
def __getitem__(self, index):
return self.getSelectedAsList()[index]
def getSelectedDict(self, id):
"""
Search selectedDict for node path, try to repair broken node paths.
"""
dnp = self.selectedDict.get(id, None)
if dnp:
return dnp
else:
# Not in selected dictionary
return None
def getDeselectedAsList(self):
return list(self.deselectedDict.values())
def getDeselectedDict(self, id):
"""
Search deselectedDict for node path, try to repair broken node paths.
"""
dnp = self.deselectedDict.get(id, None)
if dnp:
# Yes
return dnp
else:
# Not in deselected dictionary
return None
def forEachSelectedNodePathDo(self, func):
"""
Perform given func on selected node paths. No node path
connectivity verification performed
"""
selectedNodePaths = self.getSelectedAsList()
for nodePath in selectedNodePaths:
func(nodePath)
def forEachDeselectedNodePathDo(self, func):
"""
Perform given func on deselected node paths. No node path
connectivity verification performed
"""
deselectedNodePaths = self.getDeselectedAsList()
for nodePath in deselectedNodePaths:
func(nodePath)
def getWrtAll(self):
self.forEachSelectedNodePathDo(self.getWrt)
def getWrt(self, nodePath):
nodePath.tDnp2Widget = nodePath.getTransform(base.direct.widget)
def moveWrtWidgetAll(self):
self.forEachSelectedNodePathDo(self.moveWrtWidget)
def moveWrtWidget(self, nodePath):
nodePath.setTransform(base.direct.widget, nodePath.tDnp2Widget)
def deselectAll(self):
self.forEachSelectedNodePathDo(self.deselect)
def highlightAll(self):
self.forEachSelectedNodePathDo(DirectNodePath.highlight)
def dehighlightAll(self):
self.forEachSelectedNodePathDo(DirectNodePath.dehighlight)
def removeSelected(self):
selected = self.last
if selected:
selected.remove()
__builtins__["last"] = self.last = None
def removeAll(self):
# Remove all selected nodePaths from the Scene Graph
self.forEachSelectedNodePathDo(NodePath.remove)
def toggleVisSelected(self):
selected = self.last
# Toggle visibility of selected node paths
if selected:
if selected.isHidden():
selected.show()
else:
selected.hide()
def toggleVisAll(self):
# Toggle viz for all selected node paths
selectedNodePaths = self.getSelectedAsList()
for nodePath in selectedNodePaths:
if nodePath.isHidden():
nodePath.show()
else:
nodePath.hide()
def isolateSelected(self):
selected = self.last
if selected:
selected.showAllDescendents()
for sib in selected.getParent().getChildren():
if sib.node() != selected.node():
sib.hide()
def getDirectNodePath(self, nodePath):
# Get this pointer
id = nodePath.get_key()
# First check selected dict
dnp = self.getSelectedDict(id)
if dnp:
return dnp
# Otherwise return result of deselected search
return self.getDeselectedDict(id)
def getNumSelected(self):
return len(self.selectedDict)
class DirectBoundingBox:
def __init__(self, nodePath, bboxColor=None):
# Record the node path
self.nodePath = nodePath
# Compute bounds, min, max, etc.
self.computeTightBounds()
# Generate the bounding box
self.lines = self.createBBoxLines(bboxColor)
def recompute(self):
# Compute bounds, min, max, etc.
self.computeTightBounds()
self.updateBBoxLines()
def computeTightBounds(self):
# Compute bounding box using tighter calcTightBounds function
# Need to clear out existing transform on node path
tMat = Mat4(self.nodePath.getMat())
self.nodePath.clearMat()
# Get bounds
self.min = Point3(0)
self.max = Point3(0)
self.nodePath.calcTightBounds(self.min, self.max)
# Calc center and radius
self.center = Point3((self.min + self.max)/2.0)
self.radius = Vec3(self.max - self.min).length()
# Restore transform
self.nodePath.setMat(tMat)
del tMat
def computeBounds(self):
self.bounds = self.getBounds()
if self.bounds.isEmpty() or self.bounds.isInfinite():
self.center = Point3(0)
self.radius = 1.0
else:
self.center = self.bounds.getCenter()
self.radius = self.bounds.getRadius()
self.min = Point3(self.center - Point3(self.radius))
self.max = Point3(self.center + Point3(self.radius))
def createBBoxLines(self, bboxColor=None):
# Create a line segments object for the bbox
lines = LineNodePath(hidden)
lines.node().setName('bboxLines')
if (bboxColor):
lines.setColor(VBase4(*bboxColor))
else:
lines.setColor(VBase4(1., 0., 0., 1.))
