historical/toontown-classic.git/panda/include/geomVertexData.I

907 lines
22 KiB
Text
Raw Normal View History

2024-01-16 17:20:27 +00:00
/**
* PANDA 3D SOFTWARE
* Copyright (c) Carnegie Mellon University. All rights reserved.
*
* All use of this software is subject to the terms of the revised BSD
* license. You should have received a copy of this license along
* with this source code in a file named "LICENSE."
*
* @file geomVertexData.I
* @author drose
* @date 2005-03-06
*/
/**
* Returns the name passed to the constructor, if any. This name is reported
* on the PStats graph for vertex computations.
*/
INLINE const std::string &GeomVertexData::
get_name() const {
return _name;
}
/**
* Returns the usage hint that was passed to the constructor, and which will
* be passed to each array data object created initially, and arrays created
* as the result of a convert_to() operation. See geomEnums.h.
*
* However, each individual array may be replaced with a different array
* object with an independent usage hint specified, so there is no guarantee
* that the individual arrays all have the same usage_hint.
*/
INLINE GeomVertexData::UsageHint GeomVertexData::
get_usage_hint() const {
CDReader cdata(_cycler);
return cdata->_usage_hint;
}
/**
* Returns a pointer to the GeomVertexFormat structure that defines this data.
*/
INLINE const GeomVertexFormat *GeomVertexData::
get_format() const {
CDReader cdata(_cycler);
return cdata->_format;
}
/**
* Returns true if the data has the named column, false otherwise. This is
* really just a shortcut for asking the same thing from the format.
*/
INLINE bool GeomVertexData::
has_column(const InternalName *name) const {
CDReader cdata(_cycler);
return cdata->_format->has_column(name);
}
/**
* Returns the number of rows stored within all the arrays. All arrays store
* data for the same n rows.
*/
INLINE int GeomVertexData::
get_num_rows() const {
CPT(GeomVertexArrayData) array;
{
CDReader cdata(_cycler);
nassertr(cdata->_format->get_num_arrays() == cdata->_arrays.size(), 0);
if (cdata->_arrays.size() == 0) {
// No arrays means no rows. Weird but legal.
return 0;
}
array = cdata->_arrays[0].get_read_pointer();
}
return array->get_num_rows();
}
/**
* Sets the length of the array to n rows in all of the various arrays
* (presumably by adding rows).
*
* The new vertex data is initialized to 0, except for the "color" column,
* which is initialized to (1, 1, 1, 1).
*
* The return value is true if the number of rows was changed, false if the
* object already contained n rows (or if there was some error).
*
* This can be used when you know exactly how many rows you will be needing.
* It is faster than reserve_num_rows(). Also see unclean_set_num_rows() if
* you are planning to fill in all the data yourself.
*
* Don't call this in a downstream thread unless you don't mind it blowing
* away other changes you might have recently made in an upstream thread.
*/
INLINE bool GeomVertexData::
set_num_rows(int n) {
GeomVertexDataPipelineWriter writer(this, true, Thread::get_current_thread());
writer.check_array_writers();
return writer.set_num_rows(n);
}
/**
* This method behaves like set_num_rows(), except the new data is not
* initialized. Furthermore, after this call, *any* of the data in the
* GeomVertexData may be uninitialized, including the earlier rows.
*
* This is intended for applications that are about to completely fill the
* GeomVertexData with new data anyway; it provides a tiny performance boost
* over set_num_rows().
*
* This can be used when you know exactly how many rows you will be needing.
* It is faster than reserve_num_rows().
*/
INLINE bool GeomVertexData::
unclean_set_num_rows(int n) {
GeomVertexDataPipelineWriter writer(this, true, Thread::get_current_thread());
writer.check_array_writers();
return writer.unclean_set_num_rows(n);
}
/**
* This ensures that enough memory space for n rows is allocated, so that you
* may increase the number of rows to n without causing a new memory
* allocation. This is a performance optimization only; it is especially
* useful when you know ahead of time that you will be adding n rows to the
* data.
*
* If you know exactly how many rows you will be needing, it is significantly
* faster to use set_num_rows() or unclean_set_num_rows() instead.
