666 lines
23 KiB
C
666 lines
23 KiB
C
|
/* Peephole optimizations for bytecode compiler. */
|
||
|
|
||
|
#include "Python.h"
|
||
|
|
||
|
#include "Python-ast.h"
|
||
|
#include "node.h"
|
||
|
#include "pyarena.h"
|
||
|
#include "ast.h"
|
||
|
#include "code.h"
|
||
|
#include "compile.h"
|
||
|
#include "symtable.h"
|
||
|
#include "opcode.h"
|
||
|
|
||
|
#define GETARG(arr, i) ((int)((arr[i+2]<<8) + arr[i+1]))
|
||
|
#define UNCONDITIONAL_JUMP(op) (op==JUMP_ABSOLUTE || op==JUMP_FORWARD)
|
||
|
#define CONDITIONAL_JUMP(op) (op==POP_JUMP_IF_FALSE || op==POP_JUMP_IF_TRUE \
|
||
|
|| op==JUMP_IF_FALSE_OR_POP || op==JUMP_IF_TRUE_OR_POP)
|
||
|
#define ABSOLUTE_JUMP(op) (op==JUMP_ABSOLUTE || op==CONTINUE_LOOP \
|
||
|
|| op==POP_JUMP_IF_FALSE || op==POP_JUMP_IF_TRUE \
|
||
|
|| op==JUMP_IF_FALSE_OR_POP || op==JUMP_IF_TRUE_OR_POP)
|
||
|
#define JUMPS_ON_TRUE(op) (op==POP_JUMP_IF_TRUE || op==JUMP_IF_TRUE_OR_POP)
|
||
|
#define GETJUMPTGT(arr, i) (GETARG(arr,i) + (ABSOLUTE_JUMP(arr[i]) ? 0 : i+3))
|
||
|
#define SETARG(arr, i, val) arr[i+2] = val>>8; arr[i+1] = val & 255
|
||
|
#define CODESIZE(op) (HAS_ARG(op) ? 3 : 1)
|
||
|
#define ISBASICBLOCK(blocks, start, bytes) \
|
||
|
(blocks[start]==blocks[start+bytes-1])
|
||
|
|
||
|
/* Replace LOAD_CONST c1. LOAD_CONST c2 ... LOAD_CONST cn BUILD_TUPLE n
|
||
|
with LOAD_CONST (c1, c2, ... cn).
|
||
|
The consts table must still be in list form so that the
|
||
|
new constant (c1, c2, ... cn) can be appended.
|
||
|
Called with codestr pointing to the first LOAD_CONST.
|
||
|
Bails out with no change if one or more of the LOAD_CONSTs is missing.
|
||
|
Also works for BUILD_LIST when followed by an "in" or "not in" test.
|
||
|
*/
|
||
|
static int
|
||
|
tuple_of_constants(unsigned char *codestr, Py_ssize_t n, PyObject *consts)
|
||
|
{
|
||
|
PyObject *newconst, *constant;
|
||
|
Py_ssize_t i, arg, len_consts;
|
||
|
|
||
|
/* Pre-conditions */
|
||
|
assert(PyList_CheckExact(consts));
|
||
|
assert(codestr[n*3] == BUILD_TUPLE || codestr[n*3] == BUILD_LIST);
|
||
|
assert(GETARG(codestr, (n*3)) == n);
|
||
|
for (i=0 ; i<n ; i++)
|
||
|
assert(codestr[i*3] == LOAD_CONST);
|
||
|
|
||
|
/* Buildup new tuple of constants */
|
||
|
newconst = PyTuple_New(n);
|
||
|
if (newconst == NULL)
|
||
|
return 0;
|
||
|
len_consts = PyList_GET_SIZE(consts);
|
||
|
for (i=0 ; i<n ; i++) {
|
||
|
arg = GETARG(codestr, (i*3));
|
||
|
assert(arg < len_consts);
|
||
|
constant = PyList_GET_ITEM(consts, arg);
|
||
|
Py_INCREF(constant);
|
||
|
PyTuple_SET_ITEM(newconst, i, constant);
|
||
|
}
|
||
|
|
||
|
/* Append folded constant onto consts */
|
||
|
if (PyList_Append(consts, newconst)) {
|
||
|
Py_DECREF(newconst);
|
||
|
return 0;
|
||
|
}
|
||
|
Py_DECREF(newconst);
|
||
|
|
||
|
/* Write NOPs over old LOAD_CONSTS and
|
||
|
add a new LOAD_CONST newconst on top of the BUILD_TUPLE n */
|
||
|
memset(codestr, NOP, n*3);
|
||
|
codestr[n*3] = LOAD_CONST;
|
||
|
SETARG(codestr, (n*3), len_consts);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* Replace LOAD_CONST c1. LOAD_CONST c2 BINOP
|
||
|
with LOAD_CONST binop(c1,c2)
|
||
|
The consts table must still be in list form so that the
|
||
|
new constant can be appended.
