historical/toontown-classic.git/panda/include/lmatrix3_src.I

1368 lines
37 KiB
Text
Raw Normal View History

2024-01-16 17:20:27 +00:00
/**
* PANDA 3D SOFTWARE
* Copyright (c) Carnegie Mellon University. All rights reserved.
*
* All use of this software is subject to the terms of the revised BSD
* license. You should have received a copy of this license along
* with this source code in a file named "LICENSE."
*
* @file lmatrix3_src.I
* @author drose
* @date 1999-01-29
*/
/**
* Defines a row-level index accessor to the matrix.
*/
INLINE_LINMATH FLOATNAME(LMatrix3)::Row::
Row(FLOATTYPE *row) : _row(row) {
}
/**
*
*/
INLINE_LINMATH FLOATTYPE FLOATNAME(LMatrix3)::Row::
operator [](int i) const {
nassertr(i >= 0 && i < 3, 0.0);
return _row[i];
}
/**
*
*/
INLINE_LINMATH FLOATTYPE &FLOATNAME(LMatrix3)::Row::
operator [](int i) {
nassertr(i >= 0 && i < 3, _row[0]);
return _row[i];
}
/**
* Returns 3: the number of columns of a LMatrix3.
*/
INLINE_LINMATH int FLOATNAME(LMatrix3)::Row::
size() {
return 3;
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LMatrix3)::Row::
operator const FLOATNAME(LVecBase3) &() const {
return *(const FLOATNAME(LVecBase3) *)_row;
}
/**
* Defines a row-level constant accessor to the matrix.
*/
INLINE_LINMATH FLOATNAME(LMatrix3)::CRow::
CRow(const FLOATTYPE *row) : _row(row) {
}
/**
*
*/
INLINE_LINMATH FLOATTYPE FLOATNAME(LMatrix3)::CRow::
operator [](int i) const {
nassertr(i >= 0 && i < 3, 0.0);
return _row[i];
}
/**
* Returns 3: the number of columns of a LMatrix3.
*/
INLINE_LINMATH int FLOATNAME(LMatrix3)::CRow::
size() {
return 3;
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LMatrix3)::CRow::
operator const FLOATNAME(LVecBase3) &() const {
return *(const FLOATNAME(LVecBase3) *)_row;
}
/**
* Returns an identity matrix.
*
* This function definition must appear first, since some inline functions
* below take advantage of it.
*/
INLINE_LINMATH const FLOATNAME(LMatrix3) &FLOATNAME(LMatrix3)::
ident_mat() {
return _ident_mat;
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LMatrix3)::
FLOATNAME(LMatrix3)() {
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LMatrix3)::
FLOATNAME(LMatrix3)(const FLOATNAME(LMatrix3) &copy) : _m(copy._m) {
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LMatrix3) &FLOATNAME(LMatrix3)::
operator = (const FLOATNAME(LMatrix3) &copy) {
TAU_PROFILE("void LMatrix3::operator = (const LMatrix3 &)", " ", TAU_USER);
_m = copy._m;
return *this;
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LMatrix3) &FLOATNAME(LMatrix3)::
operator = (FLOATTYPE fill_value) {
fill(fill_value);
return *this;
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LMatrix3)::
FLOATNAME(LMatrix3)(FLOATTYPE e00, FLOATTYPE e01, FLOATTYPE e02,
FLOATTYPE e10, FLOATTYPE e11, FLOATTYPE e12,
FLOATTYPE e20, FLOATTYPE e21, FLOATTYPE e22) {
TAU_PROFILE("LMatrix3::LMatrix3(FLOATTYPE, ...)", " ", TAU_USER);
_m(0, 0) = e00;
_m(0, 1) = e01;
_m(0, 2) = e02;
_m(1, 0) = e10;
_m(1, 1) = e11;
_m(1, 2) = e12;
_m(2, 0) = e20;
_m(2, 1) = e21;
_m(2, 2) = e22;
}
/**
* Constructs the matrix from three individual rows.
*/
INLINE_LINMATH FLOATNAME(LMatrix3)::
FLOATNAME(LMatrix3)(const FLOATNAME(LVecBase3) &row0,
const FLOATNAME(LVecBase3) &row1,
const FLOATNAME(LVecBase3) &row2) {
TAU_PROFILE("LMatrix3::LMatrix3(const LVecBase3 &, ...)", " ", TAU_USER);
#ifdef HAVE_EIGEN
_m.row(0) = row0._v;
_m.row(1) = row1._v;
_m.row(2) = row2._v;
#else
_m(0, 0) = row0._v(0);
_m(0, 1) = row0._v(1);
_m(0, 2) = row0._v(2);
_m(1, 0) = row1._v(0);
_m(1, 1) = row1._v(1);
_m(1, 2) = row1._v(2);
_m(2, 0) = row2._v(0);
_m(2, 1) = row2._v(1);
_m(2, 2) = row2._v(2);
#endif // HAVE_EIGEN
}
/**
*
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
set(FLOATTYPE e00, FLOATTYPE e01, FLOATTYPE e02,
FLOATTYPE e10, FLOATTYPE e11, FLOATTYPE e12,
FLOATTYPE e20, FLOATTYPE e21, FLOATTYPE e22) {
TAU_PROFILE("void LMatrix3::set(FLOATTYPE, ...)", " ", TAU_USER);
_m(0, 0) = e00;
_m(0, 1) = e01;
_m(0, 2) = e02;
_m(1, 0) = e10;
_m(1, 1) = e11;
_m(1, 2) = e12;
_m(2, 0) = e20;
_m(2, 1) = e21;
_m(2, 2) = e22;
}
/**
* Replaces the indicated row of the matrix from a three-component vector.
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
set_row(int row, const FLOATNAME(LVecBase3) &v) {
#ifdef HAVE_EIGEN
_m.row(row) = v._v;
#else
(*this)(row, 0) = v._v(0);
(*this)(row, 1) = v._v(1);
(*this)(row, 2) = v._v(2);
#endif // HAVE_EIGEN
}
/**
* Replaces the indicated column of the matrix from a three-component vector.
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
set_col(int col, const FLOATNAME(LVecBase3) &v) {
#ifdef HAVE_EIGEN
_m.col(col) = v._v;
#else
(*this)(0, col) = v._v(0);
(*this)(1, col) = v._v(1);
(*this)(2, col) = v._v(2);
#endif // HAVE_EIGEN
}
/**
* Replaces the indicated row of the matrix from a two-component vector,
* ignoring the last column.