*/
INLINE bool GeomVertexData::
reserve_num_rows(int n) {
GeomVertexDataPipelineWriter writer(this, true, Thread::get_current_thread());
writer.check_array_writers();
return writer.reserve_num_rows(n);
}
/**
* Returns the number of individual arrays stored within the data. This must
* match get_format()->get_num_arrays().
*/
INLINE size_t GeomVertexData::
get_num_arrays() const {
CDReader cdata(_cycler);
return cdata->_arrays.size();
}
/**
* Returns a const pointer to the vertex data for the indicated array, for
* application code to directly examine (but not modify) the underlying vertex
* data.
*/
INLINE CPT(GeomVertexArrayData) GeomVertexData::
get_array(size_t i) const {
CDReader cdata(_cycler);
nassertr(i < cdata->_arrays.size(), nullptr);
return cdata->_arrays[i].get_read_pointer();
}
/**
* Equivalent to get_array(i).get_handle().
*/
INLINE CPT(GeomVertexArrayDataHandle) GeomVertexData::
get_array_handle(size_t i) const {
Thread *current_thread = Thread::get_current_thread();
CDReader cdata(_cycler, current_thread);
nassertr(i < cdata->_arrays.size(), nullptr);
return new GeomVertexArrayDataHandle(cdata->_arrays[i].get_read_pointer(), current_thread);
}
/**
* Returns a modifiable pointer to the indicated vertex array, so that
* application code may directly manipulate the data. You should avoid
* changing the length of this array, since all of the arrays should be kept
* in sync--use set_num_rows() instead.
*
* Don't call this in a downstream thread unless you don't mind it blowing
* away other changes you might have recently made in an upstream thread.
*/
INLINE PT(GeomVertexArrayData) GeomVertexData::
modify_array(size_t i) {
GeomVertexDataPipelineWriter writer(this, true, Thread::get_current_thread());
return writer.modify_array(i);
}
/**
* Equivalent to modify_array(i).modify_handle().
*/
INLINE PT(GeomVertexArrayDataHandle) GeomVertexData::
modify_array_handle(size_t i) {
Thread *current_thread = Thread::get_current_thread();
GeomVertexDataPipelineWriter writer(this, true, current_thread);
return new GeomVertexArrayDataHandle(writer.modify_array(i), current_thread);
}
/**
* Replaces the indicated vertex data array with a completely new array. You
* should be careful that the new array has the same length and format as the
* old one, unless you know what you are doing.
*
* Don't call this in a downstream thread unless you don't mind it blowing
* away other changes you might have recently made in an upstream thread.
*/
INLINE void GeomVertexData::
set_array(size_t i, const GeomVertexArrayData *array) {
GeomVertexDataPipelineWriter writer(this, true, Thread::get_current_thread());
writer.set_array(i, array);
}
/**
* Returns a const pointer to the TransformTable assigned to this data.
* Vertices within the table will index into this table to indicate their
* dynamic skinning information; this table is used when the vertex animation
* is to be performed by the graphics hardware (but also see
* get_transform_blend_table()).
*
* This will return NULL if the vertex data does not have a TransformTable
* assigned (which implies the vertices will not be animated by the graphics
* hardware).
*/
INLINE const TransformTable *GeomVertexData::
get_transform_table() const {
CDReader cdata(_cycler);
return cdata->_transform_table;
}
/**
* Sets the TransformTable pointer to NULL, removing the table from the vertex
* data. This disables hardware-driven vertex animation.
*/
INLINE void GeomVertexData::
clear_transform_table() {
set_transform_table(nullptr);
}
/**
* Returns a const pointer to the TransformBlendTable assigned to this data.
* Vertices within the table will index into this table to indicate their
* dynamic skinning information; this table is used when the vertex animation
* is to be performed by the CPU (but also see get_transform_table()).
*
* This will return NULL if the vertex data does not have a
* TransformBlendTable assigned (which implies the vertices will not be
* animated by the CPU).
*/
INLINE CPT(TransformBlendTable) GeomVertexData::
get_transform_blend_table() const {
CDReader cdata(_cycler);
return cdata->_transform_blend_table.get_read_pointer();
}
/**
* Sets the TransformBlendTable pointer to NULL, removing the table from the
* vertex data. This disables CPU-driven vertex animation.
