historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/target/riscv/insn_trans/trans_rvv.inc.c

2903 lines
106 KiB
C
Raw Normal View History

2024-01-16 17:20:27 +00:00
/*
* RISC-V translation routines for the RVV Standard Extension.
*
* Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "tcg/tcg-op-gvec.h"
#include "tcg/tcg-gvec-desc.h"
#include "internals.h"
static bool trans_vsetvl(DisasContext *ctx, arg_vsetvl *a)
{
TCGv s1, s2, dst;
if (!has_ext(ctx, RVV)) {
return false;
}
s2 = tcg_temp_new();
dst = tcg_temp_new();
/* Using x0 as the rs1 register specifier, encodes an infinite AVL */
if (a->rs1 == 0) {
/* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */
s1 = tcg_const_tl(RV_VLEN_MAX);
} else {
s1 = tcg_temp_new();
gen_get_gpr(s1, a->rs1);
}
gen_get_gpr(s2, a->rs2);
gen_helper_vsetvl(dst, cpu_env, s1, s2);
gen_set_gpr(a->rd, dst);
tcg_gen_movi_tl(cpu_pc, ctx->pc_succ_insn);
lookup_and_goto_ptr(ctx);
ctx->base.is_jmp = DISAS_NORETURN;
tcg_temp_free(s1);
tcg_temp_free(s2);
tcg_temp_free(dst);
return true;
}
static bool trans_vsetvli(DisasContext *ctx, arg_vsetvli *a)
{
TCGv s1, s2, dst;
if (!has_ext(ctx, RVV)) {
return false;
}
s2 = tcg_const_tl(a->zimm);
dst = tcg_temp_new();
/* Using x0 as the rs1 register specifier, encodes an infinite AVL */
if (a->rs1 == 0) {
/* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */
s1 = tcg_const_tl(RV_VLEN_MAX);
} else {
s1 = tcg_temp_new();
gen_get_gpr(s1, a->rs1);
}
gen_helper_vsetvl(dst, cpu_env, s1, s2);
gen_set_gpr(a->rd, dst);
gen_goto_tb(ctx, 0, ctx->pc_succ_insn);
ctx->base.is_jmp = DISAS_NORETURN;
tcg_temp_free(s1);
tcg_temp_free(s2);
tcg_temp_free(dst);
return true;
}
/* vector register offset from env */
static uint32_t vreg_ofs(DisasContext *s, int reg)
{
return offsetof(CPURISCVState, vreg) + reg * s->vlen / 8;
}
/* check functions */
/*
* In cpu_get_tb_cpu_state(), set VILL if RVV was not present.
* So RVV is also be checked in this function.
*/
static bool vext_check_isa_ill(DisasContext *s)
{
return !s->vill;
}
/*
* There are two rules check here.
*
* 1. Vector register numbers are multiples of LMUL. (Section 3.2)
*
* 2. For all widening instructions, the destination LMUL value must also be
* a supported LMUL value. (Section 11.2)
*/
static bool vext_check_reg(DisasContext *s, uint32_t reg, bool widen)
{
/*
* The destination vector register group results are arranged as if both
* SEW and LMUL were at twice their current settings. (Section 11.2).
*/
int legal = widen ? 2 << s->lmul : 1 << s->lmul;
return !((s->lmul == 0x3 && widen) || (reg % legal));
}
/*
* There are two rules check here.
*
* 1. The destination vector register group for a masked vector instruction can
* only overlap the source mask register (v0) when LMUL=1. (Section 5.3)
*
* 2. In widen instructions and some other insturctions, like vslideup.vx,
* there is no need to check whether LMUL=1.
*/
static bool vext_check_overlap_mask(DisasContext *s, uint32_t vd, bool vm,
bool force)
{
return (vm != 0 || vd != 0) || (!force && (s->lmul == 0));
}
/* The LMUL setting must be such that LMUL * NFIELDS <= 8. (Section 7.8) */
static bool vext_check_nf(DisasContext *s, uint32_t nf)
{
return (1 << s->lmul) * nf <= 8;
}
/*
* The destination vector register group cannot overlap a source vector register
* group of a different element width. (Section 11.2)
*/
static inline bool vext_check_overlap_group(int rd, int dlen, int rs, int slen)
{
return ((rd >= rs + slen) || (rs >= rd + dlen));
}
/* common translation macro */
#define GEN_VEXT_TRANS(NAME, SEQ, ARGTYPE, OP, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE *a)\
{ \
if (CHECK(s, a)) { \
return OP(s, a, SEQ); \
} \
return false; \
}
/*
*** unit stride load and store
*/
typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv,
TCGv_env, TCGv_i32);
static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data,
gen_helper_ldst_us *fn, DisasContext *s)
{
TCGv_ptr dest, mask;
TCGv base;
TCGv_i32 desc;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
base = tcg_temp_new();
/*
* As simd_desc supports at most 256 bytes, and in this implementation,
* the max vector group length is 2048 bytes. So split it into two parts.
*
* The first part is vlen in bytes, encoded in maxsz of simd_desc.
* The second part is lmul, encoded in data of simd_desc.
*/
desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data));
gen_get_gpr(base, rs1);
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, base, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free(base);
tcg_temp_free_i32(desc);
gen_set_label(over);
return true;
}
static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t seq)
{
uint32_t data = 0;
gen_helper_ldst_us *fn;
static gen_helper_ldst_us * const fns[2][7][4] = {
/* masked unit stride load */
{ { gen_helper_vlb_v_b_mask, gen_helper_vlb_v_h_mask,
gen_helper_vlb_v_w_mask, gen_helper_vlb_v_d_mask },
{ NULL, gen_helper_vlh_v_h_mask,
gen_helper_vlh_v_w_mask, gen_helper_vlh_v_d_mask },
{ NULL, NULL,
gen_helper_vlw_v_w_mask, gen_helper_vlw_v_d_mask },
{ gen_helper_vle_v_b_mask, gen_helper_vle_v_h_mask,
gen_helper_vle_v_w_mask, gen_helper_vle_v_d_mask },
{ gen_helper_vlbu_v_b_mask, gen_helper_vlbu_v_h_mask,
gen_helper_vlbu_v_w_mask, gen_helper_vlbu_v_d_mask },
{ NULL, gen_helper_vlhu_v_h_mask,
gen_helper_vlhu_v_w_mask, gen_helper_vlhu_v_d_mask },
{ NULL, NULL,
gen_helper_vlwu_v_w_mask, gen_helper_vlwu_v_d_mask } },
/* unmasked unit stride load */
{ { gen_helper_vlb_v_b, gen_helper_vlb_v_h,
gen_helper_vlb_v_w, gen_helper_vlb_v_d },
{ NULL, gen_helper_vlh_v_h,
gen_helper_vlh_v_w, gen_helper_vlh_v_d },
{ NULL, NULL,
gen_helper_vlw_v_w, gen_helper_vlw_v_d },
{ gen_helper_vle_v_b, gen_helper_vle_v_h,
gen_helper_vle_v_w, gen_helper_vle_v_d },
{ gen_helper_vlbu_v_b, gen_helper_vlbu_v_h,
gen_helper_vlbu_v_w, gen_helper_vlbu_v_d },
{ NULL, gen_helper_vlhu_v_h,
gen_helper_vlhu_v_w, gen_helper_vlhu_v_d },
{ NULL, NULL,
gen_helper_vlwu_v_w, gen_helper_vlwu_v_d } }
};
fn = fns[a->vm][seq][s->sew];
if (fn == NULL) {
return false;
}
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
return ldst_us_trans(a->rd, a->rs1, data, fn, s);
}
static bool ld_us_check(DisasContext *s, arg_r2nfvm* a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, false) &&
vext_check_reg(s, a->rd, false) &&
vext_check_nf(s, a->nf));
}
GEN_VEXT_TRANS(vlb_v, 0, r2nfvm, ld_us_op, ld_us_check)
GEN_VEXT_TRANS(vlh_v, 1, r2nfvm, ld_us_op, ld_us_check)
GEN_VEXT_TRANS(vlw_v, 2, r2nfvm, ld_us_op, ld_us_check)
GEN_VEXT_TRANS(vle_v, 3, r2nfvm, ld_us_op, ld_us_check)
GEN_VEXT_TRANS(vlbu_v, 4, r2nfvm, ld_us_op, ld_us_check)
