50 lines
1.1 KiB
Python
50 lines
1.1 KiB
Python
|
|
||
|
import requests
|
||
|
import statistics as stats
|
||
|
import csv
|
||
|
import math
|
||
|
import os
|
||
|
from random import uniform
|
||
|
|
||
|
import csv
|
||
|
import requests
|
||
|
|
||
|
url = "https://www.texaslottery.com/export/sites/lottery/Games/Lotto_Texas/Winning_Numbers/lottotexas.csv"
|
||
|
response = requests.get(url, timeout=10)
|
||
|
|
||
|
lines = list(line.decode('utf-8') for line in response.iter_lines())
|
||
|
|
||
|
reader = csv.reader(lines, delimiter=',')
|
||
|
data = list(reader)
|
||
|
|
||
|
n1s = []
|
||
|
n2s = []
|
||
|
n3s = []
|
||
|
n4s = []
|
||
|
n5s = []
|
||
|
n6s = []
|
||
|
|
||
|
for x in range(0,125):
|
||
|
n1s.append(int(data[-125:][x][4]))
|
||
|
n2s.append(int(data[-125:][x][5]))
|
||
|
n3s.append(int(data[-125:][x][6]))
|
||
|
n4s.append(int(data[-125:][x][7]))
|
||
|
n5s.append(int(data[-125:][x][8]))
|
||
|
n6s.append(int(data[-125:][x][9]))
|
||
|
|
||
|
|
||
|
def mean(arr):
|
||
|
s = sum(arr)
|
||
|
return s/len(arr)
|
||
|
|
||
|
n1 = math.floor(mean(n1s))
|
||
|
n2 = math.ceil(mean(n2s) * uniform(.5,2.25)) + 1
|
||
|
n3 = math.ceil(mean(n3s))
|
||
|
n4 = math.ceil(mean(n4s))
|
||
|
n5 = math.floor(mean(n5s) * uniform(.22,2)) + 1
|
||
|
n6 = math.floor(mean(n6s) * uniform(.22,2))
|
||
|
|
||
|
luckyStr = str(n1) + ", " + str(n2) + ", " + str(n3) + ", " + str(n4) + ", " + str(n5) + ", " + str(n6)
|
||
|
|
||
|
print("Lucky numbers: " + luckyStr)
|