lines.setThickness(0.5)
minX = self.min[0]
minY = self.min[1]
minZ = self.min[2]
maxX = self.max[0]
maxY = self.max[1]
maxZ = self.max[2]
# Bottom face
lines.moveTo(minX, minY, minZ)
lines.drawTo(maxX, minY, minZ)
lines.drawTo(maxX, maxY, minZ)
lines.drawTo(minX, maxY, minZ)
lines.drawTo(minX, minY, minZ)
# Front Edge/Top face
lines.drawTo(minX, minY, maxZ)
lines.drawTo(maxX, minY, maxZ)
lines.drawTo(maxX, maxY, maxZ)
lines.drawTo(minX, maxY, maxZ)
lines.drawTo(minX, minY, maxZ)
# Three remaining edges
lines.moveTo(maxX, minY, minZ)
lines.drawTo(maxX, minY, maxZ)
lines.moveTo(maxX, maxY, minZ)
lines.drawTo(maxX, maxY, maxZ)
lines.moveTo(minX, maxY, minZ)
lines.drawTo(minX, maxY, maxZ)
# Create and return bbox lines
lines.create()
# Make sure bbox is never lit or drawn in wireframe
useDirectRenderStyle(lines)
return lines
def setBoxColorScale(self, r, g, b, a):
if (self.lines):
self.lines.reset()
self.lines = None
self.lines = self.createBBoxLines((r, g, b, a))
self.show()
def updateBBoxLines(self):
ls = self.lines.lineSegs
minX = self.min[0]
minY = self.min[1]
minZ = self.min[2]
maxX = self.max[0]
maxY = self.max[1]
maxZ = self.max[2]
# Bottom face
ls.setVertex(0, minX, minY, minZ)
ls.setVertex(1, maxX, minY, minZ)
ls.setVertex(2, maxX, maxY, minZ)
ls.setVertex(3, minX, maxY, minZ)
ls.setVertex(4, minX, minY, minZ)
# Front Edge/Top face
ls.setVertex(5, minX, minY, maxZ)
ls.setVertex(6, maxX, minY, maxZ)
ls.setVertex(7, maxX, maxY, maxZ)
ls.setVertex(8, minX, maxY, maxZ)
ls.setVertex(9, minX, minY, maxZ)
# Three remaining edges
ls.setVertex(10, maxX, minY, minZ)
ls.setVertex(11, maxX, minY, maxZ)
ls.setVertex(12, maxX, maxY, minZ)
ls.setVertex(13, maxX, maxY, maxZ)
ls.setVertex(14, minX, maxY, minZ)
ls.setVertex(15, minX, maxY, maxZ)
def getBounds(self):
# Get a node path's bounds
nodeBounds = BoundingSphere()
nodeBounds.extendBy(self.nodePath.node().getInternalBound())
for child in self.nodePath.getChildren():
nodeBounds.extendBy(child.getBounds())
return nodeBounds.makeCopy()
def show(self):
self.lines.reparentTo(self.nodePath)
def hide(self):
self.lines.reparentTo(hidden)
def getCenter(self):
return self.center
def getRadius(self):
return self.radius
def getMin(self):
return self.min
def getMax(self):
return self.max
def vecAsString(self, vec):
return '%.2f %.2f %.2f' % (vec[0], vec[1], vec[2])
def __repr__(self):
return (repr(self.__class__) +
'\nNodePath:\t%s\n' % self.nodePath.getName() +
'Min:\t\t%s\n' % self.vecAsString(self.min) +
'Max:\t\t%s\n' % self.vecAsString(self.max) +
'Center:\t\t%s\n' % self.vecAsString(self.center) +
'Radius:\t\t%.2f' % self.radius
)
class SelectionQueue(CollisionHandlerQueue):
def __init__(self, parentNP = None):
if parentNP is None:
parentNP = render
# Initialize the superclass
CollisionHandlerQueue.__init__(self)
# Current index and entry in collision queue
self.index = -1
self.entry = None
self.skipFlags = SKIP_NONE
# Create a collision node path attached to the given NP
self.collisionNodePath = NodePath(CollisionNode("collisionNP"))
self.setParentNP(parentNP)
# Don't pay the penalty of drawing this collision ray
self.collisionNodePath.hide()