GEN_VEXT_TRANS(vlhu_v, 5, r2nfvm, ld_us_op, ld_us_check)
GEN_VEXT_TRANS(vlwu_v, 6, r2nfvm, ld_us_op, ld_us_check)
static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t seq)
{
uint32_t data = 0;
gen_helper_ldst_us *fn;
static gen_helper_ldst_us * const fns[2][4][4] = {
/* masked unit stride load and store */
{ { gen_helper_vsb_v_b_mask, gen_helper_vsb_v_h_mask,
gen_helper_vsb_v_w_mask, gen_helper_vsb_v_d_mask },
{ NULL, gen_helper_vsh_v_h_mask,
gen_helper_vsh_v_w_mask, gen_helper_vsh_v_d_mask },
{ NULL, NULL,
gen_helper_vsw_v_w_mask, gen_helper_vsw_v_d_mask },
{ gen_helper_vse_v_b_mask, gen_helper_vse_v_h_mask,
gen_helper_vse_v_w_mask, gen_helper_vse_v_d_mask } },
/* unmasked unit stride store */
{ { gen_helper_vsb_v_b, gen_helper_vsb_v_h,
gen_helper_vsb_v_w, gen_helper_vsb_v_d },
{ NULL, gen_helper_vsh_v_h,
gen_helper_vsh_v_w, gen_helper_vsh_v_d },
{ NULL, NULL,
gen_helper_vsw_v_w, gen_helper_vsw_v_d },
{ gen_helper_vse_v_b, gen_helper_vse_v_h,
gen_helper_vse_v_w, gen_helper_vse_v_d } }
};
fn = fns[a->vm][seq][s->sew];
if (fn == NULL) {
return false;
}
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
return ldst_us_trans(a->rd, a->rs1, data, fn, s);
}
static bool st_us_check(DisasContext *s, arg_r2nfvm* a)
{
return (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rd, false) &&
vext_check_nf(s, a->nf));
}
GEN_VEXT_TRANS(vsb_v, 0, r2nfvm, st_us_op, st_us_check)
GEN_VEXT_TRANS(vsh_v, 1, r2nfvm, st_us_op, st_us_check)
GEN_VEXT_TRANS(vsw_v, 2, r2nfvm, st_us_op, st_us_check)
GEN_VEXT_TRANS(vse_v, 3, r2nfvm, st_us_op, st_us_check)
/*
*** stride load and store
*/
typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv,
TCGv, TCGv_env, TCGv_i32);
static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2,
uint32_t data, gen_helper_ldst_stride *fn,
DisasContext *s)
{
TCGv_ptr dest, mask;
TCGv base, stride;
TCGv_i32 desc;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
base = tcg_temp_new();
stride = tcg_temp_new();
desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data));
gen_get_gpr(base, rs1);
gen_get_gpr(stride, rs2);
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, base, stride, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free(base);
tcg_temp_free(stride);
tcg_temp_free_i32(desc);
gen_set_label(over);
return true;
}
static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t seq)
{
uint32_t data = 0;
gen_helper_ldst_stride *fn;
static gen_helper_ldst_stride * const fns[7][4] = {
{ gen_helper_vlsb_v_b, gen_helper_vlsb_v_h,
gen_helper_vlsb_v_w, gen_helper_vlsb_v_d },
{ NULL, gen_helper_vlsh_v_h,
gen_helper_vlsh_v_w, gen_helper_vlsh_v_d },
{ NULL, NULL,
gen_helper_vlsw_v_w, gen_helper_vlsw_v_d },
{ gen_helper_vlse_v_b, gen_helper_vlse_v_h,
gen_helper_vlse_v_w, gen_helper_vlse_v_d },
{ gen_helper_vlsbu_v_b, gen_helper_vlsbu_v_h,
gen_helper_vlsbu_v_w, gen_helper_vlsbu_v_d },
{ NULL, gen_helper_vlshu_v_h,
gen_helper_vlshu_v_w, gen_helper_vlshu_v_d },
{ NULL, NULL,
gen_helper_vlswu_v_w, gen_helper_vlswu_v_d },
};
fn = fns[seq][s->sew];
if (fn == NULL) {
return false;
}
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s);
}
static bool ld_stride_check(DisasContext *s, arg_rnfvm* a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, false) &&
vext_check_reg(s, a->rd, false) &&
vext_check_nf(s, a->nf));
}
GEN_VEXT_TRANS(vlsb_v, 0, rnfvm, ld_stride_op, ld_stride_check)
GEN_VEXT_TRANS(vlsh_v, 1, rnfvm, ld_stride_op, ld_stride_check)
GEN_VEXT_TRANS(vlsw_v, 2, rnfvm, ld_stride_op, ld_stride_check)
GEN_VEXT_TRANS(vlse_v, 3, rnfvm, ld_stride_op, ld_stride_check)
GEN_VEXT_TRANS(vlsbu_v, 4, rnfvm, ld_stride_op, ld_stride_check)
GEN_VEXT_TRANS(vlshu_v, 5, rnfvm, ld_stride_op, ld_stride_check)
GEN_VEXT_TRANS(vlswu_v, 6, rnfvm, ld_stride_op, ld_stride_check)
static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t seq)
{
uint32_t data = 0;
gen_helper_ldst_stride *fn;
static gen_helper_ldst_stride * const fns[4][4] = {
/* masked stride store */
{ gen_helper_vssb_v_b, gen_helper_vssb_v_h,
gen_helper_vssb_v_w, gen_helper_vssb_v_d },
{ NULL, gen_helper_vssh_v_h,
gen_helper_vssh_v_w, gen_helper_vssh_v_d },
{ NULL, NULL,
gen_helper_vssw_v_w, gen_helper_vssw_v_d },
{ gen_helper_vsse_v_b, gen_helper_vsse_v_h,
gen_helper_vsse_v_w, gen_helper_vsse_v_d }
};
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
fn = fns[seq][s->sew];
if (fn == NULL) {
return false;
}
return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s);
}
static bool st_stride_check(DisasContext *s, arg_rnfvm* a)
{
return (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rd, false) &&
vext_check_nf(s, a->nf));
}
GEN_VEXT_TRANS(vssb_v, 0, rnfvm, st_stride_op, st_stride_check)
GEN_VEXT_TRANS(vssh_v, 1, rnfvm, st_stride_op, st_stride_check)
GEN_VEXT_TRANS(vssw_v, 2, rnfvm, st_stride_op, st_stride_check)
GEN_VEXT_TRANS(vsse_v, 3, rnfvm, st_stride_op, st_stride_check)
/*
*** index load and store
*/
typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv,
TCGv_ptr, TCGv_env, TCGv_i32);
static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2,
uint32_t data, gen_helper_ldst_index *fn,
DisasContext *s)
{
TCGv_ptr dest, mask, index;
TCGv base;
TCGv_i32 desc;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
index = tcg_temp_new_ptr();
base = tcg_temp_new();
desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data));
gen_get_gpr(base, rs1);
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, base, index, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(index);
tcg_temp_free(base);
tcg_temp_free_i32(desc);
gen_set_label(over);
return true;
}
static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t seq)
{
uint32_t data = 0;
gen_helper_ldst_index *fn;
static gen_helper_ldst_index * const fns[7][4] = {
{ gen_helper_vlxb_v_b, gen_helper_vlxb_v_h,
gen_helper_vlxb_v_w, gen_helper_vlxb_v_d },
{ NULL, gen_helper_vlxh_v_h,
gen_helper_vlxh_v_w, gen_helper_vlxh_v_d },
{ NULL, NULL,
gen_helper_vlxw_v_w, gen_helper_vlxw_v_d },
{ gen_helper_vlxe_v_b, gen_helper_vlxe_v_h,
gen_helper_vlxe_v_w, gen_helper_vlxe_v_d },
{ gen_helper_vlxbu_v_b, gen_helper_vlxbu_v_h,
gen_helper_vlxbu_v_w, gen_helper_vlxbu_v_d },
{ NULL, gen_helper_vlxhu_v_h,
gen_helper_vlxhu_v_w, gen_helper_vlxhu_v_d },
{ NULL, NULL,
gen_helper_vlxwu_v_w, gen_helper_vlxwu_v_d },
};
fn = fns[seq][s->sew];
if (fn == NULL) {
return false;
}
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s);
}
/*
* For vector indexed segment loads, the destination vector register
* groups cannot overlap the source vector register group (specified by
* `vs2`), else an illegal instruction exception is raised.
