historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/target/cris/helper.c

321 lines
8.9 KiB
C
Raw Normal View History

2024-01-16 17:20:27 +00:00
/*
* CRIS helper routines.
*
* Copyright (c) 2007 AXIS Communications AB
* Written by Edgar E. Iglesias.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "mmu.h"
#include "qemu/host-utils.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "exec/helper-proto.h"
//#define CRIS_HELPER_DEBUG
#ifdef CRIS_HELPER_DEBUG
#define D(x) x
#define D_LOG(...) qemu_log(__VA_ARGS__)
#else
#define D(x)
#define D_LOG(...) do { } while (0)
#endif
#if defined(CONFIG_USER_ONLY)
void cris_cpu_do_interrupt(CPUState *cs)
{
CRISCPU *cpu = CRIS_CPU(cs);
CPUCRISState *env = &cpu->env;
cs->exception_index = -1;
env->pregs[PR_ERP] = env->pc;
}
void crisv10_cpu_do_interrupt(CPUState *cs)
{
cris_cpu_do_interrupt(cs);
}
bool cris_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
CRISCPU *cpu = CRIS_CPU(cs);
cs->exception_index = 0xaa;
cpu->env.pregs[PR_EDA] = address;
cpu_loop_exit_restore(cs, retaddr);
}
#else /* !CONFIG_USER_ONLY */
static void cris_shift_ccs(CPUCRISState *env)
{
uint32_t ccs;
/* Apply the ccs shift. */
ccs = env->pregs[PR_CCS];
ccs = ((ccs & 0xc0000000) | ((ccs << 12) >> 2)) & ~0x3ff;
env->pregs[PR_CCS] = ccs;
}
bool cris_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
CRISCPU *cpu = CRIS_CPU(cs);
CPUCRISState *env = &cpu->env;
struct cris_mmu_result res;
int prot, miss;
target_ulong phy;
miss = cris_mmu_translate(&res, env, address & TARGET_PAGE_MASK,
access_type, mmu_idx, 0);
if (likely(!miss)) {
/*
* Mask off the cache selection bit. The ETRAX busses do not
* see the top bit.
*/
phy = res.phy & ~0x80000000;
prot = res.prot;
tlb_set_page(cs, address & TARGET_PAGE_MASK, phy,
prot, mmu_idx, TARGET_PAGE_SIZE);
return true;
}
if (probe) {
return false;
}
if (cs->exception_index == EXCP_BUSFAULT) {
cpu_abort(cs, "CRIS: Illegal recursive bus fault."
"addr=%" VADDR_PRIx " access_type=%d\n",
address, access_type);
}
env->pregs[PR_EDA] = address;
cs->exception_index = EXCP_BUSFAULT;
env->fault_vector = res.bf_vec;
if (retaddr) {
if (cpu_restore_state(cs, retaddr, true)) {
/* Evaluate flags after retranslation. */
helper_top_evaluate_flags(env);
}
}
cpu_loop_exit(cs);
}
void crisv10_cpu_do_interrupt(CPUState *cs)
{
CRISCPU *cpu = CRIS_CPU(cs);
CPUCRISState *env = &cpu->env;
int ex_vec = -1;
D_LOG("exception index=%d interrupt_req=%d\n",
cs->exception_index,
cs->interrupt_request);
if (env->dslot) {
/* CRISv10 never takes interrupts while in a delay-slot. */
cpu_abort(cs, "CRIS: Interrupt on delay-slot\n");
}
assert(!(env->pregs[PR_CCS] & PFIX_FLAG));
switch (cs->exception_index) {
case EXCP_BREAK:
/* These exceptions are genereated by the core itself.
ERP should point to the insn following the brk. */
ex_vec = env->trap_vector;
env->pregs[PRV10_BRP] = env->pc;
break;
case EXCP_NMI:
/* NMI is hardwired to vector zero. */
ex_vec = 0;
env->pregs[PR_CCS] &= ~M_FLAG_V10;
env->pregs[PRV10_BRP] = env->pc;
break;
case EXCP_BUSFAULT:
cpu_abort(cs, "Unhandled busfault");
break;
default:
/* The interrupt controller gives us the vector. */
ex_vec = env->interrupt_vector;
/* Normal interrupts are taken between
TB's. env->pc is valid here. */
env->pregs[PR_ERP] = env->pc;
break;
}
if (env->pregs[PR_CCS] & U_FLAG) {
/* Swap stack pointers. */
env->pregs[PR_USP] = env->regs[R_SP];
env->regs[R_SP] = env->ksp;
}
/* Now that we are in kernel mode, load the handlers address. */
env->pc = cpu_ldl_code(env, env->pregs[PR_EBP] + ex_vec * 4);
env->locked_irq = 1;
env->pregs[PR_CCS] |= F_FLAG_V10; /* set F. */
qemu_log_mask(CPU_LOG_INT, "%s isr=%x vec=%x ccs=%x pid=%d erp=%x\n",
__func__, env->pc, ex_vec,
env->pregs[PR_CCS],
env->pregs[PR_PID],
env->pregs[PR_ERP]);
}
void cris_cpu_do_interrupt(CPUState *cs)
{
CRISCPU *cpu = CRIS_CPU(cs);
CPUCRISState *env = &cpu->env;
int ex_vec = -1;
D_LOG("exception index=%d interrupt_req=%d\n",
cs->exception_index,
cs->interrupt_request);
switch (cs->exception_index) {
case EXCP_BREAK:
/* These exceptions are genereated by the core itself.