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
set_row(int row, const FLOATNAME(LVecBase2) &v) {
#ifdef HAVE_EIGEN
_m.block<1, 2>(row, 0) = v._v;
#else
(*this)(row, 0) = v._v(0);
(*this)(row, 1) = v._v(1);
#endif // HAVE_EIGEN
}
/**
* Replaces the indicated column of the matrix from a two-component vector,
* ignoring the last row.
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
set_col(int col, const FLOATNAME(LVecBase2) &v) {
#ifdef HAVE_EIGEN
_m.block<2, 1>(0, col) = v._v;
#else
(*this)(0, col) = v._v(0);
(*this)(1, col) = v._v(1);
#endif // HAVE_EIGEN
}
/**
* Returns the indicated row of the matrix as a three-component vector.
*/
INLINE_LINMATH FLOATNAME(LVecBase3) FLOATNAME(LMatrix3)::
get_row(int row) const {
#ifdef HAVE_EIGEN
return FLOATNAME(LVecBase3)(_m.row(row));
#else
return FLOATNAME(LVecBase3)((*this)(row, 0), (*this)(row, 1), (*this)(row, 2));
#endif // HAVE_EIGEN
}
/**
* Stores the indicated row of the matrix as a three-component vector.
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
get_row(FLOATNAME(LVecBase3) &result_vec,int row) const {
#ifdef HAVE_EIGEN
result_vec._v = _m.row(row);
#else
result_vec._v(0) = (*this)(row, 0);
result_vec._v(1) = (*this)(row, 1);
result_vec._v(2) = (*this)(row, 2);
#endif // HAVE_EIGEN
}
/**
* Returns the indicated column of the matrix as a three-component vector.
*/
INLINE_LINMATH FLOATNAME(LVecBase3) FLOATNAME(LMatrix3)::
get_col(int col) const {
#ifdef HAVE_EIGEN
return FLOATNAME(LVecBase3)(_m.col(col));
#else
return FLOATNAME(LVecBase3)((*this)(0, col), (*this)(1, col), (*this)(2, col));
#endif // HAVE_EIGEN
}
/**
* Returns the indicated row of the matrix as a two-component vector, ignoring
* the last column.
*/
INLINE_LINMATH FLOATNAME(LVecBase2) FLOATNAME(LMatrix3)::
get_row2(int row) const {
return FLOATNAME(LVecBase2)((*this)(row, 0), (*this)(row, 1));
}
/**
* Returns the indicated column of the matrix as a two-component vector,
* ignoring the last row.
*/
INLINE_LINMATH FLOATNAME(LVecBase2) FLOATNAME(LMatrix3)::
get_col2(int col) const {
return FLOATNAME(LVecBase2)((*this)(0, col), (*this)(1, col));
}
/**
*
*/
INLINE_LINMATH FLOATTYPE &FLOATNAME(LMatrix3)::
operator () (int row, int col) {
nassertr(row >= 0 && row < 3 && col >= 0 && col < 3, _m(0, 0));
return _m(row, col);
}
/**
*
*/
INLINE_LINMATH FLOATTYPE FLOATNAME(LMatrix3)::
operator () (int row, int col) const {
nassertr(row >= 0 && row < 3 && col >= 0 && col < 3, 0.0);
return _m(row, col);
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LMatrix3)::CRow FLOATNAME(LMatrix3)::
operator [](int i) const {
nassertr(i >= 0 && i < 3, CRow(&_m(0, 0)));
return CRow(&_m(i, 0));
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LMatrix3)::Row FLOATNAME(LMatrix3)::
operator [](int i) {
nassertr(i >= 0 && i < 3, Row(&_m(0, 0)));
return Row(&_m(i, 0));
}
/**
* Returns 3: the number of rows of a LMatrix3.
*/
INLINE_LINMATH int FLOATNAME(LMatrix3)::
size() {
return 3;
}
/**
* Returns true if any component of the matrix is not-a-number, false
* otherwise.
*/
INLINE_LINMATH bool FLOATNAME(LMatrix3)::
is_nan() const {
TAU_PROFILE("bool LMatrix3::is_nan()", " ", TAU_USER);
return
cnan(_m(0, 0)) || cnan(_m(0, 1)) || cnan(_m(0, 2)) ||
cnan(_m(1, 0)) || cnan(_m(1, 1)) || cnan(_m(1, 2)) ||
cnan(_m(2, 0)) || cnan(_m(2, 1)) || cnan(_m(2, 2));
}
/**
* Returns true if this is (close enough to) the identity matrix, false
* otherwise.
*/
INLINE_LINMATH bool FLOATNAME(LMatrix3)::
is_identity() const {
return almost_equal(ident_mat(), NEARLY_ZERO(FLOATTYPE));
}
/**
* Returns a particular element of the matrix.
*/
INLINE_LINMATH FLOATTYPE FLOATNAME(LMatrix3)::
get_cell(int row, int col) const {
nassertr(row >= 0 && row < 3 && col >= 0 && col < 3, 0.0);
return _m(row, col);
}
/**
* Changes a particular element of the matrix.
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
set_cell(int row, int col, FLOATTYPE value) {
nassertv(row >= 0 && row < 3 && col >= 0 && col < 3);
_m(row, col) = value;
}
/**
* Returns the address of the first of the nine data elements in the matrix.
* The remaining elements occupy the next eight positions in row-major order.
*/
INLINE_LINMATH const FLOATTYPE *FLOATNAME(LMatrix3)::
get_data() const {
return &_m(0, 0);
}
/**
* Returns the number of elements in the matrix, nine.
*/
INLINE_LINMATH int FLOATNAME(LMatrix3)::
get_num_components() const {
return 9;
}
/**
* Returns an iterator that may be used to traverse the elements of the
* matrix, STL-style.
*/
INLINE_LINMATH FLOATNAME(LMatrix3)::iterator FLOATNAME(LMatrix3)::
begin() {
return &_m(0, 0);
}
/**
* Returns an iterator that may be used to traverse the elements of the
* matrix, STL-style.
