historical/toontown-classic.git/panda/include/cmath.I

441 lines
6.7 KiB
Text
Raw Normal View History

2024-01-16 17:20:27 +00:00
/**
* PANDA 3D SOFTWARE
* Copyright (c) Carnegie Mellon University. All rights reserved.
*
* All use of this software is subject to the terms of the revised BSD
* license. You should have received a copy of this license along
* with this source code in a file named "LICENSE."
*
* @file cmath.I
* @author drose
* @date 2000-05-19
*/
#ifdef __INTEL_COMPILER
// see float.h
#define FPU_CONTROLWORD_WRITEMASK 0xFFFFF // if you look at defn of _CW_DEFAULT, all settings fall within 0xFFFFF
#define FPU_CONTROLWORD_NEW_SETTING _CW_DEFAULT
#endif
/**
*
*/
INLINE float
csqrt(float v) {
return sqrtf(v);
}
/**
*
*/
INLINE float
csin(float v) {
return sinf(v);
}
/**
*
*/
INLINE float
ccos(float v) {
return cosf(v);
}
/**
*
*/
INLINE float ctan(float v) {
return tanf(v);
}
/**
*
*/
INLINE void
csincos(float v, float *sin_result, float *cos_result) {
// MS VC defines _M_IX86 for x86. gcc should define _X86_
#if defined(_M_IX86) || defined(_X86_)
// #define fsincos_opcode __asm _emit 0xd9 __asm _emit 0xfb
__asm {
mov eax, sin_result
mov edx, cos_result
fld v
fsincos
fstp DWORD ptr [edx]
fstp DWORD ptr [eax]
}
#else //!_X86_
*sin_result = sinf(v);
*cos_result = cosf(v);
#endif //!_X86_
}
/**
* Computes sin(x) / x, well-behaved as x approaches 0.
*/
INLINE float
csin_over_x(float v) {
if (1.0f + v * v == 1.0f) {
return 1.0f;
} else {
return csin(v) / v;
}
}
/**
*
*/
INLINE float
cabs(float v) {
return fabs(v);
}
/**
*
*/
INLINE float
catan(float v) {
return atanf(v);
}
/**
*
*/
INLINE float
catan2(float y, float x) {
return atan2f(y, x);
}
/**
*
*/
INLINE float
casin(float v) {
return asinf(v);
}
/**
*
*/
INLINE float
cacos(float v) {
return acosf(v);
}
/**
* This is similar to fmod(), but it behaves properly when x is negative: that
* is, it always returns a value in the range [0, y), assuming y is positive.
*/
INLINE float
cmod(float x, float y) {
return x - floor(x / y) * y;
}
/**
*
*/
INLINE float
cpow(float x, float y) {
return powf(x, y);
}
/**
*
*/
INLINE double
cfloor(double f) {
#ifdef __INTEL_COMPILER
// intel floor doesnt work right if fpu mode is not double, so make
// double-prec mode is on
unsigned int saved_fpu_control_word=_controlfp(0x0,0x0);
_controlfp(FPU_CONTROLWORD_NEW_SETTING,FPU_CONTROLWORD_WRITEMASK);
double retval=floor(f);
_controlfp(saved_fpu_control_word,FPU_CONTROLWORD_WRITEMASK);
return retval;
#else
return floor(f);
#endif
}
/**
*
*/
INLINE double
cceil(double f) {
#ifdef __INTEL_COMPILER
// intel ceil doesnt work right if fpu mode is not double, so make double-
// prec mode is on
unsigned int saved_fpu_control_word=_controlfp(0x0,0x0);
_controlfp(FPU_CONTROLWORD_NEW_SETTING,FPU_CONTROLWORD_WRITEMASK);
double retval=ceil(f);
_controlfp(saved_fpu_control_word,FPU_CONTROLWORD_WRITEMASK);
return retval;
#else
return ceil(f);
#endif
}
/**
* Returns the fractional component of f: f - cfloor(f).