|
||
|
Called with codestr pointing to the first LOAD_CONST.
|
||
|
Abandons the transformation if the folding fails (i.e. 1+'a').
|
||
|
If the new constant is a sequence, only folds when the size
|
||
|
is below a threshold value. That keeps pyc files from
|
||
|
becoming large in the presence of code like: (None,)*1000.
|
||
|
*/
|
||
|
static int
|
||
|
fold_binops_on_constants(unsigned char *codestr, PyObject *consts)
|
||
|
{
|
||
|
PyObject *newconst, *v, *w;
|
||
|
Py_ssize_t len_consts, size;
|
||
|
int opcode;
|
||
|
|
||
|
/* Pre-conditions */
|
||
|
assert(PyList_CheckExact(consts));
|
||
|
assert(codestr[0] == LOAD_CONST);
|
||
|
assert(codestr[3] == LOAD_CONST);
|
||
|
|
||
|
/* Create new constant */
|
||
|
v = PyList_GET_ITEM(consts, GETARG(codestr, 0));
|
||
|
w = PyList_GET_ITEM(consts, GETARG(codestr, 3));
|
||
|
opcode = codestr[6];
|
||
|
switch (opcode) {
|
||
|
case BINARY_POWER:
|
||
|
newconst = PyNumber_Power(v, w, Py_None);
|
||
|
break;
|
||
|
case BINARY_MULTIPLY:
|
||
|
newconst = PyNumber_Multiply(v, w);
|
||
|
break;
|
||
|
case BINARY_DIVIDE:
|
||
|
/* Cannot fold this operation statically since
|
||
|
the result can depend on the run-time presence
|
||
|
of the -Qnew flag */
|
||
|
return 0;
|
||
|
case BINARY_TRUE_DIVIDE:
|
||
|
newconst = PyNumber_TrueDivide(v, w);
|
||
|
break;
|
||
|
case BINARY_FLOOR_DIVIDE:
|
||
|
newconst = PyNumber_FloorDivide(v, w);
|
||
|
break;
|
||
|
case BINARY_MODULO:
|
||
|
newconst = PyNumber_Remainder(v, w);
|
||
|
break;
|
||
|
case BINARY_ADD:
|
||
|
newconst = PyNumber_Add(v, w);
|
||
|
break;
|
||
|
case BINARY_SUBTRACT:
|
||
|
newconst = PyNumber_Subtract(v, w);
|
||
|
break;
|
||
|
case BINARY_SUBSCR:
|
||
|
/* #5057: if v is unicode, there might be differences between
|
||
|
wide and narrow builds in cases like '\U00012345'[0] or
|
||
|
'\U00012345abcdef'[3], so it's better to skip the optimization
|
||
|
in order to produce compatible pycs.