*/
INLINE_LINMATH FLOATNAME(LMatrix3)::iterator FLOATNAME(LMatrix3)::
end() {
return begin() + num_components;
}
/**
* Returns an iterator that may be used to traverse the elements of the
* matrix, STL-style.
*/
INLINE_LINMATH FLOATNAME(LMatrix3)::const_iterator FLOATNAME(LMatrix3)::
begin() const {
return &_m(0, 0);
}
/**
* Returns an iterator that may be used to traverse the elements of the
* matrix, STL-style.
*/
INLINE_LINMATH FLOATNAME(LMatrix3)::const_iterator FLOATNAME(LMatrix3)::
end() const {
return begin() + num_components;
}
/**
* This performs a lexicographical comparison. It's of questionable
* mathematical meaning, but sometimes has a practical purpose for sorting
* unique vectors, especially in an STL container. Also see compare_to().
*/
INLINE_LINMATH bool FLOATNAME(LMatrix3)::
operator < (const FLOATNAME(LMatrix3) &other) const {
return compare_to(other) < 0;
}
/**
*
*/
INLINE_LINMATH bool FLOATNAME(LMatrix3)::
operator == (const FLOATNAME(LMatrix3) &other) const {
return compare_to(other) == 0;
}
/**
*
*/
INLINE_LINMATH bool FLOATNAME(LMatrix3)::
operator != (const FLOATNAME(LMatrix3) &other) const {
return compare_to(other) != 0;
}
/**
* This flavor of compare_to uses a default threshold value based on the
* numeric type.
*/
INLINE_LINMATH int FLOATNAME(LMatrix3)::
compare_to(const FLOATNAME(LMatrix3) &other) const {
return compare_to(other, NEARLY_ZERO(FLOATTYPE));
}
/**
* Returns a suitable hash for phash_map.
*/
INLINE_LINMATH size_t FLOATNAME(LMatrix3)::
get_hash() const {
return add_hash(0);
}
/**
* Returns a suitable hash for phash_map.
*/
INLINE_LINMATH size_t FLOATNAME(LMatrix3)::
get_hash(FLOATTYPE threshold) const {
return add_hash(0, threshold);
}
/**
* Adds the vector into the running hash.
*/
INLINE_LINMATH size_t FLOATNAME(LMatrix3)::
add_hash(size_t hash) const {
return add_hash(hash, NEARLY_ZERO(FLOATTYPE));
}
/**
* Adds the vector into the running hash.
*/
INLINE_LINMATH size_t FLOATNAME(LMatrix3)::
add_hash(size_t hash, FLOATTYPE threshold) const {
TAU_PROFILE("size_t LMatrix3::add_hash(size_t, FLOATTYPE)", " ", TAU_USER);
float_hash fhasher(threshold);
hash = fhasher.add_hash(hash, _m(0, 0));
hash = fhasher.add_hash(hash, _m(0, 1));
hash = fhasher.add_hash(hash, _m(0, 2));
hash = fhasher.add_hash(hash, _m(1, 0));
hash = fhasher.add_hash(hash, _m(1, 1));
hash = fhasher.add_hash(hash, _m(1, 2));
hash = fhasher.add_hash(hash, _m(2, 0));
hash = fhasher.add_hash(hash, _m(2, 1));
hash = fhasher.add_hash(hash, _m(2, 2));
return hash;
}
#define VECTOR3_MATRIX3_PRODUCT(v_res, v, mat) \
v_res._v(0) = v._v(0)*mat._m(0, 0) + v._v(1)*mat._m(1, 0) + v._v(2)*mat._m(2, 0); \
v_res._v(1) = v._v(0)*mat._m(0, 1) + v._v(1)*mat._m(1, 1) + v._v(2)*mat._m(2, 1); \
v_res._v(2) = v._v(0)*mat._m(0, 2) + v._v(1)*mat._m(1, 2) + v._v(2)*mat._m(2, 2);
/**
* 3-component vector or point times matrix.
*/
INLINE_LINMATH FLOATNAME(LVecBase3) FLOATNAME(LMatrix3)::
xform(const FLOATNAME(LVecBase3) &v) const {
TAU_PROFILE("LVecBase3 LMatrix3::xform(const LVecBase3 &)", " ", TAU_USER);
FLOATNAME(LVecBase3) v_res;
#ifdef HAVE_EIGEN
v_res._v.noalias() = v._v * _m;
#else
VECTOR3_MATRIX3_PRODUCT(v_res, v,(*this));
#endif // HAVE_EIGEN
return v_res;
}
#undef VECTOR3_MATRIX3_PRODUCT
/**
* The matrix transforms a 2-component point (including translation component)
* and returns the result. This assumes the matrix is an affine transform.
*/
INLINE_LINMATH FLOATNAME(LVecBase2) FLOATNAME(LMatrix3)::
xform_point(const FLOATNAME(LVecBase2) &v) const {
TAU_PROFILE("LVecBase3 LMatrix3::xform_point(const LVecBase3 &)", " ", TAU_USER);
FLOATNAME(LVecBase2) v_res;
// v._v(2) == 1.0f for this case
#ifdef HAVE_EIGEN
v_res._v.noalias() = v._v * _m.block<2, 2>(0, 0) + _m.block<1, 2>(2, 0);
#else
v_res._v(0) = v._v(0)*_m(0, 0) + v._v(1)*_m(1, 0) + _m(2, 0);
v_res._v(1) = v._v(0)*_m(0, 1) + v._v(1)*_m(1, 1) + _m(2, 1);
#endif // HAVE_EIGEN
return v_res;
}
/**
* The matrix transforms a 2-component vector (without translation component)
* and returns the result. This assumes the matrix is an affine transform.
*/
INLINE_LINMATH FLOATNAME(LVecBase2) FLOATNAME(LMatrix3)::
xform_vec(const FLOATNAME(LVecBase2) &v) const {
TAU_PROFILE("LVecBase3 LMatrix3::xform_vec(const LVecBase3 &)", " ", TAU_USER);
FLOATNAME(LVecBase2) v_res;
// v._v(2) == 0.0f for this case
#ifdef HAVE_EIGEN
v_res._v.noalias() = v._v * _m.block<2, 2>(0, 0);
#else
v_res._v(0) = v._v(0)*_m(0, 0) + v._v(1)*_m(1, 0);
v_res._v(1) = v._v(0)*_m(0, 1) + v._v(1)*_m(1, 1);
#endif // HAVE_EIGEN
return v_res;
}
/**
* The matrix transforms a 3-component vector and returns the result. This
* assumes the matrix is an orthonormal transform.