self.collisionNode = self.collisionNodePath.node()
# Intersect with geometry to begin with
self.collideWithGeom()
# And a traverser to do the actual collision tests
self.ct = CollisionTraverser("DirectSelection")
self.ct.setRespectPrevTransform(False)
# Let the traverser know about the collision node and the queue
self.ct.addCollider(self.collisionNodePath, self)
# List of objects that can't be selected
self.unpickable = UNPICKABLE
# Derived class must add Collider to complete initialization
def setParentNP(self, parentNP):
# Update collisionNodePath's parent
self.collisionNodePath.reparentTo(parentNP)
def addCollider(self, collider):
# Inherited class must call this function to specify collider object
# Record collision object
self.collider = collider
# Add the collider to the collision Node
self.collisionNode.addSolid(self.collider)
def collideWithBitMask(self, bitMask):
# The into collide mask is the bit pattern colliders look at
# when deciding whether or not to test for a collision "into"
# this collision solid. Set to all Off so this collision solid
# will not be considered in any collision tests
self.collisionNode.setIntoCollideMask(BitMask32().allOff())
# The from collide mask is the bit pattern *this* collision solid
# compares against the into collide mask of candidate collision solids
# Turn this mask all off since we're not testing for collisions against
# collision solids
self.collisionNode.setFromCollideMask(bitMask)
def collideWithGeom(self):
# The into collide mask is the bit pattern colliders look at
# when deciding whether or not to test for a collision "into"
# this collision solid. Set to all Off so this collision solid
# will not be considered in any collision tests
self.collisionNode.setIntoCollideMask(BitMask32().allOff())
# The from collide mask is the bit pattern *this* collision solid
# compares against the into collide mask of candidate collision solids
# Turn this mask all off since we're not testing for collisions against
# collision solids
self.collisionNode.setFromCollideMask(GeomNode.getDefaultCollideMask())
def collideWithWidget(self):
# This collision node should not be tested against by any other
# collision solids
self.collisionNode.setIntoCollideMask(BitMask32().allOff())
# This collision node will test for collisions with any collision
# solids with a bit mask set to 0x80000000
mask = BitMask32()
mask.setWord(0x80000000)
self.collisionNode.setFromCollideMask(mask)
def addUnpickable(self, item):
if item not in self.unpickable:
self.unpickable.append(item)
def removeUnpickable(self, item):
if item in self.unpickable:
self.unpickable.remove(item)
def setCurrentIndex(self, index):
if (index < 0) or (index >= self.getNumEntries()):
self.index = -1
else:
self.index = index
def setCurrentEntry(self, entry):
self.entry = entry
def getCurrentEntry(self):
return self.entry
def isEntryBackfacing(self, entry):
# If dot product of collision point surface normal and
# ray from camera to collision point is positive, we are
# looking at the backface of the polygon
if not entry.hasSurfaceNormal():