*/
static bool ld_index_check(DisasContext *s, arg_rnfvm* a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, false) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_nf(s, a->nf) &&
((a->nf == 1) ||
vext_check_overlap_group(a->rd, a->nf << s->lmul,
a->rs2, 1 << s->lmul)));
}
GEN_VEXT_TRANS(vlxb_v, 0, rnfvm, ld_index_op, ld_index_check)
GEN_VEXT_TRANS(vlxh_v, 1, rnfvm, ld_index_op, ld_index_check)
GEN_VEXT_TRANS(vlxw_v, 2, rnfvm, ld_index_op, ld_index_check)
GEN_VEXT_TRANS(vlxe_v, 3, rnfvm, ld_index_op, ld_index_check)
GEN_VEXT_TRANS(vlxbu_v, 4, rnfvm, ld_index_op, ld_index_check)
GEN_VEXT_TRANS(vlxhu_v, 5, rnfvm, ld_index_op, ld_index_check)
GEN_VEXT_TRANS(vlxwu_v, 6, rnfvm, ld_index_op, ld_index_check)
static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t seq)
{
uint32_t data = 0;
gen_helper_ldst_index *fn;
static gen_helper_ldst_index * const fns[4][4] = {
{ gen_helper_vsxb_v_b, gen_helper_vsxb_v_h,
gen_helper_vsxb_v_w, gen_helper_vsxb_v_d },
{ NULL, gen_helper_vsxh_v_h,
gen_helper_vsxh_v_w, gen_helper_vsxh_v_d },
{ NULL, NULL,
gen_helper_vsxw_v_w, gen_helper_vsxw_v_d },
{ gen_helper_vsxe_v_b, gen_helper_vsxe_v_h,
gen_helper_vsxe_v_w, gen_helper_vsxe_v_d }
};
fn = fns[seq][s->sew];
if (fn == NULL) {
return false;
}
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s);
}
static bool st_index_check(DisasContext *s, arg_rnfvm* a)
{
return (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_nf(s, a->nf));
}
GEN_VEXT_TRANS(vsxb_v, 0, rnfvm, st_index_op, st_index_check)
GEN_VEXT_TRANS(vsxh_v, 1, rnfvm, st_index_op, st_index_check)
GEN_VEXT_TRANS(vsxw_v, 2, rnfvm, st_index_op, st_index_check)
GEN_VEXT_TRANS(vsxe_v, 3, rnfvm, st_index_op, st_index_check)
/*
*** unit stride fault-only-first load
*/
static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data,
gen_helper_ldst_us *fn, DisasContext *s)
{
TCGv_ptr dest, mask;
TCGv base;
TCGv_i32 desc;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
base = tcg_temp_new();
desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data));
gen_get_gpr(base, rs1);
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, base, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free(base);
tcg_temp_free_i32(desc);
gen_set_label(over);
return true;
}
static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t seq)
{
uint32_t data = 0;
gen_helper_ldst_us *fn;
static gen_helper_ldst_us * const fns[7][4] = {
{ gen_helper_vlbff_v_b, gen_helper_vlbff_v_h,
gen_helper_vlbff_v_w, gen_helper_vlbff_v_d },
{ NULL, gen_helper_vlhff_v_h,
gen_helper_vlhff_v_w, gen_helper_vlhff_v_d },
{ NULL, NULL,
gen_helper_vlwff_v_w, gen_helper_vlwff_v_d },
{ gen_helper_vleff_v_b, gen_helper_vleff_v_h,
gen_helper_vleff_v_w, gen_helper_vleff_v_d },
{ gen_helper_vlbuff_v_b, gen_helper_vlbuff_v_h,
gen_helper_vlbuff_v_w, gen_helper_vlbuff_v_d },
{ NULL, gen_helper_vlhuff_v_h,
gen_helper_vlhuff_v_w, gen_helper_vlhuff_v_d },
{ NULL, NULL,
gen_helper_vlwuff_v_w, gen_helper_vlwuff_v_d }
};
fn = fns[seq][s->sew];
if (fn == NULL) {
return false;
}
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
return ldff_trans(a->rd, a->rs1, data, fn, s);
}
GEN_VEXT_TRANS(vlbff_v, 0, r2nfvm, ldff_op, ld_us_check)
GEN_VEXT_TRANS(vlhff_v, 1, r2nfvm, ldff_op, ld_us_check)
GEN_VEXT_TRANS(vlwff_v, 2, r2nfvm, ldff_op, ld_us_check)
GEN_VEXT_TRANS(vleff_v, 3, r2nfvm, ldff_op, ld_us_check)
GEN_VEXT_TRANS(vlbuff_v, 4, r2nfvm, ldff_op, ld_us_check)
GEN_VEXT_TRANS(vlhuff_v, 5, r2nfvm, ldff_op, ld_us_check)
GEN_VEXT_TRANS(vlwuff_v, 6, r2nfvm, ldff_op, ld_us_check)
/*
*** vector atomic operation
*/
typedef void gen_helper_amo(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr,
TCGv_env, TCGv_i32);
static bool amo_trans(uint32_t vd, uint32_t rs1, uint32_t vs2,
uint32_t data, gen_helper_amo *fn, DisasContext *s)
{
TCGv_ptr dest, mask, index;
TCGv base;
TCGv_i32 desc;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
index = tcg_temp_new_ptr();
base = tcg_temp_new();
desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data));
gen_get_gpr(base, rs1);
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, base, index, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(index);
tcg_temp_free(base);
tcg_temp_free_i32(desc);
gen_set_label(over);
return true;
}
static bool amo_op(DisasContext *s, arg_rwdvm *a, uint8_t seq)
{
uint32_t data = 0;
gen_helper_amo *fn;
static gen_helper_amo *const fnsw[9] = {
/* no atomic operation */
gen_helper_vamoswapw_v_w,
gen_helper_vamoaddw_v_w,
gen_helper_vamoxorw_v_w,
gen_helper_vamoandw_v_w,
gen_helper_vamoorw_v_w,
gen_helper_vamominw_v_w,
gen_helper_vamomaxw_v_w,
gen_helper_vamominuw_v_w,
gen_helper_vamomaxuw_v_w
};
#ifdef TARGET_RISCV64
static gen_helper_amo *const fnsd[18] = {
gen_helper_vamoswapw_v_d,
gen_helper_vamoaddw_v_d,
gen_helper_vamoxorw_v_d,
gen_helper_vamoandw_v_d,
gen_helper_vamoorw_v_d,
gen_helper_vamominw_v_d,
gen_helper_vamomaxw_v_d,
gen_helper_vamominuw_v_d,
gen_helper_vamomaxuw_v_d,
gen_helper_vamoswapd_v_d,
gen_helper_vamoaddd_v_d,
gen_helper_vamoxord_v_d,
gen_helper_vamoandd_v_d,
gen_helper_vamoord_v_d,
gen_helper_vamomind_v_d,
gen_helper_vamomaxd_v_d,
gen_helper_vamominud_v_d,
gen_helper_vamomaxud_v_d
};
#endif
if (tb_cflags(s->base.tb) & CF_PARALLEL) {
gen_helper_exit_atomic(cpu_env);
s->base.is_jmp = DISAS_NORETURN;
return true;
} else {
if (s->sew == 3) {
#ifdef TARGET_RISCV64
fn = fnsd[seq];
#else
/* Check done in amo_check(). */
g_assert_not_reached();
#endif
} else {
assert(seq < ARRAY_SIZE(fnsw));
fn = fnsw[seq];
}
}
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, WD, a->wd);
return amo_trans(a->rd, a->rs1, a->rs2, data, fn, s);
}
/*
* There are two rules check here.
*
* 1. SEW must be at least as wide as the AMO memory element size.
*
* 2. If SEW is greater than XLEN, an illegal instruction exception is raised.
*/
static bool amo_check(DisasContext *s, arg_rwdvm* a)
{
return (!s->vill && has_ext(s, RVA) &&
(!a->wd || vext_check_overlap_mask(s, a->rd, a->vm, false)) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, false) &&
((1 << s->sew) <= sizeof(target_ulong)) &&
((1 << s->sew) >= 4));
}
GEN_VEXT_TRANS(vamoswapw_v, 0, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamoaddw_v, 1, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamoxorw_v, 2, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamoandw_v, 3, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamoorw_v, 4, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamominw_v, 5, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamomaxw_v, 6, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamominuw_v, 7, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamomaxuw_v, 8, rwdvm, amo_op, amo_check)
#ifdef TARGET_RISCV64
GEN_VEXT_TRANS(vamoswapd_v, 9, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamoaddd_v, 10, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamoxord_v, 11, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamoandd_v, 12, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamoord_v, 13, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamomind_v, 14, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamomaxd_v, 15, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamominud_v, 16, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamomaxud_v, 17, rwdvm, amo_op, amo_check)
#endif
/*
*** Vector Integer Arithmetic Instructions
*/
#define MAXSZ(s) (s->vlen >> (3 - s->lmul))
static bool opivv_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, false) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_reg(s, a->rs1, false));
}
typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
uint32_t, uint32_t, uint32_t);
static inline bool
do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn,
gen_helper_gvec_4_ptr *fn)
{
TCGLabel *over = gen_new_label();
if (!opivv_check(s, a)) {
return false;
}
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
if (a->vm && s->vl_eq_vlmax) {
gvec_fn(s->sew, vreg_ofs(s, a->rd),
vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1),
MAXSZ(s), MAXSZ(s));
} else {
uint32_t data = 0;
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2),
cpu_env, 0, s->vlen / 8, data, fn);
}
gen_set_label(over);
return true;
}
/* OPIVV with GVEC IR */
#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_gvec_4_ptr * const fns[4] = { \
gen_helper_##NAME##_b, gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, gen_helper_##NAME##_d, \
}; \
return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \
}
GEN_OPIVV_GVEC_TRANS(vadd_vv, add)
GEN_OPIVV_GVEC_TRANS(vsub_vv, sub)
typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr,
TCGv_env, TCGv_i32);
static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm,
gen_helper_opivx *fn, DisasContext *s)
{
TCGv_ptr dest, src2, mask;
TCGv src1;
TCGv_i32 desc;
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
src2 = tcg_temp_new_ptr();
src1 = tcg_temp_new();
gen_get_gpr(src1, rs1);
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, src1, src2, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(src2);
tcg_temp_free(src1);
tcg_temp_free_i32(desc);
gen_set_label(over);
return true;
}
static bool opivx_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, false) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, false));
}
typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64,
uint32_t, uint32_t);
static inline bool
do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn,
gen_helper_opivx *fn)
{
if (!opivx_check(s, a)) {
return false;
}
if (a->vm && s->vl_eq_vlmax) {
TCGv_i64 src1 = tcg_temp_new_i64();
TCGv tmp = tcg_temp_new();
gen_get_gpr(tmp, a->rs1);
tcg_gen_ext_tl_i64(src1, tmp);
gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2),
src1, MAXSZ(s), MAXSZ(s));
tcg_temp_free_i64(src1);
tcg_temp_free(tmp);
return true;
}
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s);
}
/* OPIVX with GVEC IR */
#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_opivx * const fns[4] = { \
gen_helper_##NAME##_b, gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, gen_helper_##NAME##_d, \
}; \
return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \
}
GEN_OPIVX_GVEC_TRANS(vadd_vx, adds)
GEN_OPIVX_GVEC_TRANS(vsub_vx, subs)
static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
tcg_gen_vec_sub8_i64(d, b, a);
}
static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
tcg_gen_vec_sub16_i64(d, b, a);
}
static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2)
{
tcg_gen_sub_i32(ret, arg2, arg1);
}
static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2)
{
tcg_gen_sub_i64(ret, arg2, arg1);
}
static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b)
{
tcg_gen_sub_vec(vece, r, b, a);
}
static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs,
TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
{
static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 };
static const GVecGen2s rsub_op[4] = {
{ .fni8 = gen_vec_rsub8_i64,
.fniv = gen_rsub_vec,
.fno = gen_helper_vec_rsubs8,
.opt_opc = vecop_list,
.vece = MO_8 },
{ .fni8 = gen_vec_rsub16_i64,
.fniv = gen_rsub_vec,
.fno = gen_helper_vec_rsubs16,
.opt_opc = vecop_list,
.vece = MO_16 },
{ .fni4 = gen_rsub_i32,
.fniv = gen_rsub_vec,
.fno = gen_helper_vec_rsubs32,
.opt_opc = vecop_list,
.vece = MO_32 },
{ .fni8 = gen_rsub_i64,
.fniv = gen_rsub_vec,
.fno = gen_helper_vec_rsubs64,
.opt_opc = vecop_list,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.vece = MO_64 },
};
tcg_debug_assert(vece <= MO_64);
tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]);
}
GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs)
static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm,
gen_helper_opivx *fn, DisasContext *s, int zx)
{
TCGv_ptr dest, src2, mask;
TCGv src1;
TCGv_i32 desc;
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