*
* In practice, this is the same computation as xform().
*/
INLINE_LINMATH FLOATNAME(LVecBase3) FLOATNAME(LMatrix3)::
xform_vec(const FLOATNAME(LVecBase3) &v) const {
TAU_PROFILE("LVecBase3 LMatrix3::xform_vec(const LVecBase3 &)", " ", TAU_USER);
return xform(v);
}
/**
* The matrix transforms a 3-component vector (without translation component)
* and returns the result, as a fully general operation.
*/
INLINE_LINMATH FLOATNAME(LVecBase3) FLOATNAME(LMatrix3)::
xform_vec_general(const FLOATNAME(LVecBase3) &v) const {
TAU_PROFILE("LVecBase3 LMatrix3::xform_vec_general(const LVecBase3 &)", " ", TAU_USER);
#ifdef HAVE_EIGEN
return FLOATNAME(LVecBase3)(v._v * _m.inverse().transpose());
#else
FLOATNAME(LMatrix3) i;
i.invert_transpose_from(*this);
return i.xform(v);
#endif // HAVE_EIGEN
}
/**
* 3-component vector or point times matrix.
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
xform_in_place(FLOATNAME(LVecBase3) &v) const {
TAU_PROFILE("void LMatrix3::xform_in_place(LVecBase3 &)", " ", TAU_USER);
#ifdef HAVE_EIGEN
v._v = v._v * _m;
#else
v = xform(v);
#endif // HAVE_EIGEN
}
/**
* The matrix transforms a 2-component point (including translation
* component). This assumes the matrix is an affine transform.
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
xform_point_in_place(FLOATNAME(LVecBase2) &v) const {
TAU_PROFILE("void LMatrix3::xform_point_in_place(LVecBase3 &)", " ", TAU_USER);
// v._v(2) == 1.0f for this case
#ifdef HAVE_EIGEN
v._v = v._v * _m.block<2, 2>(0, 0) + _m.block<1, 2>(2, 0);
#else
v = xform_point(v);
#endif // HAVE_EIGEN
}
/**
* The matrix transforms a 2-component vector (without translation component).
* This assumes the matrix is an affine transform.
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
xform_vec_in_place(FLOATNAME(LVecBase2) &v) const {
TAU_PROFILE("void LMatrix3::xform_vec_in_place(LVecBase3 &)", " ", TAU_USER);
// v._v(2) == 0.0f for this case
#ifdef HAVE_EIGEN
v._v = v._v * _m.block<2, 2>(0, 0);
#else
v = xform_vec(v);
#endif // HAVE_EIGEN
}
/**
* The matrix transforms a 3-component vector. This assumes the matrix is an
* orthonormal transform.
*
* In practice, this is the same computation as xform().
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
xform_vec_in_place(FLOATNAME(LVecBase3) &v) const {
TAU_PROFILE("void LMatrix3::xform_vec_in_place(LVecBase3 &)", " ", TAU_USER);
xform_in_place(v);
}
/**
* The matrix transforms a 3-component vector (without translation component),
* as a fully general operation.
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
xform_vec_general_in_place(FLOATNAME(LVecBase3) &v) const {
TAU_PROFILE("void LMatrix3::xform_vec_general_in_place(LVecBase3 &)", " ", TAU_USER);
#ifdef HAVE_EIGEN
v._v = v._v * _m.inverse().transpose();
#else
v = xform_vec(v);
#endif // HAVE_EIGEN
}
#define MATRIX3_PRODUCT(res, a, b) \
res._m(0, 0) = a._m(0, 0)*b._m(0, 0) + a._m(0, 1)*b._m(1, 0) + a._m(0, 2)*b._m(2, 0); \
res._m(0, 1) = a._m(0, 0)*b._m(0, 1) + a._m(0, 1)*b._m(1, 1) + a._m(0, 2)*b._m(2, 1); \
res._m(0, 2) = a._m(0, 0)*b._m(0, 2) + a._m(0, 1)*b._m(1, 2) + a._m(0, 2)*b._m(2, 2); \
res._m(1, 0) = a._m(1, 0)*b._m(0, 0) + a._m(1, 1)*b._m(1, 0) + a._m(1, 2)*b._m(2, 0); \
res._m(1, 1) = a._m(1, 0)*b._m(0, 1) + a._m(1, 1)*b._m(1, 1) + a._m(1, 2)*b._m(2, 1); \
res._m(1, 2) = a._m(1, 0)*b._m(0, 2) + a._m(1, 1)*b._m(1, 2) + a._m(1, 2)*b._m(2, 2); \
res._m(2, 0) = a._m(2, 0)*b._m(0, 0) + a._m(2, 1)*b._m(1, 0) + a._m(2, 2)*b._m(2, 0); \
res._m(2, 1) = a._m(2, 0)*b._m(0, 1) + a._m(2, 1)*b._m(1, 1) + a._m(2, 2)*b._m(2, 1); \
res._m(2, 2) = a._m(2, 0)*b._m(0, 2) + a._m(2, 1)*b._m(1, 2) + a._m(2, 2)*b._m(2, 2);
/**
*
*/
INLINE_LINMATH FLOATNAME(LMatrix3) FLOATNAME(LMatrix3)::
operator * (const FLOATNAME(LMatrix3) &other) const {
TAU_PROFILE("LMatrix3 LMatrix3::operator *(const LMatrix3 &)", " ", TAU_USER);
FLOATNAME(LMatrix3) t;
t.multiply(*this, other);
return t;
}
// this = other1 * other2
INLINE_LINMATH void FLOATNAME(LMatrix3)::
multiply(const FLOATNAME(LMatrix3) &other1, const FLOATNAME(LMatrix3) &other2) {
TAU_PROFILE("LMatrix3 multiply(const LMatrix3 &, const LMatrix3 &)", " ", TAU_USER);
// faster than operator * since it writes result in place, avoiding extra
// copying this will fail if you try to mat.multiply(mat,other_mat)
nassertv((&other1 != this) && (&other2 != this));
MATRIX3_PRODUCT((*this), other1, other2);
}
#undef MATRIX3_PRODUCT
/**
*
*/
INLINE_LINMATH FLOATNAME(LMatrix3) FLOATNAME(LMatrix3)::
operator * (FLOATTYPE scalar) const {
TAU_PROFILE("LMatrix3 operator *(const LMatrix3 &, FLOATTYPE)", " ", TAU_USER);
FLOATNAME(LMatrix3) t;
t._m(0, 0) = _m(0, 0) * scalar;
t._m(0, 1) = _m(0, 1) * scalar;
t._m(0, 2) = _m(0, 2) * scalar;
t._m(1, 0) = _m(1, 0) * scalar;
t._m(1, 1) = _m(1, 1) * scalar;
t._m(1, 2) = _m(1, 2) * scalar;
t._m(2, 0) = _m(2, 0) * scalar;
t._m(2, 1) = _m(2, 1) * scalar;
t._m(2, 2) = _m(2, 2) * scalar;
return t;
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LMatrix3) FLOATNAME(LMatrix3)::
operator / (FLOATTYPE scalar) const {
FLOATTYPE recip_scalar = 1.0f/scalar;
return (*this) * recip_scalar;
}
/**
* Performs a memberwise addition between two matrices.