*/
INLINE void GeomVertexData::
clear_transform_blend_table() {
set_transform_blend_table(nullptr);
}
/**
* Returns a const pointer to the SliderTable assigned to this data. Vertices
* within the vertex data will look up their morph offsets, if any, within
* this table.
*
* This will return NULL if the vertex data does not have a SliderTable
* assigned.
*/
INLINE const SliderTable *GeomVertexData::
get_slider_table() const {
CDReader cdata(_cycler);
return cdata->_slider_table;
}
/**
* Sets the SliderTable pointer to NULL, removing the table from the vertex
* data. This disables morph (blend shape) animation.
*/
INLINE void GeomVertexData::
clear_slider_table() {
set_slider_table(nullptr);
}
/**
* Returns the total number of bytes consumed by the different arrays of the
* vertex data.
*/
INLINE int GeomVertexData::
get_num_bytes() const {
GeomVertexDataPipelineReader reader(this, Thread::get_current_thread());
return reader.get_num_bytes();
}
/**
* Returns a sequence number which is guaranteed to change at least every time
* the vertex data is modified.
*/
INLINE UpdateSeq GeomVertexData::
get_modified(Thread *current_thread) const {
CDReader cdata(_cycler, current_thread);
return cdata->_modified;
}
/**
* Packs four values in a DirectX-style NT_packed_abcd value.
*/
INLINE uint32_t GeomVertexData::
pack_abcd(unsigned int a, unsigned int b,
unsigned int c, unsigned int d) {
return (((a & 0xff) << 24) |
((b & 0xff) << 16) |
((c & 0xff) << 8) |
(d & 0xff));
}
/**
* Returns the first packed value from a DirectX-style NT_packed_abcd.
*/
INLINE unsigned int GeomVertexData::
unpack_abcd_a(uint32_t data) {
return (data >> 24) & 0xff;
}
/**
* Returns the second packed value from a DirectX-style NT_packed_abcd.
*/
INLINE unsigned int GeomVertexData::
unpack_abcd_b(uint32_t data) {
return (data >> 16) & 0xff;
}
/**
* Returns the third packed value from a DirectX-style NT_packed_abcd.
*/
INLINE unsigned int GeomVertexData::
unpack_abcd_c(uint32_t data) {
return (data >> 8) & 0xff;
}
/**
* Returns the fourth packed value from a DirectX-style NT_packed_abcd.
*/
INLINE unsigned int GeomVertexData::
unpack_abcd_d(uint32_t data) {
return data & 0xff;
}
/**
* Packs three float values in an unsigned 32-bit int.
*/
INLINE uint32_t GeomVertexData::
pack_ufloat(float a, float b, float c) {
// Since we have to clamp both low exponents and negative numbers to 0, it's
// easier to see a float as having a 9-bit signed exponent.
union {
int32_t _packed;
float _float;
} f0, f1, f2;
f0._float = a;
f1._float = b;
f2._float = c;
// There are several cases here: 1. exponent 0xff: NaN or infinity (negative
// infinity excluded) 2. exponent too large: clamped to maximum value 3.