src2 = tcg_temp_new_ptr();
if (zx) {
src1 = tcg_const_tl(imm);
} else {
src1 = tcg_const_tl(sextract64(imm, 0, 5));
}
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, src1, src2, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(src2);
tcg_temp_free(src1);
tcg_temp_free_i32(desc);
gen_set_label(over);
return true;
}
typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
uint32_t, uint32_t);
static inline bool
do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn,
gen_helper_opivx *fn, int zx)
{
if (!opivx_check(s, a)) {
return false;
}
if (a->vm && s->vl_eq_vlmax) {
if (zx) {
gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2),
extract64(a->rs1, 0, 5), MAXSZ(s), MAXSZ(s));
} else {
gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2),
sextract64(a->rs1, 0, 5), MAXSZ(s), MAXSZ(s));
}
} else {
return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, zx);
}
return true;
}
/* OPIVI with GVEC IR */
#define GEN_OPIVI_GVEC_TRANS(NAME, ZX, OPIVX, SUF) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_opivx * const fns[4] = { \
gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \
gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \
}; \
return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \
fns[s->sew], ZX); \
}
GEN_OPIVI_GVEC_TRANS(vadd_vi, 0, vadd_vx, addi)
static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs,
int64_t c, uint32_t oprsz, uint32_t maxsz)
{
TCGv_i64 tmp = tcg_const_i64(c);
tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz);
tcg_temp_free_i64(tmp);
}
GEN_OPIVI_GVEC_TRANS(vrsub_vi, 0, vrsub_vx, rsubi)
/* Vector Widening Integer Add/Subtract */
/* OPIVV with WIDEN */
static bool opivv_widen_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, true) &&
vext_check_reg(s, a->rd, true) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_reg(s, a->rs1, false) &&
vext_check_overlap_group(a->rd, 2 << s->lmul, a->rs2,
1 << s->lmul) &&
vext_check_overlap_group(a->rd, 2 << s->lmul, a->rs1,
1 << s->lmul) &&
(s->lmul < 0x3) && (s->sew < 0x3));
}
static bool do_opivv_widen(DisasContext *s, arg_rmrr *a,
gen_helper_gvec_4_ptr *fn,
bool (*checkfn)(DisasContext *, arg_rmrr *))
{
if (checkfn(s, a)) {
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs1),
vreg_ofs(s, a->rs2),
cpu_env, 0, s->vlen / 8,
data, fn);
gen_set_label(over);
return true;
}
return false;
}
#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_gvec_4_ptr * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w \
}; \
return do_opivv_widen(s, a, fns[s->sew], CHECK); \
}
GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check)
/* OPIVX with WIDEN */
static bool opivx_widen_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, true) &&
vext_check_reg(s, a->rd, true) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_overlap_group(a->rd, 2 << s->lmul, a->rs2,
1 << s->lmul) &&
(s->lmul < 0x3) && (s->sew < 0x3));
}
static bool do_opivx_widen(DisasContext *s, arg_rmrr *a,
gen_helper_opivx *fn)
{
if (opivx_widen_check(s, a)) {
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s);
}
return false;
}
#define GEN_OPIVX_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_opivx * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w \
}; \
return do_opivx_widen(s, a, fns[s->sew]); \
}
GEN_OPIVX_WIDEN_TRANS(vwaddu_vx)
GEN_OPIVX_WIDEN_TRANS(vwadd_vx)
GEN_OPIVX_WIDEN_TRANS(vwsubu_vx)
GEN_OPIVX_WIDEN_TRANS(vwsub_vx)
/* WIDEN OPIVV with WIDEN */
static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, true) &&
vext_check_reg(s, a->rd, true) &&
vext_check_reg(s, a->rs2, true) &&
vext_check_reg(s, a->rs1, false) &&
vext_check_overlap_group(a->rd, 2 << s->lmul, a->rs1,
1 << s->lmul) &&
(s->lmul < 0x3) && (s->sew < 0x3));
}
static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a,
gen_helper_gvec_4_ptr *fn)
{
if (opiwv_widen_check(s, a)) {
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs1),
vreg_ofs(s, a->rs2),
cpu_env, 0, s->vlen / 8, data, fn);
gen_set_label(over);
return true;
}
return false;
}
#define GEN_OPIWV_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_gvec_4_ptr * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w \
}; \
return do_opiwv_widen(s, a, fns[s->sew]); \
}
GEN_OPIWV_WIDEN_TRANS(vwaddu_wv)
GEN_OPIWV_WIDEN_TRANS(vwadd_wv)
GEN_OPIWV_WIDEN_TRANS(vwsubu_wv)
GEN_OPIWV_WIDEN_TRANS(vwsub_wv)
/* WIDEN OPIVX with WIDEN */
static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, true) &&
vext_check_reg(s, a->rd, true) &&
vext_check_reg(s, a->rs2, true) &&
(s->lmul < 0x3) && (s->sew < 0x3));
}
static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a,
gen_helper_opivx *fn)
{
if (opiwx_widen_check(s, a)) {
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s);
}
return false;
}
#define GEN_OPIWX_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_opivx * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w \
}; \
return do_opiwx_widen(s, a, fns[s->sew]); \
}
GEN_OPIWX_WIDEN_TRANS(vwaddu_wx)
GEN_OPIWX_WIDEN_TRANS(vwadd_wx)
GEN_OPIWX_WIDEN_TRANS(vwsubu_wx)
GEN_OPIWX_WIDEN_TRANS(vwsub_wx)
/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */
/* OPIVV without GVEC IR */
#define GEN_OPIVV_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_4_ptr * const fns[4] = { \
gen_helper_##NAME##_b, gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, gen_helper_##NAME##_d, \
}; \
TCGLabel *over = gen_new_label(); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, MLEN, s->mlen); \
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, 0, \
s->vlen / 8, data, fns[s->sew]); \
gen_set_label(over); \
return true; \
} \
return false; \
}
/*
* For vadc and vsbc, an illegal instruction exception is raised if the
* destination vector register is v0 and LMUL > 1. (Section 12.3)
*/
static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_reg(s, a->rs1, false) &&
((a->rd != 0) || (s->lmul == 0)));
}
GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check)
GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check)
/*
* For vmadc and vmsbc, an illegal instruction exception is raised if the
* destination vector register overlaps a source vector register group.
*/
static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_reg(s, a->rs1, false) &&
vext_check_overlap_group(a->rd, 1, a->rs1, 1 << s->lmul) &&
vext_check_overlap_group(a->rd, 1, a->rs2, 1 << s->lmul));
}
GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check)
GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check)
static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, false) &&
((a->rd != 0) || (s->lmul == 0)));
}
/* OPIVX without GVEC IR */
#define GEN_OPIVX_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
static gen_helper_opivx * const fns[4] = { \
gen_helper_##NAME##_b, gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, gen_helper_##NAME##_d, \
}; \
\
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\
} \
return false; \
}
GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check)
GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check)
static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_overlap_group(a->rd, 1, a->rs2, 1 << s->lmul));
}
GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check)
GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check)
/* OPIVI without GVEC IR */
#define GEN_OPIVI_TRANS(NAME, ZX, OPIVX, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
static gen_helper_opivx * const fns[4] = { \
gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \
gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \
}; \
return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \
fns[s->sew], s, ZX); \
} \
return false; \
}
GEN_OPIVI_TRANS(vadc_vim, 0, vadc_vxm, opivx_vadc_check)
GEN_OPIVI_TRANS(vmadc_vim, 0, vmadc_vxm, opivx_vmadc_check)
/* Vector Bitwise Logical Instructions */
GEN_OPIVV_GVEC_TRANS(vand_vv, and)
GEN_OPIVV_GVEC_TRANS(vor_vv, or)
GEN_OPIVV_GVEC_TRANS(vxor_vv, xor)
GEN_OPIVX_GVEC_TRANS(vand_vx, ands)
GEN_OPIVX_GVEC_TRANS(vor_vx, ors)
GEN_OPIVX_GVEC_TRANS(vxor_vx, xors)
GEN_OPIVI_GVEC_TRANS(vand_vi, 0, vand_vx, andi)
GEN_OPIVI_GVEC_TRANS(vor_vi, 0, vor_vx, ori)
GEN_OPIVI_GVEC_TRANS(vxor_vi, 0, vxor_vx, xori)
/* Vector Single-Width Bit Shift Instructions */
GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv)
GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv)
GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv)
typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32,
uint32_t, uint32_t);
static inline bool
do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn,
gen_helper_opivx *fn)
{
if (!opivx_check(s, a)) {
return false;
}
if (a->vm && s->vl_eq_vlmax) {
TCGv_i32 src1 = tcg_temp_new_i32();
TCGv tmp = tcg_temp_new();
gen_get_gpr(tmp, a->rs1);
tcg_gen_trunc_tl_i32(src1, tmp);
tcg_gen_extract_i32(src1, src1, 0, s->sew + 3);
gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2),
src1, MAXSZ(s), MAXSZ(s));
tcg_temp_free_i32(src1);
tcg_temp_free(tmp);
return true;
}
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s);
}
#define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_opivx * const fns[4] = { \
gen_helper_##NAME##_b, gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, gen_helper_##NAME##_d, \
}; \
\
return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \
}
GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls)
GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs)
GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars)
GEN_OPIVI_GVEC_TRANS(vsll_vi, 1, vsll_vx, shli)
GEN_OPIVI_GVEC_TRANS(vsrl_vi, 1, vsrl_vx, shri)
GEN_OPIVI_GVEC_TRANS(vsra_vi, 1, vsra_vx, sari)
/* Vector Narrowing Integer Right Shift Instructions */
static bool opivv_narrow_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, false) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, true) &&
vext_check_reg(s, a->rs1, false) &&
vext_check_overlap_group(a->rd, 1 << s->lmul, a->rs2,
2 << s->lmul) &&
(s->lmul < 0x3) && (s->sew < 0x3));
}
/* OPIVV with NARROW */
#define GEN_OPIVV_NARROW_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (opivv_narrow_check(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_4_ptr * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, \
}; \
TCGLabel *over = gen_new_label(); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, MLEN, s->mlen); \
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, 0, \
s->vlen / 8, data, fns[s->sew]); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPIVV_NARROW_TRANS(vnsra_vv)
GEN_OPIVV_NARROW_TRANS(vnsrl_vv)
static bool opivx_narrow_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, false) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, true) &&
vext_check_overlap_group(a->rd, 1 << s->lmul, a->rs2,
2 << s->lmul) &&
(s->lmul < 0x3) && (s->sew < 0x3));
}
/* OPIVX with NARROW */
#define GEN_OPIVX_NARROW_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (opivx_narrow_check(s, a)) { \
static gen_helper_opivx * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, \
}; \
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\
} \
return false; \
}
GEN_OPIVX_NARROW_TRANS(vnsra_vx)
GEN_OPIVX_NARROW_TRANS(vnsrl_vx)
/* OPIVI with NARROW */
#define GEN_OPIVI_NARROW_TRANS(NAME, ZX, OPIVX) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (opivx_narrow_check(s, a)) { \
static gen_helper_opivx * const fns[3] = { \
gen_helper_##OPIVX##_b, \
gen_helper_##OPIVX##_h, \
gen_helper_##OPIVX##_w, \
}; \
return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \
fns[s->sew], s, ZX); \
} \
return false; \
}
GEN_OPIVI_NARROW_TRANS(vnsra_vi, 1, vnsra_vx)
GEN_OPIVI_NARROW_TRANS(vnsrl_vi, 1, vnsrl_vx)
/* Vector Integer Comparison Instructions */
/*
* For all comparison instructions, an illegal instruction exception is raised
* if the destination vector register overlaps a source vector register group
* and LMUL > 1.