|
||
|
*/
|
||
|
if (PyUnicode_Check(v))
|
||
|
return 0;
|
||
|
newconst = PyObject_GetItem(v, w);
|
||
|
break;
|
||
|
case BINARY_LSHIFT:
|
||
|
newconst = PyNumber_Lshift(v, w);
|
||
|
break;
|
||
|
case BINARY_RSHIFT:
|
||
|
newconst = PyNumber_Rshift(v, w);
|
||
|
break;
|
||
|
case BINARY_AND:
|
||
|
newconst = PyNumber_And(v, w);
|
||
|
break;
|
||
|
case BINARY_XOR:
|
||
|
newconst = PyNumber_Xor(v, w);
|
||
|
break;
|
||
|
case BINARY_OR:
|
||
|
newconst = PyNumber_Or(v, w);
|
||
|
break;
|
||
|
default:
|
||
|
/* Called with an unknown opcode */
|
||
|
PyErr_Format(PyExc_SystemError,
|
||
|
"unexpected binary operation %d on a constant",
|
||
|
opcode);
|
||
|
return 0;
|
||
|
}
|
||
|
if (newconst == NULL) {
|
||
|
PyErr_Clear();
|
||
|
return 0;
|
||
|
}
|
||
|
size = PyObject_Size(newconst);
|
||
|
if (size == -1)
|
||
|
PyErr_Clear();
|
||
|
else if (size > 20) {
|
||
|
Py_DECREF(newconst);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Append folded constant into consts table */
|
||
|
len_consts = PyList_GET_SIZE(consts);
|
||
|
if (PyList_Append(consts, newconst)) {
|
||
|
Py_DECREF(newconst);
|
||
|
return 0;
|
||
|
}
|
||
|
Py_DECREF(newconst);
|
||
|
|
||
|
/* Write NOP NOP NOP NOP LOAD_CONST newconst */
|
||
|
memset(codestr, NOP, 4);
|
||
|
codestr[4] = LOAD_CONST;
|
||
|
SETARG(codestr, 4, len_consts);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
fold_unaryops_on_constants(unsigned char *codestr, PyObject *consts)
|
||
|
{
|
||
|
PyObject *newconst=NULL, *v;
|
||
|
Py_ssize_t len_consts;
|
||
|
int opcode;
|
||
|
|
||
|
/* Pre-conditions */
|
||
|
assert(PyList_CheckExact(consts));
|
||
|
assert(codestr[0] == LOAD_CONST);
|
||
|
|
||
|
/* Create new constant */
|
||
|
v = PyList_GET_ITEM(consts, GETARG(codestr, 0));
|
||
|
opcode = codestr[3];
|
||
|
switch (opcode) {
|
||
|
case UNARY_NEGATIVE:
|
||
|
/* Preserve the sign of -0.0 */
|
||
|
if (PyObject_IsTrue(v) == 1)
|
||
|
newconst = PyNumber_Negative(v);
|
||
|
break;
|
||
|
case UNARY_CONVERT:
|
||
|
newconst = PyObject_Repr(v);
|
||
|
break;
|
||
|
case UNARY_INVERT:
|
||
|
newconst = PyNumber_Invert(v);
|
||
|
break;
|
||
|
default:
|
||
|
/* Called with an unknown opcode */
|
||
|
PyErr_Format(PyExc_SystemError,
|
||
|
"unexpected unary operation %d on a constant",
|
||
|
opcode);
|
||
|
return 0;
|
||
|
}
|
||
|
if (newconst == NULL) {
|
||
|
PyErr_Clear();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Append folded constant into consts table */
|
||
|
len_consts = PyList_GET_SIZE(consts);
|
||
|
if (PyList_Append(consts, newconst)) {
|
||
|
Py_DECREF(newconst);
|
||
|
return 0;
|
||
|
}
|
||
|
Py_DECREF(newconst);
|
||
|
|
||
|
/* Write NOP LOAD_CONST newconst */
|
||
|
codestr[0] = NOP;
|
||
|
codestr[1] = LOAD_CONST;
|
||
|
SETARG(codestr, 1, len_consts);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static unsigned int *
|
||
|
markblocks(unsigned char *code, Py_ssize_t len)
|
||
|
{
|
||
|
unsigned int *blocks = (unsigned int *)PyMem_Malloc(len*sizeof(int));
|
||
|
int i,j, opcode, blockcnt = 0;
|
||
|
|
||
|
if (blocks == NULL) {
|
||
|
PyErr_NoMemory();
|
||
|
return NULL;
|
||
|
}
|
||
|
memset(blocks, 0, len*sizeof(int));
|
||
|
|
||
|
/* Mark labels in the first pass */
|
||
|