*/
INLINE_LINMATH FLOATNAME(LMatrix3) &FLOATNAME(LMatrix3)::
operator += (const FLOATNAME(LMatrix3) &other) {
TAU_PROFILE("LMatrix3 LMatrix3::operator +=(const LMatrix3 &)", " ", TAU_USER);
_m(0, 0) += other._m(0, 0);
_m(0, 1) += other._m(0, 1);
_m(0, 2) += other._m(0, 2);
_m(1, 0) += other._m(1, 0);
_m(1, 1) += other._m(1, 1);
_m(1, 2) += other._m(1, 2);
_m(2, 0) += other._m(2, 0);
_m(2, 1) += other._m(2, 1);
_m(2, 2) += other._m(2, 2);
return *this;
}
/**
* Performs a memberwise subtraction between two matrices.
*/
INLINE_LINMATH FLOATNAME(LMatrix3) &FLOATNAME(LMatrix3)::
operator -= (const FLOATNAME(LMatrix3) &other) {
TAU_PROFILE("LMatrix3 LMatrix3::operator -=(const LMatrix3 &)", " ", TAU_USER);
_m(0, 0) -= other._m(0, 0);
_m(0, 1) -= other._m(0, 1);
_m(0, 2) -= other._m(0, 2);
_m(1, 0) -= other._m(1, 0);
_m(1, 1) -= other._m(1, 1);
_m(1, 2) -= other._m(1, 2);
_m(2, 0) -= other._m(2, 0);
_m(2, 1) -= other._m(2, 1);
_m(2, 2) -= other._m(2, 2);
return *this;
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LMatrix3) &FLOATNAME(LMatrix3)::
operator *= (const FLOATNAME(LMatrix3) &other) {
TAU_PROFILE("LMatrix3 LMatrix3::operator *=(const LMatrix3 &)", " ", TAU_USER);
FLOATNAME(LMatrix3) temp = *this;
multiply(temp, other);
return *this;
}
/**
* Performs a memberwise scale.
*/
INLINE_LINMATH FLOATNAME(LMatrix3) &FLOATNAME(LMatrix3)::
operator *= (FLOATTYPE scalar) {
TAU_PROFILE("LMatrix3 LMatrix3::operator *=(FLOATTYPE)", " ", TAU_USER);
_m(0, 0) *= scalar;
_m(0, 1) *= scalar;
_m(0, 2) *= scalar;
_m(1, 0) *= scalar;
_m(1, 1) *= scalar;
_m(1, 2) *= scalar;
_m(2, 0) *= scalar;
_m(2, 1) *= scalar;
_m(2, 2) *= scalar;
return *this;
}
/**
* Performs a memberwise scale.
*/
INLINE_LINMATH FLOATNAME(LMatrix3) &FLOATNAME(LMatrix3)::
operator /= (FLOATTYPE scalar) {
TAU_PROFILE("LMatrix3 LMatrix3::operator /=(FLOATTYPE)", " ", TAU_USER);
FLOATTYPE recip_scalar = 1.0f/scalar;
_m(0, 0) *= recip_scalar;
_m(0, 1) *= recip_scalar;
_m(0, 2) *= recip_scalar;
_m(1, 0) *= recip_scalar;
_m(1, 1) *= recip_scalar;
_m(1, 2) *= recip_scalar;
_m(2, 0) *= recip_scalar;
_m(2, 1) *= recip_scalar;
_m(2, 2) *= recip_scalar;
return *this;
}
/**
*
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
componentwise_mult(const FLOATNAME(LMatrix3) &other) {
#ifdef HAVE_EIGEN
_m = _m.cwiseProduct(other._m);
#else
_m(0, 0) *= other._m(0, 0);
_m(0, 1) *= other._m(0, 1);
_m(0, 2) *= other._m(0, 2);
_m(1, 0) *= other._m(1, 0);
_m(1, 1) *= other._m(1, 1);
_m(1, 2) *= other._m(1, 2);
_m(2, 0) *= other._m(2, 0);
_m(2, 1) *= other._m(2, 1);
_m(2, 2) *= other._m(2, 2);
#endif // HAVE_EIGEN
}
/**
*
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
transpose_from(const FLOATNAME(LMatrix3) &other) {
TAU_PROFILE("LMatrix3 LMatrix3::transpose_from(const LMatrix3 &other)", " ", TAU_USER);
_m(0, 0) = other._m(0, 0);
_m(0, 1) = other._m(1, 0);
_m(0, 2) = other._m(2, 0);
_m(1, 0) = other._m(0, 1);
_m(1, 1) = other._m(1, 1);
_m(1, 2) = other._m(2, 1);
_m(2, 0) = other._m(0, 2);
_m(2, 1) = other._m(1, 2);
_m(2, 2) = other._m(2, 2);
}
/**
*
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
transpose_in_place() {
TAU_PROFILE("void LMatrix3::transpose_in_place()", " ", TAU_USER);
std::swap(_m(0, 1), _m(1, 0));
std::swap(_m(0, 2), _m(2, 0));
std::swap(_m(1, 2), _m(2, 1));
}
// Matrix inversion code from Numerical Recipes in C.