// normalized float 4. exponent 0: denormal float 5. zero or anything
// negative, clamped to 0
uint32_t packed = 0;
if ((f0._packed & 0x7f800000) == 0x7f800000 && (unsigned)f0._packed != 0xff800000u) {
packed |= (f0._packed >> 17) & 0x7ffu;
} else if (f0._packed >= 0x47800000) {
packed |= 0x7bf;
} else if (f0._packed >= 0x38800000) {
packed |= (f0._packed >> 17) - 0x1c00;
} else if (f0._packed >= 0x35000000) {
packed |= ((f0._packed & 0x7c0000u) | 0x800000u) >> (130 - (f0._packed >> 23));
}
if ((f1._packed & 0x7f800000) == 0x7f800000 && (unsigned)f1._packed != 0xff800000u) {
packed |= (f1._packed >> 6) & 0x3ff800u;
} else if (f1._packed >= 0x47800000) {
packed |= 0x3df800;
} else if (f1._packed >= 0x38800000) {
packed |= ((f1._packed >> 6) - 0xe00000) & 0x3ff800;
} else if (f1._packed >= 0x35000000) {
packed |= (((f1._packed & 0x7c0000u) | 0x800000u) >> (119 - (f1._packed >> 23))) & 0x1f800u;
}
if ((f2._packed & 0x7f800000) == 0x7f800000 && (unsigned)f2._packed != 0xff800000u) {
packed |= (f2._packed & 0x0ffe0000u) << 4;
} else if (f2._packed >= 0x47800000) {
packed |= 0xf7c00000;
} else if (f2._packed >= 0x38800000) {
packed |= ((f2._packed - 0x38000000) << 4) & 0xffc00000;
} else if (f2._packed >= 0x35000000) {
packed |= ((((f2._packed << 3) & 0x03c00000u) | 0x04000000u) >> (112 - (f2._packed >> 23))) & 0x07c00000u;
}
return packed;
}
/**
* Unpacks an unsigned float11 value from an uint32.
*/
INLINE float GeomVertexData::
unpack_ufloat_a(uint32_t data) {
if ((data & 0x7c0) == 0) {
// Denormal float (includes zero).
return ldexpf((data & 63) / 64.0f, -14);
}
union {
uint32_t _packed;
float _float;
} value;
value._packed = ((data & 0x7ff) << 17);
if ((data & 0x7c0) == 0x7c0) {
// Infinity NaN
value._packed |= 0x7f800000;
} else {
value._packed += 0x38000000;
}
return value._float;
}
/**
* Unpacks an unsigned float11 value from an uint32.
*/
INLINE float GeomVertexData::
unpack_ufloat_b(uint32_t data) {
if ((data & 0x3e0000) == 0) {
// Denormal float (includes zero).
return ldexpf(((data >> 11) & 63) / 64.0f, -14);
}
union {
uint32_t _packed;
float _float;
} value;
value._packed = ((data & 0x3ff800) << 6);
if ((data & 0x3e0000) == 0x3e0000) {
// Infinity NaN
value._packed |= 0x7f800000;
} else {
value._packed += 0x38000000;
}
return value._float;
}
/**
* Unpacks an unsigned float10 value from an uint32.
*/
INLINE float GeomVertexData::
unpack_ufloat_c(uint32_t data) {
if ((data & 0xf8000000u) == 0) {
// Denormal float (includes zero).
return ldexpf(((data >> 22) & 31) / 32.0f, -14);
}
union {
uint32_t _packed;
float _float;
} value;
value._packed = ((data & 0xffc00000u) >> 4);
if ((data & 0xf8000000u) == 0xf8000000u) {
// Infinity NaN
value._packed |= 0x7f800000;
} else {
value._packed += 0x38000000;
}
return value._float;
}
/**
* Adds the indicated transform to the table, if it is not already there, and
* returns its index number.
*/
INLINE int GeomVertexData::
add_transform(TransformTable *table, const VertexTransform *transform,
TransformMap &already_added) {
std::pair<TransformMap::iterator, bool> result = already_added.insert(TransformMap::value_type(transform, table->get_num_transforms()));
if (result.second) {
table->add_transform(transform);
}
return (*(result.first)).second;
}
/**
*
*/
INLINE GeomVertexData::CDataCache::
CDataCache() {
}
/**
*
*/
INLINE GeomVertexData::CDataCache::
CDataCache(const GeomVertexData::CDataCache &copy) :
_result(copy._result)
{
}
/**
*
*/
INLINE GeomVertexData::CacheKey::
CacheKey(const GeomVertexFormat *modifier) :
_modifier(modifier)
{
}
/**
*
*/
INLINE GeomVertexData::CacheKey::
CacheKey(const CacheKey &copy) :
_modifier(copy._modifier)
{
}
/**
*
*/
INLINE GeomVertexData::CacheKey::
CacheKey(CacheKey &&from) noexcept :
_modifier(std::move(from._modifier))
{
}
/**
* Provides a unique ordering within the set.