for (i=0 ; i<len ; i+=CODESIZE(opcode)) {
|
||
|
opcode = code[i];
|
||
|
switch (opcode) {
|
||
|
case FOR_ITER:
|
||
|
case JUMP_FORWARD:
|
||
|
case JUMP_IF_FALSE_OR_POP:
|
||
|
case JUMP_IF_TRUE_OR_POP:
|
||
|
case POP_JUMP_IF_FALSE:
|
||
|
case POP_JUMP_IF_TRUE:
|
||
|
case JUMP_ABSOLUTE:
|
||
|
case CONTINUE_LOOP:
|
||
|
case SETUP_LOOP:
|
||
|
case SETUP_EXCEPT:
|
||
|
case SETUP_FINALLY:
|
||
|
case SETUP_WITH:
|
||
|
j = GETJUMPTGT(code, i);
|
||
|
blocks[j] = 1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
/* Build block numbers in the second pass */
|
||
|
for (i=0 ; i<len ; i++) {
|
||
|
blockcnt += blocks[i]; /* increment blockcnt over labels */
|
||
|
blocks[i] = blockcnt;
|
||
|
}
|
||
|
return blocks;
|
||
|
}
|
||
|
|
||
|
/* Perform basic peephole optimizations to components of a code object.
|
||
|
The consts object should still be in list form to allow new constants
|
||
|
to be appended.
|
||
|
|
||
|
To keep the optimizer simple, it bails out (does nothing) for code
|
||
|
containing extended arguments or that has a length over 32,700. That
|
||
|
allows us to avoid overflow and sign issues. Likewise, it bails when
|
||
|
the lineno table has complex encoding for gaps >= 255.
|
||
|
|
||
|
Optimizations are restricted to simple transformations occuring within a
|
||
|
single basic block. All transformations keep the code size the same or
|
||
|
smaller. For those that reduce size, the gaps are initially filled with
|
||
|
NOPs. Later those NOPs are removed and the jump addresses retargeted in
|
||
|
a single pass. Line numbering is adjusted accordingly. */
|
||
|
|
||
|
PyObject *
|
||
|
PyCode_Optimize(PyObject *code, PyObject* consts, PyObject *names,
|
||
|
PyObject *lineno_obj)
|
||
|
{
|
||
|
Py_ssize_t i, j, codelen;
|
||
|
int nops, h, adj;
|
||
|
int tgt, tgttgt, opcode;
|
||
|
unsigned char *codestr = NULL;
|
||
|
unsigned char *lineno;
|
||
|
int *addrmap = NULL;
|
||
|
int new_line, cum_orig_line, last_line, tabsiz;
|
||
|
int cumlc=0, lastlc=0; /* Count runs of consecutive LOAD_CONSTs */
|
||
|
unsigned int *blocks = NULL;
|
||
|
char *name;
|
||
|
|
||
|
/* Bail out if an exception is set */
|
||
|
if (PyErr_Occurred())
|
||
|
goto exitError;
|
||
|
|
||
|
/* Bypass optimization when the lineno table is too complex */
|
||
|
assert(PyString_Check(lineno_obj));
|
||
|
lineno = (unsigned char*)PyString_AS_STRING(lineno_obj);
|
||
|
tabsiz = PyString_GET_SIZE(lineno_obj);
|
||
|
if (memchr(lineno, 255, tabsiz) != NULL)
|
||
|
goto exitUnchanged;
|
||
|
|
||
|
/* Avoid situations where jump retargeting could overflow */
|
||
|
assert(PyString_Check(code));
|
||
|
codelen = PyString_GET_SIZE(code);
|
||
|
if (codelen > 32700)
|
||
|
goto exitUnchanged;
|
||
|
|
||
|
/* Make a modifiable copy of the code string */
|
||
|
codestr = (unsigned char *)PyMem_Malloc(codelen);
|
||
|
if (codestr == NULL)
|
||
|
goto exitError;
|
||
|
codestr = (unsigned char *)memcpy(codestr,
|
||
|
PyString_AS_STRING(code), codelen);
|
||
|
|
||
|
/* Verify that RETURN_VALUE terminates the codestring. This allows
|
||
|
the various transformation patterns to look ahead several
|
||
|
instructions without additional checks to make sure they are not
|
||
|
looking beyond the end of the code string.