// don't trust compilers to inline these
#define DET2(E00,E01,E10,E11) ((E00)*(E11) - (E10)*(E01))
#define MATRIX3_DETERMINANT(mat) \
( (mat)(0, 0) * DET2((mat)(1, 1),(mat)(1, 2),(mat)(2, 1),(mat)(2, 2)) \
-(mat)(0, 1) * DET2((mat)(1, 0),(mat)(1, 2),(mat)(2, 0),(mat)(2, 2)) \
+(mat)(0, 2) * DET2((mat)(1, 0),(mat)(1, 1),(mat)(2, 0),(mat)(2, 1)))
/**
* Returns the determinant of the matrix.
*/
INLINE_LINMATH FLOATTYPE FLOATNAME(LMatrix3)::
determinant() const {
TAU_PROFILE("FLOATTYPE LMatrix3::determinant()", " ", TAU_USER);
#ifdef HAVE_EIGEN
return _m.determinant();
#else
return MATRIX3_DETERMINANT(_m);
#endif // HAVE_EIGEN
}
/**
* Computes the inverse of the other matrix, and stores the result in this
* matrix. This is a fully general operation and makes no assumptions about
* the type of transform represented by the matrix.
*
* The other matrix must be a different object than this matrix. However, if
* you need to invert a matrix in place, see invert_in_place.
*
* The return value is true if the matrix was successfully inverted, false if
* there was a singularity.
*/
INLINE_LINMATH bool FLOATNAME(LMatrix3)::
invert_from(const FLOATNAME(LMatrix3) &other) {
TAU_PROFILE("bool LMatrix3::invert_from(const LMatrix3 &)", " ", TAU_USER);
// We throw the value out only if it's smaller than our "small" threshold
// squared. This helps reduce overly-sensitive rejections.
#ifdef HAVE_EIGEN
bool invertible;
other._m.computeInverseWithCheck(_m, invertible,
NEARLY_ZERO(FLOATTYPE) * NEARLY_ZERO(FLOATTYPE));
if (!invertible) {
#ifdef NOTIFY_DEBUG
linmath_cat.warning() << "Tried to invert singular LMatrix3.\n";
#endif
(*this) = ident_mat();
nassertr(!no_singular_invert, false);
}
return invertible;
#else // HAVE_EIGEN
FLOATTYPE other_det = MATRIX3_DETERMINANT(other._m);
if (IS_THRESHOLD_ZERO(other_det, (NEARLY_ZERO(FLOATTYPE) * NEARLY_ZERO(FLOATTYPE)))) {
#ifdef NOTIFY_DEBUG
linmath_cat.warning() << "Tried to invert singular LMatrix3.\n";
#endif
(*this) = ident_mat();
nassertr(!no_singular_invert, false);
return false;
}
other_det = 1.0f / other_det;
_m(0, 0) = other_det * DET2(other._m(1, 1), other._m(1, 2), other._m(2, 1), other._m(2, 2));
_m(1, 0) = -other_det * DET2(other._m(1, 0), other._m(1, 2), other._m(2, 0), other._m(2, 2));
_m(2, 0) = other_det * DET2(other._m(1, 0), other._m(1, 1), other._m(2, 0), other._m(2, 1));
_m(0, 1) = -other_det * DET2(other._m(0, 1), other._m(0, 2), other._m(2, 1), other._m(2, 2));
_m(1, 1) = other_det * DET2(other._m(0, 0), other._m(0, 2), other._m(2, 0), other._m(2, 2));
_m(2, 1) = -other_det * DET2(other._m(0, 0), other._m(0, 1), other._m(2, 0), other._m(2, 1));
_m(0, 2) = other_det * DET2(other._m(0, 1), other._m(0, 2), other._m(1, 1), other._m(1, 2));
_m(1, 2) = -other_det * DET2(other._m(0, 0), other._m(0, 2), other._m(1, 0), other._m(1, 2));
_m(2, 2) = other_det * DET2(other._m(0, 0), other._m(0, 1), other._m(1, 0), other._m(1, 1));
return true;
#endif // HAVE_EIGEN
}
/**
* Inverts the current matrix. Returns true if the inverse is successful,
* false if the matrix was singular.
*/
INLINE_LINMATH bool FLOATNAME(LMatrix3)::
invert_in_place() {
TAU_PROFILE("bool LMatrix3::invert_in_place()", " ", TAU_USER);
FLOATNAME(LMatrix3) temp = (*this);
return invert_from(temp);
}
/**
* Simultaneously computes the inverse of the indicated matrix, and then the
* transpose of that inverse.
*/
INLINE_LINMATH bool FLOATNAME(LMatrix3)::
invert_transpose_from(const FLOATNAME(LMatrix3) &other) {
TAU_PROFILE("bool LMatrix3::invert_transpose_from(const LMatrix3 &)", " ", TAU_USER);
#ifdef HAVE_EIGEN
bool invertible;
EMatrix3 temp;
other._m.computeInverseWithCheck(temp, invertible,
NEARLY_ZERO(FLOATTYPE) * NEARLY_ZERO(FLOATTYPE));
if (!invertible) {
#ifdef NOTIFY_DEBUG
linmath_cat.warning() << "Tried to invert singular LMatrix3.\n";
#endif
(*this) = ident_mat();
nassertr(!no_singular_invert, false);
}
_m = temp.transpose();
return true;
#else // HAVE_EIGEN
FLOATTYPE other_det = MATRIX3_DETERMINANT(other._m);
if (IS_THRESHOLD_ZERO(other_det, (NEARLY_ZERO(FLOATTYPE) * NEARLY_ZERO(FLOATTYPE)))) {
#ifdef NOTIFY_DEBUG
linmath_cat.warning() << "Tried to invert singular LMatrix3.\n";
#endif
(*this) = ident_mat();
nassertr(!no_singular_invert, false);
return false;
}
other_det = 1.0f / other_det;
_m(0, 0) = other_det * DET2(other._m(1, 1), other._m(1, 2), other._m(2, 1), other._m(2, 2));
_m(0, 1) = -other_det * DET2(other._m(1, 0), other._m(1, 2), other._m(2, 0), other._m(2, 2));
_m(0, 2) = other_det * DET2(other._m(1, 0), other._m(1, 1), other._m(2, 0), other._m(2, 1));
_m(1, 0) = -other_det * DET2(other._m(0, 1), other._m(0, 2), other._m(2, 1), other._m(2, 2));
_m(1, 1) = other_det * DET2(other._m(0, 0), other._m(0, 2), other._m(2, 0), other._m(2, 2));
_m(1, 2) = -other_det * DET2(other._m(0, 0), other._m(0, 1), other._m(2, 0), other._m(2, 1));
_m(2, 0) = other_det * DET2(other._m(0, 1), other._m(0, 2), other._m(1, 1), other._m(1, 2));
_m(2, 1) = -other_det * DET2(other._m(0, 0), other._m(0, 2), other._m(1, 0), other._m(1, 2));
_m(2, 2) = other_det * DET2(other._m(0, 0), other._m(0, 1), other._m(1, 0), other._m(1, 1));
return true;
#endif // HAVE_EIGEN
}
/**
* Simultaneously computes the inverse of the indicated matrix, and then the
* transpose of that inverse.