*/
static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_reg(s, a->rs1, false) &&
((vext_check_overlap_group(a->rd, 1, a->rs1, 1 << s->lmul) &&
vext_check_overlap_group(a->rd, 1, a->rs2, 1 << s->lmul)) ||
(s->lmul == 0)));
}
GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check)
GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check)
GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check)
GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check)
GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check)
GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check)
static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rs2, false) &&
(vext_check_overlap_group(a->rd, 1, a->rs2, 1 << s->lmul) ||
(s->lmul == 0)));
}
GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check)
GEN_OPIVI_TRANS(vmseq_vi, 0, vmseq_vx, opivx_cmp_check)
GEN_OPIVI_TRANS(vmsne_vi, 0, vmsne_vx, opivx_cmp_check)
GEN_OPIVI_TRANS(vmsleu_vi, 1, vmsleu_vx, opivx_cmp_check)
GEN_OPIVI_TRANS(vmsle_vi, 0, vmsle_vx, opivx_cmp_check)
GEN_OPIVI_TRANS(vmsgtu_vi, 1, vmsgtu_vx, opivx_cmp_check)
GEN_OPIVI_TRANS(vmsgt_vi, 0, vmsgt_vx, opivx_cmp_check)
/* Vector Integer Min/Max Instructions */
GEN_OPIVV_GVEC_TRANS(vminu_vv, umin)
GEN_OPIVV_GVEC_TRANS(vmin_vv, smin)
GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax)
GEN_OPIVV_GVEC_TRANS(vmax_vv, smax)
GEN_OPIVX_TRANS(vminu_vx, opivx_check)
GEN_OPIVX_TRANS(vmin_vx, opivx_check)
GEN_OPIVX_TRANS(vmaxu_vx, opivx_check)
GEN_OPIVX_TRANS(vmax_vx, opivx_check)
/* Vector Single-Width Integer Multiply Instructions */
GEN_OPIVV_GVEC_TRANS(vmul_vv, mul)
GEN_OPIVV_TRANS(vmulh_vv, opivv_check)
GEN_OPIVV_TRANS(vmulhu_vv, opivv_check)
GEN_OPIVV_TRANS(vmulhsu_vv, opivv_check)
GEN_OPIVX_GVEC_TRANS(vmul_vx, muls)
GEN_OPIVX_TRANS(vmulh_vx, opivx_check)
GEN_OPIVX_TRANS(vmulhu_vx, opivx_check)
GEN_OPIVX_TRANS(vmulhsu_vx, opivx_check)
/* Vector Integer Divide Instructions */
GEN_OPIVV_TRANS(vdivu_vv, opivv_check)
GEN_OPIVV_TRANS(vdiv_vv, opivv_check)
GEN_OPIVV_TRANS(vremu_vv, opivv_check)
GEN_OPIVV_TRANS(vrem_vv, opivv_check)
GEN_OPIVX_TRANS(vdivu_vx, opivx_check)
GEN_OPIVX_TRANS(vdiv_vx, opivx_check)
GEN_OPIVX_TRANS(vremu_vx, opivx_check)
GEN_OPIVX_TRANS(vrem_vx, opivx_check)
/* Vector Widening Integer Multiply Instructions */
GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check)
GEN_OPIVX_WIDEN_TRANS(vwmul_vx)
GEN_OPIVX_WIDEN_TRANS(vwmulu_vx)
GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx)
/* Vector Single-Width Integer Multiply-Add Instructions */
GEN_OPIVV_TRANS(vmacc_vv, opivv_check)
GEN_OPIVV_TRANS(vnmsac_vv, opivv_check)
GEN_OPIVV_TRANS(vmadd_vv, opivv_check)
GEN_OPIVV_TRANS(vnmsub_vv, opivv_check)
GEN_OPIVX_TRANS(vmacc_vx, opivx_check)
GEN_OPIVX_TRANS(vnmsac_vx, opivx_check)
GEN_OPIVX_TRANS(vmadd_vx, opivx_check)
GEN_OPIVX_TRANS(vnmsub_vx, opivx_check)
/* Vector Widening Integer Multiply-Add Instructions */
GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check)
GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx)
GEN_OPIVX_WIDEN_TRANS(vwmacc_vx)
GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx)
GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx)
/* Vector Integer Merge and Move Instructions */
static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a)
{
if (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs1, false)) {
if (s->vl_eq_vlmax) {
tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd),
vreg_ofs(s, a->rs1),
MAXSZ(s), MAXSZ(s));
} else {
uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul);
static gen_helper_gvec_2_ptr * const fns[4] = {
gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h,
gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d,
};
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1),
cpu_env, 0, s->vlen / 8, data, fns[s->sew]);
gen_set_label(over);
}
return true;
}
return false;
}
typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32);
static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a)
{
if (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rd, false)) {
TCGv s1;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
s1 = tcg_temp_new();
gen_get_gpr(s1, a->rs1);
if (s->vl_eq_vlmax) {
tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd),
MAXSZ(s), MAXSZ(s), s1);
} else {
TCGv_i32 desc ;
TCGv_i64 s1_i64 = tcg_temp_new_i64();
TCGv_ptr dest = tcg_temp_new_ptr();
uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul);
static gen_helper_vmv_vx * const fns[4] = {
gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h,
gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d,
};
tcg_gen_ext_tl_i64(s1_i64, s1);
desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd));
fns[s->sew](dest, s1_i64, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_i32(desc);
tcg_temp_free_i64(s1_i64);
}
tcg_temp_free(s1);
gen_set_label(over);
return true;
}
return false;
}
static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a)
{
if (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rd, false)) {
int64_t simm = sextract64(a->rs1, 0, 5);
if (s->vl_eq_vlmax) {
tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd),
MAXSZ(s), MAXSZ(s), simm);
} else {
TCGv_i32 desc;
TCGv_i64 s1;
TCGv_ptr dest;
uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul);
static gen_helper_vmv_vx * const fns[4] = {
gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h,
gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d,
};
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
s1 = tcg_const_i64(simm);
dest = tcg_temp_new_ptr();
desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd));
fns[s->sew](dest, s1, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_i32(desc);
tcg_temp_free_i64(s1);
gen_set_label(over);
}
return true;
}
return false;
}
GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check)
GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check)
GEN_OPIVI_TRANS(vmerge_vim, 0, vmerge_vxm, opivx_vadc_check)
/*
*** Vector Fixed-Point Arithmetic Instructions
*/
/* Vector Single-Width Saturating Add and Subtract */
GEN_OPIVV_TRANS(vsaddu_vv, opivv_check)
GEN_OPIVV_TRANS(vsadd_vv, opivv_check)
GEN_OPIVV_TRANS(vssubu_vv, opivv_check)
GEN_OPIVV_TRANS(vssub_vv, opivv_check)
GEN_OPIVX_TRANS(vsaddu_vx, opivx_check)
GEN_OPIVX_TRANS(vsadd_vx, opivx_check)
GEN_OPIVX_TRANS(vssubu_vx, opivx_check)
GEN_OPIVX_TRANS(vssub_vx, opivx_check)
GEN_OPIVI_TRANS(vsaddu_vi, 1, vsaddu_vx, opivx_check)
GEN_OPIVI_TRANS(vsadd_vi, 0, vsadd_vx, opivx_check)
/* Vector Single-Width Averaging Add and Subtract */
GEN_OPIVV_TRANS(vaadd_vv, opivv_check)
GEN_OPIVV_TRANS(vasub_vv, opivv_check)
GEN_OPIVX_TRANS(vaadd_vx, opivx_check)
GEN_OPIVX_TRANS(vasub_vx, opivx_check)
GEN_OPIVI_TRANS(vaadd_vi, 0, vaadd_vx, opivx_check)
/* Vector Single-Width Fractional Multiply with Rounding and Saturation */
GEN_OPIVV_TRANS(vsmul_vv, opivv_check)
GEN_OPIVX_TRANS(vsmul_vx, opivx_check)
/* Vector Widening Saturating Scaled Multiply-Add */
GEN_OPIVV_WIDEN_TRANS(vwsmaccu_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwsmacc_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwsmaccsu_vv, opivv_widen_check)
GEN_OPIVX_WIDEN_TRANS(vwsmaccu_vx)
GEN_OPIVX_WIDEN_TRANS(vwsmacc_vx)
GEN_OPIVX_WIDEN_TRANS(vwsmaccsu_vx)
GEN_OPIVX_WIDEN_TRANS(vwsmaccus_vx)
/* Vector Single-Width Scaling Shift Instructions */
GEN_OPIVV_TRANS(vssrl_vv, opivv_check)
GEN_OPIVV_TRANS(vssra_vv, opivv_check)
GEN_OPIVX_TRANS(vssrl_vx, opivx_check)
GEN_OPIVX_TRANS(vssra_vx, opivx_check)
GEN_OPIVI_TRANS(vssrl_vi, 1, vssrl_vx, opivx_check)
GEN_OPIVI_TRANS(vssra_vi, 0, vssra_vx, opivx_check)
/* Vector Narrowing Fixed-Point Clip Instructions */
GEN_OPIVV_NARROW_TRANS(vnclipu_vv)
GEN_OPIVV_NARROW_TRANS(vnclip_vv)
GEN_OPIVX_NARROW_TRANS(vnclipu_vx)
GEN_OPIVX_NARROW_TRANS(vnclip_vx)
GEN_OPIVI_NARROW_TRANS(vnclipu_vi, 1, vnclipu_vx)
GEN_OPIVI_NARROW_TRANS(vnclip_vi, 1, vnclip_vx)
/*
*** Vector Float Point Arithmetic Instructions
*/
/* Vector Single-Width Floating-Point Add/Subtract Instructions */
/*
* If the current SEW does not correspond to a supported IEEE floating-point
* type, an illegal instruction exception is raised.