*/
INLINE bool GeomVertexData::CacheKey::
operator < (const CacheKey &other) const {
return _modifier < other._modifier;
}
/**
*
*/
INLINE GeomVertexData::CacheEntry::
CacheEntry(GeomVertexData *source, const GeomVertexFormat *modifier) :
_source(source),
_key(modifier)
{
}
/**
*
*/
INLINE GeomVertexData::CacheEntry::
CacheEntry(GeomVertexData *source, const CacheKey &key) :
_source(source),
_key(key)
{
}
/**
*
*/
INLINE GeomVertexData::CacheEntry::
CacheEntry(GeomVertexData *source, CacheKey &&key) noexcept :
_source(source),
_key(std::move(key))
{
}
/**
*
*/
INLINE GeomVertexData::CData::
CData() :
_usage_hint(UH_unspecified)
{
}
/**
*
*/
INLINE GeomVertexData::CData::
CData(const GeomVertexFormat *format, GeomVertexData::UsageHint usage_hint) :
_format(format),
_usage_hint(usage_hint)
{
size_t num_arrays = format->get_num_arrays();
for (size_t i = 0; i < num_arrays; ++i) {
_arrays.push_back(new GeomVertexArrayData(format->get_array(i), usage_hint));
}
}
/**
*
*/
INLINE GeomVertexDataPipelineBase::
GeomVertexDataPipelineBase(Thread *current_thread) :
_object(nullptr),
_current_thread(current_thread),
_cdata(nullptr)
{
}
/**
*
*/
INLINE GeomVertexDataPipelineBase::
GeomVertexDataPipelineBase(GeomVertexData *object,
Thread *current_thread,
GeomVertexData::CData *cdata) :
_object(object),
_current_thread(current_thread),
_cdata(cdata)
{
#ifdef _DEBUG
nassertv(_object->test_ref_count_nonzero());
#endif // _DEBUG
#ifdef DO_PIPELINING
_cdata->ref();
#endif // DO_PIPELINING
}
/**
*
*/
INLINE GeomVertexDataPipelineBase::
~GeomVertexDataPipelineBase() {
#ifdef _DEBUG
if (_object != nullptr) {
nassertv(_object->test_ref_count_nonzero());
}
#endif // _DEBUG
#ifdef DO_PIPELINING
if (_cdata != nullptr) {
unref_delete((CycleData *)_cdata);
}
#endif // DO_PIPELINING
#ifdef _DEBUG
_object = nullptr;
_cdata = nullptr;
#endif // _DEBUG
}
/**
*
*/
INLINE Thread *GeomVertexDataPipelineBase::
get_current_thread() const {
return _current_thread;
}
/**
*
*/
INLINE GeomVertexDataPipelineBase::UsageHint GeomVertexDataPipelineBase::
get_usage_hint() const {
return _cdata->_usage_hint;
}
/**
*
*/
INLINE const GeomVertexFormat *GeomVertexDataPipelineBase::
get_format() const {
return _cdata->_format;
}
/**
*
*/
INLINE bool GeomVertexDataPipelineBase::
has_column(const InternalName *name) const {
return _cdata->_format->has_column(name);
}
/**
*
*/
INLINE size_t GeomVertexDataPipelineBase::
get_num_arrays() const {
return _cdata->_arrays.size();
}
/**
*
*/
INLINE CPT(GeomVertexArrayData) GeomVertexDataPipelineBase::
get_array(size_t i) const {
nassertr(i < _cdata->_arrays.size(), nullptr);
return _cdata->_arrays[i].get_read_pointer();
}
/**
*
*/
INLINE const TransformTable *GeomVertexDataPipelineBase::
get_transform_table() const {
return _cdata->_transform_table;
}
/**
*
*/
INLINE CPT(TransformBlendTable) GeomVertexDataPipelineBase::
get_transform_blend_table() const {
return _cdata->_transform_blend_table.get_read_pointer();
}
/**
*
*/
INLINE const SliderTable *GeomVertexDataPipelineBase::
get_slider_table() const {
return _cdata->_slider_table;
}
/**
*
*/
INLINE UpdateSeq GeomVertexDataPipelineBase::
get_modified() const {
return _cdata->_modified;
}
/**
*
*/
INLINE GeomVertexDataPipelineReader::