*/
INLINE_LINMATH bool FLOATNAME(LMatrix3)::
invert_transpose_from(const FLOATNAME(LMatrix4) &other) {
TAU_PROFILE("bool LMatrix3::invert_transpose_from(const LMatrix4 &)", " ", TAU_USER);
#ifdef HAVE_EIGEN
bool invertible;
EMatrix3 temp;
other._m.block<3, 3>(0, 0).computeInverseWithCheck(temp, invertible,
NEARLY_ZERO(FLOATTYPE) * NEARLY_ZERO(FLOATTYPE));
if (!invertible) {
#ifdef NOTIFY_DEBUG
linmath_cat.warning() << "Tried to invert singular LMatrix3.\n";
#endif
(*this) = ident_mat();
nassertr(!no_singular_invert, false);
}
_m = temp.transpose();
return true;
#else // HAVE_EIGEN
FLOATTYPE other_det = MATRIX3_DETERMINANT(other._m);
if (IS_THRESHOLD_ZERO(other_det, (NEARLY_ZERO(FLOATTYPE) * NEARLY_ZERO(FLOATTYPE)))) {
#ifdef NOTIFY_DEBUG
linmath_cat.warning() << "Tried to invert singular LMatrix4.\n";
#endif
(*this) = ident_mat();
nassertr(!no_singular_invert, false);
return false;
}
other_det = 1.0f / other_det;
_m(0, 0) = other_det * DET2(other._m(1, 1), other._m(1, 2), other._m(2, 1), other._m(2, 2));
_m(0, 1) = -other_det * DET2(other._m(1, 0), other._m(1, 2), other._m(2, 0), other._m(2, 2));
_m(0, 2) = other_det * DET2(other._m(1, 0), other._m(1, 1), other._m(2, 0), other._m(2, 1));
_m(1, 0) = -other_det * DET2(other._m(0, 1), other._m(0, 2), other._m(2, 1), other._m(2, 2));
_m(1, 1) = other_det * DET2(other._m(0, 0), other._m(0, 2), other._m(2, 0), other._m(2, 2));
_m(1, 2) = -other_det * DET2(other._m(0, 0), other._m(0, 1), other._m(2, 0), other._m(2, 1));
_m(2, 0) = other_det * DET2(other._m(0, 1), other._m(0, 2), other._m(1, 1), other._m(1, 2));
_m(2, 1) = -other_det * DET2(other._m(0, 0), other._m(0, 2), other._m(1, 0), other._m(1, 2));
_m(2, 2) = other_det * DET2(other._m(0, 0), other._m(0, 1), other._m(1, 0), other._m(1, 1));
return true;
#endif // HAVE_EIGEN
}
#undef MATRIX3_DETERMINANT
#undef DET2
/**
* Fills mat with a matrix that applies the indicated translation.
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
set_translate_mat(const FLOATNAME(LVecBase2) &trans) {
set(1.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f,
trans._v(0), trans._v(1), 1.0f);
}
/**
* Fills mat with a matrix that rotates by the given angle in degrees
* counterclockwise.
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
set_rotate_mat(FLOATTYPE angle) {
TAU_PROFILE("void LMatrix3::rotate_mat(LMatrix3, FLOATTYPE)", " ", TAU_USER);
FLOATTYPE angle_rad = deg_2_rad(angle);
FLOATTYPE s, c;
csincos(angle_rad, &s, &c);
set( c, s, 0.0f,
-s, c, 0.0f,
0.0f, 0.0f, 1.0f);
}
/**
* Fills mat with a matrix that applies the indicated scale in each of the two
* axes.
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
set_scale_mat(const FLOATNAME(LVecBase2) &scale) {
set(scale._v(0), 0.0f, 0.0f,
0.0f, scale._v(1), 0.0f,
0.0f, 0.0f, 1.0f);
}
/**
* Returns a matrix that applies the indicated translation.
*/
INLINE_LINMATH FLOATNAME(LMatrix3) FLOATNAME(LMatrix3)::
translate_mat(const FLOATNAME(LVecBase2) &trans) {
return FLOATNAME(LMatrix3)(1.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f,
trans._v(0), trans._v(1), 1.0f);
}
/**
* Returns a matrix that applies the indicated translation.
*/
INLINE_LINMATH FLOATNAME(LMatrix3) FLOATNAME(LMatrix3)::
translate_mat(FLOATTYPE tx, FLOATTYPE ty) {
return FLOATNAME(LMatrix3)(1.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f,
tx, ty, 1.0f);
}
/**
* Returns a matrix that rotates by the given angle in degrees
* counterclockwise.
*/
INLINE_LINMATH FLOATNAME(LMatrix3) FLOATNAME(LMatrix3)::
rotate_mat(FLOATTYPE angle) {
FLOATNAME(LMatrix3) mat;
mat.set_rotate_mat(angle);
return mat;
}
/**
* Returns a matrix that applies the indicated scale in each of the two axes.
*/
INLINE_LINMATH FLOATNAME(LMatrix3) FLOATNAME(LMatrix3)::
scale_mat(const FLOATNAME(LVecBase2) &scale) {
return FLOATNAME(LMatrix3)(scale._v(0), 0.0f, 0.0f,
0.0f, scale._v(1), 0.0f,
0.0f, 0.0f, 1.0f);
}
/**
* Returns a matrix that applies the indicated scale in each of the two axes.