*/
static bool opfvv_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, false) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_reg(s, a->rs1, false) &&
(s->sew != 0));
}
/* OPFVV without GVEC IR */
#define GEN_OPFVV_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_4_ptr * const fns[3] = { \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, \
gen_helper_##NAME##_d, \
}; \
TCGLabel *over = gen_new_label(); \
gen_set_rm(s, 7); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, MLEN, s->mlen); \
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, 0, \
s->vlen / 8, data, fns[s->sew - 1]); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPFVV_TRANS(vfadd_vv, opfvv_check)
GEN_OPFVV_TRANS(vfsub_vv, opfvv_check)
typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr,
TCGv_env, TCGv_i32);
static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2,
uint32_t data, gen_helper_opfvf *fn, DisasContext *s)
{
TCGv_ptr dest, src2, mask;
TCGv_i32 desc;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
src2 = tcg_temp_new_ptr();
desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, cpu_fpr[rs1], src2, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(src2);
tcg_temp_free_i32(desc);
gen_set_label(over);
return true;
}
static bool opfvf_check(DisasContext *s, arg_rmrr *a)
{
/*
* If the current SEW does not correspond to a supported IEEE floating-point
* type, an illegal instruction exception is raised
*/
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, false) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, false) &&
(s->sew != 0));
}
/* OPFVF without GVEC IR */
#define GEN_OPFVF_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
uint32_t data = 0; \
static gen_helper_opfvf *const fns[3] = { \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, \
gen_helper_##NAME##_d, \
}; \
gen_set_rm(s, 7); \
data = FIELD_DP32(data, VDATA, MLEN, s->mlen); \
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
return opfvf_trans(a->rd, a->rs1, a->rs2, data, \
fns[s->sew - 1], s); \
} \
return false; \
}
GEN_OPFVF_TRANS(vfadd_vf, opfvf_check)
GEN_OPFVF_TRANS(vfsub_vf, opfvf_check)
GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check)
/* Vector Widening Floating-Point Add/Subtract Instructions */
static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, true) &&
vext_check_reg(s, a->rd, true) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_reg(s, a->rs1, false) &&
vext_check_overlap_group(a->rd, 2 << s->lmul, a->rs2,
1 << s->lmul) &&
vext_check_overlap_group(a->rd, 2 << s->lmul, a->rs1,
1 << s->lmul) &&
(s->lmul < 0x3) && (s->sew < 0x3) && (s->sew != 0));
}
/* OPFVV with WIDEN */
#define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_4_ptr * const fns[2] = { \
gen_helper_##NAME##_h, gen_helper_##NAME##_w, \
}; \
TCGLabel *over = gen_new_label(); \
gen_set_rm(s, 7); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, MLEN, s->mlen); \
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, 0, \
s->vlen / 8, data, fns[s->sew - 1]); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check)
GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check)
static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, true) &&
vext_check_reg(s, a->rd, true) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_overlap_group(a->rd, 2 << s->lmul, a->rs2,
1 << s->lmul) &&
(s->lmul < 0x3) && (s->sew < 0x3) && (s->sew != 0));
}
/* OPFVF with WIDEN */
#define GEN_OPFVF_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (opfvf_widen_check(s, a)) { \
uint32_t data = 0; \
static gen_helper_opfvf *const fns[2] = { \
gen_helper_##NAME##_h, gen_helper_##NAME##_w, \
}; \
gen_set_rm(s, 7); \
data = FIELD_DP32(data, VDATA, MLEN, s->mlen); \
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
return opfvf_trans(a->rd, a->rs1, a->rs2, data, \
fns[s->sew - 1], s); \
} \
return false; \
}
GEN_OPFVF_WIDEN_TRANS(vfwadd_vf)
GEN_OPFVF_WIDEN_TRANS(vfwsub_vf)
static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, true) &&
vext_check_reg(s, a->rd, true) &&
vext_check_reg(s, a->rs2, true) &&
vext_check_reg(s, a->rs1, false) &&
vext_check_overlap_group(a->rd, 2 << s->lmul, a->rs1,
1 << s->lmul) &&
(s->lmul < 0x3) && (s->sew < 0x3) && (s->sew != 0));
}
/* WIDEN OPFVV with WIDEN */
#define GEN_OPFWV_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (opfwv_widen_check(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_4_ptr * const fns[2] = { \
gen_helper_##NAME##_h, gen_helper_##NAME##_w, \
}; \
TCGLabel *over = gen_new_label(); \
gen_set_rm(s, 7); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, MLEN, s->mlen); \
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, 0, \
s->vlen / 8, data, fns[s->sew - 1]); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPFWV_WIDEN_TRANS(vfwadd_wv)
GEN_OPFWV_WIDEN_TRANS(vfwsub_wv)
static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, true) &&
vext_check_reg(s, a->rd, true) &&
vext_check_reg(s, a->rs2, true) &&
(s->lmul < 0x3) && (s->sew < 0x3) && (s->sew != 0));
}
/* WIDEN OPFVF with WIDEN */
#define GEN_OPFWF_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (opfwf_widen_check(s, a)) { \
uint32_t data = 0; \
static gen_helper_opfvf *const fns[2] = { \
gen_helper_##NAME##_h, gen_helper_##NAME##_w, \
}; \
gen_set_rm(s, 7); \
data = FIELD_DP32(data, VDATA, MLEN, s->mlen); \
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
return opfvf_trans(a->rd, a->rs1, a->rs2, data, \
fns[s->sew - 1], s); \
} \
return false; \
}
GEN_OPFWF_WIDEN_TRANS(vfwadd_wf)
GEN_OPFWF_WIDEN_TRANS(vfwsub_wf)
/* Vector Single-Width Floating-Point Multiply/Divide Instructions */
GEN_OPFVV_TRANS(vfmul_vv, opfvv_check)
GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check)
GEN_OPFVF_TRANS(vfmul_vf, opfvf_check)
GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check)
GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check)
/* Vector Widening Floating-Point Multiply */
GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check)
GEN_OPFVF_WIDEN_TRANS(vfwmul_vf)
/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */
GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check)
GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check)
GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check)
GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check)
GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check)
GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check)
GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check)
GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check)
GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check)
GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check)
GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check)
GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check)
GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check)
GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check)
GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check)
GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check)
/* Vector Widening Floating-Point Fused Multiply-Add Instructions */
GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check)
GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check)
GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check)
GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check)
GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf)
GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf)
GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf)
GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf)
/* Vector Floating-Point Square-Root Instruction */
/*
* If the current SEW does not correspond to a supported IEEE floating-point
* type, an illegal instruction exception is raised
*/
static bool opfv_check(DisasContext *s, arg_rmr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, false) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, false) &&
(s->sew != 0));
}
#define GEN_OPFV_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
{ \
if (CHECK(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_3_ptr * const fns[3] = { \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, \
gen_helper_##NAME##_d, \
}; \
TCGLabel *over = gen_new_label(); \
gen_set_rm(s, 7); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, MLEN, s->mlen); \
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs2), cpu_env, 0, \
s->vlen / 8, data, fns[s->sew - 1]); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPFV_TRANS(vfsqrt_v, opfv_check)
/* Vector Floating-Point MIN/MAX Instructions */
GEN_OPFVV_TRANS(vfmin_vv, opfvv_check)
GEN_OPFVV_TRANS(vfmax_vv, opfvv_check)
GEN_OPFVF_TRANS(vfmin_vf, opfvf_check)
GEN_OPFVF_TRANS(vfmax_vf, opfvf_check)
/* Vector Floating-Point Sign-Injection Instructions */
GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check)
GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check)
GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check)
GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check)
GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check)
GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check)
/* Vector Floating-Point Compare Instructions */
static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_reg(s, a->rs1, false) &&
(s->sew != 0) &&
((vext_check_overlap_group(a->rd, 1, a->rs1, 1 << s->lmul) &&
vext_check_overlap_group(a->rd, 1, a->rs2, 1 << s->lmul)) ||
(s->lmul == 0)));
}
GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check)
GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check)
GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check)
GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check)
GEN_OPFVV_TRANS(vmford_vv, opfvv_cmp_check)
static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rs2, false) &&
(s->sew != 0) &&
(vext_check_overlap_group(a->rd, 1, a->rs2, 1 << s->lmul) ||
(s->lmul == 0)));
}
GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check)
GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check)
GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check)
GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check)
GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check)
GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check)
GEN_OPFVF_TRANS(vmford_vf, opfvf_cmp_check)
/* Vector Floating-Point Classify Instruction */
GEN_OPFV_TRANS(vfclass_v, opfv_check)
/* Vector Floating-Point Merge Instruction */
GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check)
static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a)
{
if (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rd, false) &&
(s->sew != 0)) {
if (s->vl_eq_vlmax) {
tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd),
MAXSZ(s), MAXSZ(s), cpu_fpr[a->rs1]);
} else {
TCGv_ptr dest;
TCGv_i32 desc;
uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul);
static gen_helper_vmv_vx * const fns[3] = {
gen_helper_vmv_v_x_h,
gen_helper_vmv_v_x_w,
gen_helper_vmv_v_x_d,
};
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd));
fns[s->sew - 1](dest, cpu_fpr[a->rs1], cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_i32(desc);
gen_set_label(over);
}
return true;
}
return false;
}
/* Single-Width Floating-Point/Integer Type-Convert Instructions */
GEN_OPFV_TRANS(vfcvt_xu_f_v, opfv_check)
GEN_OPFV_TRANS(vfcvt_x_f_v, opfv_check)
GEN_OPFV_TRANS(vfcvt_f_xu_v, opfv_check)
GEN_OPFV_TRANS(vfcvt_f_x_v, opfv_check)
/* Widening Floating-Point/Integer Type-Convert Instructions */
/*
* If the current SEW does not correspond to a supported IEEE floating-point
* type, an illegal instruction exception is raised
*/
static bool opfv_widen_check(DisasContext *s, arg_rmr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, true) &&
vext_check_reg(s, a->rd, true) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_overlap_group(a->rd, 2 << s->lmul, a->rs2,
1 << s->lmul) &&
(s->lmul < 0x3) && (s->sew < 0x3) && (s->sew != 0));
}
#define GEN_OPFV_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
{ \
if (opfv_widen_check(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_3_ptr * const fns[2] = { \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, \
}; \
TCGLabel *over = gen_new_label(); \
gen_set_rm(s, 7); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, MLEN, s->mlen); \
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs2), cpu_env, 0, \
s->vlen / 8, data, fns[s->sew - 1]); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v)
GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v)
GEN_OPFV_WIDEN_TRANS(vfwcvt_f_xu_v)
GEN_OPFV_WIDEN_TRANS(vfwcvt_f_x_v)
GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v)
/* Narrowing Floating-Point/Integer Type-Convert Instructions */
/*
* If the current SEW does not correspond to a supported IEEE floating-point
* type, an illegal instruction exception is raised
*/
static bool opfv_narrow_check(DisasContext *s, arg_rmr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, false) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, true) &&
vext_check_overlap_group(a->rd, 1 << s->lmul, a->rs2,
2 << s->lmul) &&
(s->lmul < 0x3) && (s->sew < 0x3) && (s->sew != 0));
}
#define GEN_OPFV_NARROW_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
{ \
if (opfv_narrow_check(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_3_ptr * const fns[2] = { \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, \
}; \
TCGLabel *over = gen_new_label(); \
gen_set_rm(s, 7); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, MLEN, s->mlen); \
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs2), cpu_env, 0, \
s->vlen / 8, data, fns[s->sew - 1]); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPFV_NARROW_TRANS(vfncvt_xu_f_v)
GEN_OPFV_NARROW_TRANS(vfncvt_x_f_v)
GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_v)
GEN_OPFV_NARROW_TRANS(vfncvt_f_x_v)
GEN_OPFV_NARROW_TRANS(vfncvt_f_f_v)
/*
*** Vector Reduction Operations
*/
/* Vector Single-Width Integer Reduction Instructions */
static bool reduction_check(DisasContext *s, arg_rmrr *a)
{
return vext_check_isa_ill(s) && vext_check_reg(s, a->rs2, false);
}
GEN_OPIVV_TRANS(vredsum_vs, reduction_check)
GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check)
GEN_OPIVV_TRANS(vredmax_vs, reduction_check)
GEN_OPIVV_TRANS(vredminu_vs, reduction_check)
GEN_OPIVV_TRANS(vredmin_vs, reduction_check)
GEN_OPIVV_TRANS(vredand_vs, reduction_check)
GEN_OPIVV_TRANS(vredor_vs, reduction_check)
GEN_OPIVV_TRANS(vredxor_vs, reduction_check)
/* Vector Widening Integer Reduction Instructions */
GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_check)
GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_check)
/* Vector Single-Width Floating-Point Reduction Instructions */
GEN_OPFVV_TRANS(vfredsum_vs, reduction_check)
GEN_OPFVV_TRANS(vfredmax_vs, reduction_check)
GEN_OPFVV_TRANS(vfredmin_vs, reduction_check)
/* Vector Widening Floating-Point Reduction Instructions */
GEN_OPFVV_WIDEN_TRANS(vfwredsum_vs, reduction_check)
/*
*** Vector Mask Operations
*/
/* Vector Mask-Register Logical Instructions */
#define GEN_MM_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_r *a) \
{ \
if (vext_check_isa_ill(s)) { \
uint32_t data = 0; \
gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \
TCGLabel *over = gen_new_label(); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, MLEN, s->mlen); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, 0, \
s->vlen / 8, data, fn); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_MM_TRANS(vmand_mm)
GEN_MM_TRANS(vmnand_mm)
GEN_MM_TRANS(vmandnot_mm)
GEN_MM_TRANS(vmxor_mm)
GEN_MM_TRANS(vmor_mm)
GEN_MM_TRANS(vmnor_mm)
GEN_MM_TRANS(vmornot_mm)
GEN_MM_TRANS(vmxnor_mm)
/* Vector mask population count vmpopc */
static bool trans_vmpopc_m(DisasContext *s, arg_rmr *a)
{
if (vext_check_isa_ill(s)) {
TCGv_ptr src2, mask;
TCGv dst;
TCGv_i32 desc;
uint32_t data = 0;
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
mask = tcg_temp_new_ptr();
src2 = tcg_temp_new_ptr();
dst = tcg_temp_new();
desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
gen_helper_vmpopc_m(dst, mask, src2, cpu_env, desc);
gen_set_gpr(a->rd, dst);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(src2);
tcg_temp_free(dst);
tcg_temp_free_i32(desc);
return true;
}
return false;
}
/* vmfirst find-first-set mask bit */
static bool trans_vmfirst_m(DisasContext *s, arg_rmr *a)
{
if (vext_check_isa_ill(s)) {
TCGv_ptr src2, mask;
TCGv dst;
TCGv_i32 desc;
uint32_t data = 0;
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
mask = tcg_temp_new_ptr();
src2 = tcg_temp_new_ptr();
dst = tcg_temp_new();
desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
gen_helper_vmfirst_m(dst, mask, src2, cpu_env, desc);
gen_set_gpr(a->rd, dst);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(src2);
tcg_temp_free(dst);
tcg_temp_free_i32(desc);
return true;
}
return false;
}
/* vmsbf.m set-before-first mask bit */
/* vmsif.m set-includ-first mask bit */
/* vmsof.m set-only-first mask bit */
#define GEN_M_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
{ \
if (vext_check_isa_ill(s)) { \
uint32_t data = 0; \
gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \
TCGLabel *over = gen_new_label(); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, MLEN, s->mlen); \
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \
vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \
cpu_env, 0, s->vlen / 8, data, fn); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_M_TRANS(vmsbf_m)
GEN_M_TRANS(vmsif_m)
GEN_M_TRANS(vmsof_m)
/* Vector Iota Instruction */
static bool trans_viota_m(DisasContext *s, arg_viota_m *a)
{
if (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rd, false) &&
vext_check_overlap_group(a->rd, 1 << s->lmul, a->rs2, 1) &&
(a->vm != 0 || a->rd != 0)) {
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
static gen_helper_gvec_3_ptr * const fns[4] = {
gen_helper_viota_m_b, gen_helper_viota_m_h,
gen_helper_viota_m_w, gen_helper_viota_m_d,
};
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs2), cpu_env, 0,
s->vlen / 8, data, fns[s->sew]);
gen_set_label(over);
return true;
}
return false;
}
/* Vector Element Index Instruction */
static bool trans_vid_v(DisasContext *s, arg_vid_v *a)
{
if (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rd, false) &&
vext_check_overlap_mask(s, a->rd, a->vm, false)) {
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
static gen_helper_gvec_2_ptr * const fns[4] = {
gen_helper_vid_v_b, gen_helper_vid_v_h,
gen_helper_vid_v_w, gen_helper_vid_v_d,
};
tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
cpu_env, 0, s->vlen / 8, data, fns[s->sew]);
gen_set_label(over);
return true;
}
return false;
}
/*
*** Vector Permutation Instructions
*/
/* Integer Extract Instruction */
static void load_element(TCGv_i64 dest, TCGv_ptr base,
int ofs, int sew)
{
switch (sew) {
case MO_8:
tcg_gen_ld8u_i64(dest, base, ofs);
break;
case MO_16:
tcg_gen_ld16u_i64(dest, base, ofs);
break;
case MO_32:
tcg_gen_ld32u_i64(dest, base, ofs);
break;
case MO_64:
tcg_gen_ld_i64(dest, base, ofs);
break;
default:
g_assert_not_reached();
break;
}
}
/* offset of the idx element with base regsiter r */
static uint32_t endian_ofs(DisasContext *s, int r, int idx)
{
#ifdef HOST_WORDS_BIGENDIAN
return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew);
#else
return vreg_ofs(s, r) + (idx << s->sew);
#endif
}
/* adjust the index according to the endian */
static void endian_adjust(TCGv_i32 ofs, int sew)
{
#ifdef HOST_WORDS_BIGENDIAN
tcg_gen_xori_i32(ofs, ofs, 7 >> sew);
#endif
}
/* Load idx >= VLMAX ? 0 : vreg[idx] */
static void vec_element_loadx(DisasContext *s, TCGv_i64 dest,
int vreg, TCGv idx, int vlmax)
{
TCGv_i32 ofs = tcg_temp_new_i32();
TCGv_ptr base = tcg_temp_new_ptr();
TCGv_i64 t_idx = tcg_temp_new_i64();
TCGv_i64 t_vlmax, t_zero;
/*
* Mask the index to the length so that we do
* not produce an out-of-range load.