*/
INLINE double
cfrac(double f) {
return f - cfloor(f);
}
/**
*
*/
INLINE double
csqrt(double v) {
return sqrt(v);
}
/**
*
*/
INLINE double
csin(double v) {
return sin(v);
}
/**
*
*/
INLINE double
ccos(double v) {
return cos(v);
}
/**
*
*/
INLINE double
ctan(double v) {
return tan(v);
}
/**
*
*/
INLINE void
csincos(double v, double *sin_result, double *cos_result) {
#if defined(_M_IX86) || defined(_X86_)
// #define fsincos_opcode __asm _emit 0xd9 __asm _emit 0xfb
__asm {
mov eax, sin_result
mov edx, cos_result
fld v
fsincos
fstp QWORD ptr [edx]
fstp QWORD ptr [eax]
}
#else //!_X86_
*sin_result = sin(v);
*cos_result = cos(v);
#endif //!_X86_
}
/**
* Computes sin(x) / x, well-behaved as x approaches 0.
*/
INLINE double
csin_over_x(double v) {
if (1.0 + v * v == 1.0) {
return 1.0;
} else {
return csin(v) / v;
}
}
/**
*
*/
INLINE double
cabs(double v) {
return fabs(v);
}
/**
*
*/
INLINE double
catan(double v) {
return atan(v);
}
/**
*
*/
INLINE double
catan2(double y, double x) {
return atan2(y, x);
}
/**
*
*/
INLINE double
casin(double v) {
return asin(v);
}
/**
*
*/
INLINE double
cacos(double v) {
return acos(v);
}
/**
* This is similar to fmod(), but it behaves properly when x is negative: that
* is, it always returns a value in the range [0, y), assuming y is positive.
*/
INLINE double
cmod(double x, double y) {
return x - cfloor(x / y) * y;
}
/**
*
*/
INLINE double
cpow(double x, double y) {
return pow(x, y);
}
/**
*
*/
INLINE int
cpow(int x, int y) {
int result = 1;
if (y >= 0) {
for(; y > 0; --y) {
result *= x;
}
return result;
} else {
for(; y < 0; ++y) {
result *= x;
}
return 1 / result;
}
}
/**
*
*/
INLINE bool
cnan(float v) {
#if __FINITE_MATH_ONLY__
// GCC's isnan breaks when using -ffast-math.
union { float f; uint32_t x; } u = { v };
return ((u.x << 1) > 0xff000000u);
#elif !defined(_WIN32)
return std::isnan(v);
#else
return (_isnan(v) != 0);
#endif
}
/**
*
*/
INLINE bool
cnan(double v) {
#if __FINITE_MATH_ONLY__
// GCC's isnan breaks when using -ffast-math.
union { double d; uint64_t x; } u = { v };
return ((u.x << 1) > 0xff70000000000000ull);
#elif !defined(_WIN32)
return std::isnan(v);
#else
return (_isnan(v) != 0);
#endif
}
/**
*
*/
INLINE bool
cinf(float v) {
#if __FINITE_MATH_ONLY__
// GCC's isinf breaks when using -ffast-math.
union { float f; uint32_t x; } u = { v };
return ((u.x << 1) == 0xff000000u);
#elif !defined(_WIN32)
return std::isinf(v);
#else
return (_isnan(v) == 0 && _finite(v) == 0);
#endif
}
/**
*
*/
INLINE bool
cinf(double v) {
#if __FINITE_MATH_ONLY__
// GCC's isinf breaks when using -ffast-math.
union { double d; uint64_t x; } u = { v };
return ((u.x << 1) == 0xff70000000000000ull);
#elif !defined(_WIN32)
return std::isinf(v);
#else
return (_isnan(v) == 0 && _finite(v) == 0);
#endif
}
/**
*
*/
INLINE float
make_nan(float) {
return std::numeric_limits<float>::quiet_NaN();
}
/**
*
*/
INLINE double
make_nan(double) {
return std::numeric_limits<double>::quiet_NaN();
}
/**
*
*/
INLINE float
make_inf(float) {
return std::numeric_limits<float>::infinity();
}
/**
*
*/
INLINE double
make_inf(double) {
return std::numeric_limits<double>::infinity();
}
/**
* This is similar to fmod(), but it behaves properly when x is negative: that
* is, it always returns a value in the range [0, y), assuming y is positive.
*
* This integer-valued function is provided since the built-in modulo operator
* % does not work properly for negative x.
*/
INLINE int
cmod(int x, int y) {
if (x < 0) {
return y - 1 - ((-x - 1) % y);
} else {
return x % y;
}
}