*/
INLINE_LINMATH FLOATNAME(LMatrix3) FLOATNAME(LMatrix3)::
scale_mat(FLOATTYPE sx, FLOATTYPE sy) {
return FLOATNAME(LMatrix3)(sx, 0.0f, 0.0f,
0.0f, sy, 0.0f,
0.0f, 0.0f, 1.0f);
}
/**
* Returns a matrix that rotates by the given angle in degrees
* counterclockwise about the indicated vector.
*/
INLINE_LINMATH FLOATNAME(LMatrix3) FLOATNAME(LMatrix3)::
rotate_mat(FLOATTYPE angle, const FLOATNAME(LVecBase3) &axis,
CoordinateSystem cs) {
FLOATNAME(LMatrix3) mat;
mat.set_rotate_mat(angle, axis, cs);
return mat;
}
/**
* Returns a matrix that rotates by the given angle in degrees
* counterclockwise about the indicated vector. Assumes axis has been
* normalized.
*/
INLINE_LINMATH FLOATNAME(LMatrix3) FLOATNAME(LMatrix3)::
rotate_mat_normaxis(FLOATTYPE angle, const FLOATNAME(LVecBase3) &axis,
CoordinateSystem cs) {
FLOATNAME(LMatrix3) mat;
mat.set_rotate_mat_normaxis(angle, axis, cs);
return mat;
}
/**
* Fills mat with a matrix that applies the indicated scale in each of the
* three axes.
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
set_scale_mat(const FLOATNAME(LVecBase3) &scale) {
set(scale._v(0), 0.0f, 0.0f,
0.0f, scale._v(1), 0.0f,
0.0f, 0.0f, scale._v(2));
}
/**
* Returns a matrix that applies the indicated scale in each of the three
* axes.
*/
INLINE_LINMATH FLOATNAME(LMatrix3) FLOATNAME(LMatrix3)::
scale_mat(const FLOATNAME(LVecBase3) &scale) {
return FLOATNAME(LMatrix3)(scale._v(0), 0.0f, 0.0f,
0.0f, scale._v(1), 0.0f,
0.0f, 0.0f, scale._v(2));
}
/**
* Returns a matrix that applies the indicated scale in each of the three
* axes.
*/
INLINE_LINMATH FLOATNAME(LMatrix3) FLOATNAME(LMatrix3)::
scale_mat(FLOATTYPE sx, FLOATTYPE sy, FLOATTYPE sz) {
return FLOATNAME(LMatrix3)(sx, 0.0f, 0.0f,
0.0f, sy, 0.0f,
0.0f, 0.0f, sz);
}
/**
* Fills mat with a matrix that applies the indicated shear in each of the
* three planes.
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
set_shear_mat(const FLOATNAME(LVecBase3) &shear, CoordinateSystem cs) {
set_scale_shear_mat(FLOATNAME(LVecBase3)(1.0f, 1.0f, 1.0f),
shear, cs);
}
/**
* Returns a matrix that applies the indicated shear in each of the three
* planes.
*/
INLINE_LINMATH FLOATNAME(LMatrix3) FLOATNAME(LMatrix3)::
shear_mat(const FLOATNAME(LVecBase3) &shear, CoordinateSystem cs) {
FLOATNAME(LMatrix3) mat;
mat.set_shear_mat(shear, cs);
return mat;
}
/**
* Returns a matrix that applies the indicated shear in each of the three
* planes.
*/
INLINE_LINMATH FLOATNAME(LMatrix3) FLOATNAME(LMatrix3)::
shear_mat(FLOATTYPE shxy, FLOATTYPE shxz, FLOATTYPE shyz, CoordinateSystem cs) {
FLOATNAME(LMatrix3) mat;
mat.set_shear_mat(FLOATNAME(LVecBase3)(shxy, shxz, shyz), cs);
return mat;
}
/**
* Returns a matrix that applies the indicated scale and shear.
*/
INLINE_LINMATH FLOATNAME(LMatrix3) FLOATNAME(LMatrix3)::
scale_shear_mat(const FLOATNAME(LVecBase3) &scale,
const FLOATNAME(LVecBase3) &shear,
CoordinateSystem cs) {
FLOATNAME(LMatrix3) mat;
mat.set_scale_shear_mat(scale, shear, cs);
return mat;
}
/**
* Returns a matrix that applies the indicated scale and shear.
*/
INLINE_LINMATH FLOATNAME(LMatrix3) FLOATNAME(LMatrix3)::
scale_shear_mat(FLOATTYPE sx, FLOATTYPE sy, FLOATTYPE sz,
FLOATTYPE shxy, FLOATTYPE shxz, FLOATTYPE shyz,
CoordinateSystem cs) {
FLOATNAME(LMatrix3) mat;
mat.set_scale_shear_mat(FLOATNAME(LVecBase3)(sx, sy, sz),
FLOATNAME(LVecBase3)(shxy, shxz, shyz), cs);
return mat;
}
/**
* Returns true if two matrices are memberwise equal within a default
* tolerance based on the numeric type.
*/
INLINE_LINMATH bool FLOATNAME(LMatrix3)::
almost_equal(const FLOATNAME(LMatrix3) &other) const {
return almost_equal(other, NEARLY_ZERO(FLOATTYPE));
}
/**
* Adds the vector to the indicated hash generator.
*/
INLINE_LINMATH void FLOATNAME(LMatrix3)::
generate_hash(ChecksumHashGenerator &hashgen) const {
generate_hash(hashgen, NEARLY_ZERO(FLOATTYPE));
}
/**
* Transposes the given matrix and returns it.
*/
INLINE_LINMATH FLOATNAME(LMatrix3)
transpose(const FLOATNAME(LMatrix3) &a) {
FLOATNAME(LMatrix3) result;
result.transpose_from(a);
return result;
}
/**
* Inverts the given matrix and returns it.
*/
INLINE_LINMATH FLOATNAME(LMatrix3)
invert(const FLOATNAME(LMatrix3) &a) {
TAU_PROFILE("LMatrix3 invert(const LMatrix3 &)", " ", TAU_USER);
FLOATNAME(LMatrix3) result;
bool nonsingular = result.invert_from(a);
#ifndef NDEBUG
if (!nonsingular) {
nassert_raise("Attempt to compute inverse of singular matrix!");
return FLOATNAME(LMatrix3)::ident_mat();
}
#endif
return result;
}