ERP should point to the insn following the brk. */
ex_vec = env->trap_vector;
env->pregs[PR_ERP] = env->pc;
break;
case EXCP_NMI:
/* NMI is hardwired to vector zero. */
ex_vec = 0;
env->pregs[PR_CCS] &= ~M_FLAG_V32;
env->pregs[PR_NRP] = env->pc;
break;
case EXCP_BUSFAULT:
ex_vec = env->fault_vector;
env->pregs[PR_ERP] = env->pc;
break;
default:
/* The interrupt controller gives us the vector. */
ex_vec = env->interrupt_vector;
/* Normal interrupts are taken between
TB's. env->pc is valid here. */
env->pregs[PR_ERP] = env->pc;
break;
}
/* Fill in the IDX field. */
env->pregs[PR_EXS] = (ex_vec & 0xff) << 8;
if (env->dslot) {
D_LOG("excp isr=%x PC=%x ds=%d SP=%x"
" ERP=%x pid=%x ccs=%x cc=%d %x\n",
ex_vec, env->pc, env->dslot,
env->regs[R_SP],
env->pregs[PR_ERP], env->pregs[PR_PID],
env->pregs[PR_CCS],
env->cc_op, env->cc_mask);
/* We loose the btarget, btaken state here so rexec the
branch. */
env->pregs[PR_ERP] -= env->dslot;
/* Exception starts with dslot cleared. */
env->dslot = 0;
}
if (env->pregs[PR_CCS] & U_FLAG) {
/* Swap stack pointers. */
env->pregs[PR_USP] = env->regs[R_SP];
env->regs[R_SP] = env->ksp;
}
/* Apply the CRIS CCS shift. Clears U if set. */
cris_shift_ccs(env);
/* Now that we are in kernel mode, load the handlers address.
This load may not fault, real hw leaves that behaviour as
undefined. */
env->pc = cpu_ldl_code(env, env->pregs[PR_EBP] + ex_vec * 4);
/* Clear the excption_index to avoid spurios hw_aborts for recursive
bus faults. */
cs->exception_index = -1;
D_LOG("%s isr=%x vec=%x ccs=%x pid=%d erp=%x\n",
__func__, env->pc, ex_vec,
env->pregs[PR_CCS],
env->pregs[PR_PID],
env->pregs[PR_ERP]);
}
hwaddr cris_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
CRISCPU *cpu = CRIS_CPU(cs);
uint32_t phy = addr;
struct cris_mmu_result res;
int miss;
miss = cris_mmu_translate(&res, &cpu->env, addr, 0, 0, 1);
/* If D TLB misses, try I TLB. */
if (miss) {
miss = cris_mmu_translate(&res, &cpu->env, addr, 2, 0, 1);
}
if (!miss) {
phy = res.phy;
}
D(fprintf(stderr, "%s %x -> %x\n", __func__, addr, phy));
return phy;
}
#endif
bool cris_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
CPUClass *cc = CPU_GET_CLASS(cs);
CRISCPU *cpu = CRIS_CPU(cs);
CPUCRISState *env = &cpu->env;
bool ret = false;
if (interrupt_request & CPU_INTERRUPT_HARD
&& (env->pregs[PR_CCS] & I_FLAG)
&& !env->locked_irq) {
cs->exception_index = EXCP_IRQ;
cc->do_interrupt(cs);
ret = true;
}
if (interrupt_request & CPU_INTERRUPT_NMI) {
unsigned int m_flag_archval;
if (env->pregs[PR_VR] < 32) {
m_flag_archval = M_FLAG_V10;
} else {
m_flag_archval = M_FLAG_V32;
}
if ((env->pregs[PR_CCS] & m_flag_archval)) {
cs->exception_index = EXCP_NMI;
cc->do_interrupt(cs);
ret = true;
}
}
return ret;
}