*/
tcg_gen_trunc_tl_i32(ofs, idx);
tcg_gen_andi_i32(ofs, ofs, vlmax - 1);
/* Convert the index to an offset. */
endian_adjust(ofs, s->sew);
tcg_gen_shli_i32(ofs, ofs, s->sew);
/* Convert the index to a pointer. */
tcg_gen_ext_i32_ptr(base, ofs);
tcg_gen_add_ptr(base, base, cpu_env);
/* Perform the load. */
load_element(dest, base,
vreg_ofs(s, vreg), s->sew);
tcg_temp_free_ptr(base);
tcg_temp_free_i32(ofs);
/* Flush out-of-range indexing to zero. */
t_vlmax = tcg_const_i64(vlmax);
t_zero = tcg_const_i64(0);
tcg_gen_extu_tl_i64(t_idx, idx);
tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx,
t_vlmax, dest, t_zero);
tcg_temp_free_i64(t_vlmax);
tcg_temp_free_i64(t_zero);
tcg_temp_free_i64(t_idx);
}
static void vec_element_loadi(DisasContext *s, TCGv_i64 dest,
int vreg, int idx)
{
load_element(dest, cpu_env, endian_ofs(s, vreg, idx), s->sew);
}
static bool trans_vext_x_v(DisasContext *s, arg_r *a)
{
TCGv_i64 tmp = tcg_temp_new_i64();
TCGv dest = tcg_temp_new();
if (a->rs1 == 0) {
/* Special case vmv.x.s rd, vs2. */
vec_element_loadi(s, tmp, a->rs2, 0);
} else {
/* This instruction ignores LMUL and vector register groups */
int vlmax = s->vlen >> (3 + s->sew);
vec_element_loadx(s, tmp, a->rs2, cpu_gpr[a->rs1], vlmax);
}
tcg_gen_trunc_i64_tl(dest, tmp);
gen_set_gpr(a->rd, dest);
tcg_temp_free(dest);
tcg_temp_free_i64(tmp);
return true;
}
/* Integer Scalar Move Instruction */
static void store_element(TCGv_i64 val, TCGv_ptr base,
int ofs, int sew)
{
switch (sew) {
case MO_8:
tcg_gen_st8_i64(val, base, ofs);
break;
case MO_16:
tcg_gen_st16_i64(val, base, ofs);
break;
case MO_32:
tcg_gen_st32_i64(val, base, ofs);
break;
case MO_64:
tcg_gen_st_i64(val, base, ofs);
break;
default:
g_assert_not_reached();
break;
}
}
/*
* Store vreg[idx] = val.
* The index must be in range of VLMAX.
*/
static void vec_element_storei(DisasContext *s, int vreg,
int idx, TCGv_i64 val)
{
store_element(val, cpu_env, endian_ofs(s, vreg, idx), s->sew);
}
/* vmv.s.x vd, rs1 # vd[0] = rs1 */
static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a)
{
if (vext_check_isa_ill(s)) {
/* This instruction ignores LMUL and vector register groups */
int maxsz = s->vlen >> 3;
TCGv_i64 t1;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_gvec_dup_imm(SEW64, vreg_ofs(s, a->rd), maxsz, maxsz, 0);
if (a->rs1 == 0) {
goto done;
}
t1 = tcg_temp_new_i64();
tcg_gen_extu_tl_i64(t1, cpu_gpr[a->rs1]);
vec_element_storei(s, a->rd, 0, t1);
tcg_temp_free_i64(t1);
done:
gen_set_label(over);
return true;
}
return false;
}
/* Floating-Point Scalar Move Instructions */
static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a)
{
if (!s->vill && has_ext(s, RVF) &&
(s->mstatus_fs != 0) && (s->sew != 0)) {
unsigned int len = 8 << s->sew;
vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0);
if (len < 64) {
tcg_gen_ori_i64(cpu_fpr[a->rd], cpu_fpr[a->rd],
MAKE_64BIT_MASK(len, 64 - len));
}
mark_fs_dirty(s);
return true;
}
return false;
}
/* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */
static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a)
{
if (!s->vill && has_ext(s, RVF) && (s->sew != 0)) {
TCGv_i64 t1;
/* The instructions ignore LMUL and vector register group. */
uint32_t vlmax = s->vlen >> 3;
/* if vl == 0, skip vector register write back */
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
/* zeroed all elements */
tcg_gen_gvec_dup_imm(SEW64, vreg_ofs(s, a->rd), vlmax, vlmax, 0);
/* NaN-box f[rs1] as necessary for SEW */
t1 = tcg_temp_new_i64();
if (s->sew == MO_64 && !has_ext(s, RVD)) {
tcg_gen_ori_i64(t1, cpu_fpr[a->rs1], MAKE_64BIT_MASK(32, 32));
} else {
tcg_gen_mov_i64(t1, cpu_fpr[a->rs1]);
}
vec_element_storei(s, a->rd, 0, t1);
tcg_temp_free_i64(t1);
gen_set_label(over);
return true;
}
return false;
}
/* Vector Slide Instructions */
static bool slideup_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, true) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, false) &&
(a->rd != a->rs2));
}
GEN_OPIVX_TRANS(vslideup_vx, slideup_check)
GEN_OPIVX_TRANS(vslide1up_vx, slideup_check)
GEN_OPIVI_TRANS(vslideup_vi, 1, vslideup_vx, slideup_check)
GEN_OPIVX_TRANS(vslidedown_vx, opivx_check)
GEN_OPIVX_TRANS(vslide1down_vx, opivx_check)
GEN_OPIVI_TRANS(vslidedown_vi, 1, vslidedown_vx, opivx_check)
/* Vector Register Gather Instruction */
static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, true) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs1, false) &&
vext_check_reg(s, a->rs2, false) &&
(a->rd != a->rs2) && (a->rd != a->rs1));
}
GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check)
static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, true) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, false) &&
(a->rd != a->rs2));
}
/* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */
static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a)
{
if (!vrgather_vx_check(s, a)) {
return false;
}
if (a->vm && s->vl_eq_vlmax) {
int vlmax = s->vlen / s->mlen;
TCGv_i64 dest = tcg_temp_new_i64();
if (a->rs1 == 0) {
vec_element_loadi(s, dest, a->rs2, 0);
} else {
vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax);
}
tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd),
MAXSZ(s), MAXSZ(s), dest);
tcg_temp_free_i64(dest);
} else {
static gen_helper_opivx * const fns[4] = {
gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h,
gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d
};
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);
}
return true;
}
/* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */
static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a)
{
if (!vrgather_vx_check(s, a)) {
return false;
}
if (a->vm && s->vl_eq_vlmax) {
if (a->rs1 >= s->vlen / s->mlen) {
tcg_gen_gvec_dup_imm(SEW64, vreg_ofs(s, a->rd),
MAXSZ(s), MAXSZ(s), 0);
} else {
tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd),
endian_ofs(s, a->rs2, a->rs1),
MAXSZ(s), MAXSZ(s));
}
} else {
static gen_helper_opivx * const fns[4] = {
gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h,
gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d
};
return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s, 1);
}
return true;
}
/* Vector Compress Instruction */
static bool vcompress_vm_check(DisasContext *s, arg_r *a)
{
return (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_overlap_group(a->rd, 1 << s->lmul, a->rs1, 1) &&
(a->rd != a->rs2));
}
static bool trans_vcompress_vm(DisasContext *s, arg_r *a)
{
if (vcompress_vm_check(s, a)) {
uint32_t data = 0;
static gen_helper_gvec_4_ptr * const fns[4] = {
gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h,
gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d,
};
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2),
cpu_env, 0, s->vlen / 8, data, fns[s->sew]);
gen_set_label(over);
return true;
}
return false;
}