GeomVertexDataPipelineReader(Thread *current_thread) :
GeomVertexDataPipelineBase(current_thread),
_got_array_readers(false)
{
}
/**
*
*/
INLINE GeomVertexDataPipelineReader::
GeomVertexDataPipelineReader(const GeomVertexData *object,
Thread *current_thread) :
GeomVertexDataPipelineBase((GeomVertexData *)object, current_thread,
(GeomVertexData::CData *)object->_cycler.read_unlocked(current_thread)),
_got_array_readers(false)
{
}
/**
*
*/
INLINE void GeomVertexDataPipelineReader::
set_object(const GeomVertexData *object) {
#ifdef DO_PIPELINING
if (_cdata != nullptr) {
unref_delete((CycleData *)_cdata);
}
#endif // DO_PIPELINING
_array_readers.clear();
_object = (GeomVertexData *)object;
_cdata = (GeomVertexData::CData *)_object->_cycler.read_unlocked(_current_thread);
_got_array_readers = false;
#ifdef DO_PIPELINING
_cdata->ref();
#endif // DO_PIPELINING
}
/**
*
*/
INLINE const GeomVertexData *GeomVertexDataPipelineReader::
get_object() const {
return _object;
}
/**
*
*/
INLINE void GeomVertexDataPipelineReader::
check_array_readers() const {
if (!_got_array_readers) {
((GeomVertexDataPipelineReader *)this)->make_array_readers();
}
}
/**
*
*/
INLINE const GeomVertexArrayDataHandle *GeomVertexDataPipelineReader::
get_array_reader(int i) const {
nassertr(_got_array_readers, nullptr);
nassertr(i >= 0 && i < (int)_array_readers.size(), nullptr);
return _array_readers[i];
}
/**
*
*/
INLINE bool GeomVertexDataPipelineReader::
has_vertex() const {
return (_cdata->_format->get_vertex_column() != nullptr);
}
/**
*
*/
INLINE bool GeomVertexDataPipelineReader::
is_vertex_transformed() const {
const GeomVertexColumn *column = _cdata->_format->get_vertex_column();
if (column != nullptr) {
return column->get_contents() == C_clip_point;
}
return false;
}
/**
*
*/
INLINE bool GeomVertexDataPipelineReader::
has_normal() const {
return (_cdata->_format->get_normal_column() != nullptr);
}
/**
*
*/
INLINE bool GeomVertexDataPipelineReader::
has_color() const {
return (_cdata->_format->get_color_column() != nullptr);
}
/**
*
*/
INLINE GeomVertexDataPipelineWriter::
GeomVertexDataPipelineWriter(GeomVertexData *object, bool force_to_0,
Thread *current_thread) :
GeomVertexDataPipelineBase(object, current_thread,
object->_cycler.write_upstream(force_to_0, current_thread)),
_got_array_writers(false)
{
#ifdef _DEBUG
nassertv(_object->test_ref_count_nonzero());
#ifdef DO_PIPELINING
nassertv(_cdata->test_ref_count_nonzero());
#endif // DO_PIPELINING
#endif // _DEBUG
}
/**
*
*/
INLINE GeomVertexDataPipelineWriter::
~GeomVertexDataPipelineWriter() {
if (_got_array_writers) {
delete_array_writers();
}
_object->_cycler.release_write(_cdata);
}
/**
*
*/
INLINE GeomVertexData *GeomVertexDataPipelineWriter::
get_object() const {
return _object;
}
/**
*
*/
INLINE void GeomVertexDataPipelineWriter::
check_array_writers() const {
if (!_got_array_writers) {
((GeomVertexDataPipelineWriter *)this)->make_array_writers();
}
}
/**
*
*/
INLINE GeomVertexArrayDataHandle *GeomVertexDataPipelineWriter::
get_array_writer(size_t i) const {
nassertr(_got_array_writers, nullptr);
nassertr(i < _array_writers.size(), nullptr);
return _array_writers[i];
}
INLINE std::ostream &
operator << (std::ostream &out, const GeomVertexData &obj) {
obj.output(out);
return out;
}