# Well, no way to tell. Assume we're not backfacing.
return 0
if direct:
cam = base.direct.cam
else:
cam = base.cam
fromNodePath = entry.getFromNodePath()
v = Vec3(entry.getSurfacePoint(fromNodePath))
n = entry.getSurfaceNormal(fromNodePath)
# Convert to camera space for backfacing test
if self.collisionNodePath.getParent() != cam:
# Problem: assumes base.cam is the camera in question
p2cam = self.collisionNodePath.getParent().getMat(cam)
v = Vec3(p2cam.xformPoint(v))
n = p2cam.xformVec(n)
# Normalize and check angle between to vectors
v.normalize()
return v.dot(n) >= 0
def findNextCollisionEntry(self, skipFlags = SKIP_NONE):
return self.findCollisionEntry(skipFlags, self.index + 1)
def findCollisionEntry(self, skipFlags = SKIP_NONE, startIndex = 0):
# Init self.index and self.entry
self.setCurrentIndex(-1)
self.setCurrentEntry(None)
# Pick out the closest object that isn't a widget
for i in range(startIndex, self.getNumEntries()):
entry = self.getEntry(i)
nodePath = entry.getIntoNodePath()
if (skipFlags & SKIP_HIDDEN) and nodePath.isHidden():
# Skip if hidden node
pass
elif (skipFlags & SKIP_BACKFACE) and self.isEntryBackfacing(entry):
# Skip, if backfacing poly
pass
elif ((skipFlags & SKIP_CAMERA) and
(camera in nodePath.getAncestors())):
# Skip if parented to a camera.
pass
# Can pick unpickable, use the first visible node
elif ((skipFlags & SKIP_UNPICKABLE) and
(nodePath.getName() in self.unpickable)):
# Skip if in unpickable list
pass
elif base.direct and\
((skipFlags & SKIP_WIDGET) and
(nodePath.getTag('WidgetName') != base.direct.widget.getName())):
# Skip if this widget part is not belong to current widget
pass
elif base.direct and\
((skipFlags & SKIP_WIDGET) and base.direct.fControl and
(nodePath.getName()[2:] == 'ring')):
# Skip when ununiformly scale in ortho view
pass
else:
self.setCurrentIndex(i)
self.setCurrentEntry(entry)
break
return self.getCurrentEntry()
class SelectionRay(SelectionQueue):
def __init__(self, parentNP = None):
if parentNP is None:
parentNP = render
# Initialize the superclass
SelectionQueue.__init__(self, parentNP)
self.addCollider(CollisionRay())
def pick(self, targetNodePath, xy = None):
# Determine ray direction based upon the mouse coordinates
if xy:
mx = xy[0]
my = xy[1]
elif direct:
mx = base.direct.dr.mouseX
my = base.direct.dr.mouseY
else:
if not base.mouseWatcherNode.hasMouse():
# No mouse in window.
self.clearEntries()
return
mx = base.mouseWatcherNode.getMouseX()
my = base.mouseWatcherNode.getMouseY()
if direct:
self.collider.setFromLens(base.direct.camNode, mx, my)
else:
self.collider.setFromLens(base.camNode, mx, my)
self.ct.traverse(targetNodePath)
self.sortEntries()
def pickBitMask(self, bitMask = BitMask32.allOff(),
targetNodePath = None,
skipFlags = SKIP_ALL):
if targetNodePath is None:
targetNodePath = render
self.collideWithBitMask(bitMask)
self.pick(targetNodePath)
# Determine collision entry
return self.findCollisionEntry(skipFlags)
def pickGeom(self, targetNodePath = None, skipFlags = SKIP_ALL,
xy = None):
if targetNodePath is None:
targetNodePath = render
self.collideWithGeom()
self.pick(targetNodePath, xy = xy)
# Determine collision entry
return self.findCollisionEntry(skipFlags)
def pickWidget(self, targetNodePath = None, skipFlags = SKIP_NONE):
if targetNodePath is None:
targetNodePath = render
self.collideWithWidget()
self.pick(targetNodePath)
# Determine collision entry
return self.findCollisionEntry(skipFlags)
def pick3D(self, targetNodePath, origin, dir):
# Determine ray direction based upon the mouse coordinates
self.collider.setOrigin(origin)
self.collider.setDirection(dir)
self.ct.traverse(targetNodePath)
self.sortEntries()
def pickGeom3D(self, targetNodePath = None,
origin = Point3(0), dir = Vec3(0, 0, -1),
skipFlags = SKIP_HIDDEN | SKIP_CAMERA):
if targetNodePath is None:
targetNodePath = render
self.collideWithGeom()
self.pick3D(targetNodePath, origin, dir)
