historical/toontown-classic.git/panda/include/parabola_src.I

99 lines
2.1 KiB
Text
Raw Normal View History

2024-01-16 17:20:27 +00:00
/**
* PANDA 3D SOFTWARE
* Copyright (c) Carnegie Mellon University. All rights reserved.
*
* All use of this software is subject to the terms of the revised BSD
* license. You should have received a copy of this license along
* with this source code in a file named "LICENSE."
*
* @file parabola_src.I
* @author drose
* @date 2007-10-10
*/
/**
* Constructs a meaningless degenerate parabola.
*/
INLINE_MATHUTIL FLOATNAME(LParabola)::
FLOATNAME(LParabola)() :
_a(FLOATNAME(LVecBase3)::zero()),
_b(FLOATNAME(LVecBase3)::zero()),
_c(FLOATNAME(LVecBase3)::zero())
{
}
/**
* Constructs a parabola given the three points of the parametric equation:
* the acceleration, initial velocity, and start point.
*/
INLINE_MATHUTIL FLOATNAME(LParabola)::
FLOATNAME(LParabola)(const FLOATNAME(LVecBase3) &a,
const FLOATNAME(LVecBase3) &b,
const FLOATNAME(LVecBase3) &c) :
_a(a), _b(b), _c(c)
{
}
/**
*
*/
INLINE_MATHUTIL FLOATNAME(LParabola)::
FLOATNAME(LParabola)(const FLOATNAME(LParabola) &copy) :
_a(copy._a),
_b(copy._b),
_c(copy._c)
{
}
/**
*
*/
INLINE_MATHUTIL void FLOATNAME(LParabola)::
operator = (const FLOATNAME(LParabola) &copy) {
_a = copy._a;
_b = copy._b;
_c = copy._c;
}
/**
*
*/
INLINE_MATHUTIL FLOATNAME(LParabola)::
~FLOATNAME(LParabola)() {
}
/**
* Returns the first point of the parabola's parametric equation: the
* acceleration.
*/
INLINE_MATHUTIL const FLOATNAME(LVecBase3) &FLOATNAME(LParabola)::
get_a() const {
return _a;
}
/**
* Returns the second point of the parabola's parametric equation: the initial
* velocity.
*/
INLINE_MATHUTIL const FLOATNAME(LVecBase3) &FLOATNAME(LParabola)::
get_b() const {
return _b;
}
/**
* Returns the third point of the parabola's parametric equation: the start
* point.
*/
INLINE_MATHUTIL const FLOATNAME(LVecBase3) &FLOATNAME(LParabola)::
get_c() const {
return _c;
}
/**
* Computes the point on the parabola at time t.
*/
INLINE_MATHUTIL FLOATNAME(LPoint3) FLOATNAME(LParabola)::
calc_point(FLOATTYPE t) const {
return _a * t * t + _b * t + _c;
}