# Determine collision entry
return self.findCollisionEntry(skipFlags)
def pickBitMask3D(self, bitMask = BitMask32.allOff(),
targetNodePath = None,
origin = Point3(0), dir = Vec3(0, 0, -1),
skipFlags = SKIP_ALL):
if targetNodePath is None:
targetNodePath = render
self.collideWithBitMask(bitMask)
self.pick3D(targetNodePath, origin, dir)
# Determine collision entry
return self.findCollisionEntry(skipFlags)
class SelectionSegment(SelectionQueue):
# Like a selection ray but with two endpoints instead of an endpoint
# and a direction
def __init__(self, parentNP = None, numSegments = 1):
if parentNP is None:
parentNP = render
# Initialize the superclass
SelectionQueue.__init__(self, parentNP)
self.colliders = []
self.numColliders = 0
for i in range(numSegments):
self.addCollider(CollisionSegment())
def addCollider(self, collider):
# Record new collision object
self.colliders.append(collider)
# Add the collider to the collision Node
self.collisionNode.addSolid(collider)
self.numColliders += 1
def pickGeom(self, targetNodePath = None, endPointList = [],
skipFlags = SKIP_HIDDEN | SKIP_CAMERA):
if targetNodePath is None:
targetNodePath = render
self.collideWithGeom()
for i in range(min(len(endPointList), self.numColliders)):
pointA, pointB = endPointList[i]
collider = self.colliders[i]
collider.setPointA(pointA)
collider.setPointB(pointB)
self.ct.traverse(targetNodePath)
# Determine collision entry
return self.findCollisionEntry(skipFlags)
def pickBitMask(self, bitMask = BitMask32.allOff(),
targetNodePath = None, endPointList = [],
skipFlags = SKIP_HIDDEN | SKIP_CAMERA):
if targetNodePath is None:
targetNodePath = render
self.collideWithBitMask(bitMask)
for i in range(min(len(endPointList), self.numColliders)):
pointA, pointB = endPointList[i]
collider = self.colliders[i]
collider.setPointA(pointA)
collider.setPointB(pointB)
self.ct.traverse(targetNodePath)
# Determine collision entry
return self.findCollisionEntry(skipFlags)
class SelectionSphere(SelectionQueue):
# Wrapper around collision sphere
def __init__(self, parentNP = None, numSpheres = 1):
if parentNP is None:
parentNP = render
# Initialize the superclass
SelectionQueue.__init__(self, parentNP)
self.colliders = []
self.numColliders = 0
for i in range(numSpheres):
self.addCollider(CollisionSphere(Point3(0), 1))
def addCollider(self, collider):
# Record new collision object
self.colliders.append(collider)
# Add the collider to the collision Node
self.collisionNode.addSolid(collider)
self.numColliders += 1
def setCenter(self, i, center):
c = self.colliders[i]
c.setCenter(center)
def setRadius(self, i, radius):
c = self.colliders[i]
c.setRadius(radius)
def setCenterRadius(self, i, center, radius):
c = self.colliders[i]
c.setCenter(center)
c.setRadius(radius)
def isEntryBackfacing(self, entry):
# If dot product of collision point surface normal and
# ray from sphere origin to collision point is positive,
# center is on the backside of the polygon
fromNodePath = entry.getFromNodePath()
v = Vec3(entry.getSurfacePoint(fromNodePath) -
entry.getFrom().getCenter())
n = entry.getSurfaceNormal(fromNodePath)
# If points almost on top of each other, reject face
# (treat as backfacing)
if v.length() < 0.05:
return 1
# Normalize and check angle between to vectors
v.normalize()
return v.dot(n) >= 0
def pick(self, targetNodePath, skipFlags):
self.ct.traverse(targetNodePath)
self.sortEntries()
return self.findCollisionEntry(skipFlags)
def pickGeom(self, targetNodePath = None,
skipFlags = SKIP_HIDDEN | SKIP_CAMERA):
if targetNodePath is None:
targetNodePath = render
self.collideWithGeom()
return self.pick(targetNodePath, skipFlags)
def pickBitMask(self, bitMask = BitMask32.allOff(),
targetNodePath = None,
skipFlags = SKIP_HIDDEN | SKIP_CAMERA):
if targetNodePath is None:
targetNodePath = render
self.collideWithBitMask(bitMask)
return self.pick(targetNodePath, skipFlags)