|
||
|
*/
|
||
|
if (codestr[codelen-1] != RETURN_VALUE)
|
||
|
goto exitUnchanged;
|
||
|
|
||
|
/* Mapping to new jump targets after NOPs are removed */
|
||
|
addrmap = (int *)PyMem_Malloc(codelen * sizeof(int));
|
||
|
if (addrmap == NULL)
|
||
|
goto exitError;
|
||
|
|
||
|
blocks = markblocks(codestr, codelen);
|
||
|
if (blocks == NULL)
|
||
|
goto exitError;
|
||
|
assert(PyList_Check(consts));
|
||
|
|
||
|
for (i=0 ; i<codelen ; i += CODESIZE(codestr[i])) {
|
||
|
reoptimize_current:
|
||
|
opcode = codestr[i];
|
||
|
|
||
|
lastlc = cumlc;
|
||
|
cumlc = 0;
|
||
|
|
||
|
switch (opcode) {
|
||
|
/* Replace UNARY_NOT POP_JUMP_IF_FALSE
|
||
|
with POP_JUMP_IF_TRUE */
|
||
|
case UNARY_NOT:
|
||
|
if (codestr[i+1] != POP_JUMP_IF_FALSE
|
||
|
|| !ISBASICBLOCK(blocks,i,4))
|
||
|
continue;
|
||
|
j = GETARG(codestr, i+1);
|
||
|
codestr[i] = POP_JUMP_IF_TRUE;
|
||
|
SETARG(codestr, i, j);
|
||
|
codestr[i+3] = NOP;
|
||
|
goto reoptimize_current;
|
||
|
|
||
|
/* not a is b --> a is not b
|
||
|
not a in b --> a not in b
|
||
|
not a is not b --> a is b
|
||
|
not a not in b --> a in b
|
||
|
*/
|
||
|
case COMPARE_OP:
|
||
|
j = GETARG(codestr, i);
|
||
|
if (j < 6 || j > 9 ||
|
||
|
codestr[i+3] != UNARY_NOT ||
|
||
|
!ISBASICBLOCK(blocks,i,4))
|
||
|
continue;
|
||
|
SETARG(codestr, i, (j^1));
|
||
|
codestr[i+3] = NOP;
|
||
|
break;
|
||
|
|
||
|
/* Replace LOAD_GLOBAL/LOAD_NAME None
|
||
|
with LOAD_CONST None */
|
||
|
case LOAD_NAME:
|
||
|
case LOAD_GLOBAL:
|
||
|
j = GETARG(codestr, i);
|
||
|
name = PyString_AsString(PyTuple_GET_ITEM(names, j));
|
||
|
if (name == NULL || strcmp(name, "None") != 0)
|
||
|
continue;
|
||
|
for (j=0 ; j < PyList_GET_SIZE(consts) ; j++) {
|
||
|
if (PyList_GET_ITEM(consts, j) == Py_None)
|
||
|
break;
|
||
|
}
|
||
|
if (j == PyList_GET_SIZE(consts)) {
|
||
|
if (PyList_Append(consts, Py_None) == -1)
|
||
|
goto exitError;
|
||
|
}
|
||
|
assert(PyList_GET_ITEM(consts, j) == Py_None);
|
||
|
codestr[i] = LOAD_CONST;
|
||
|
SETARG(codestr, i, j);
|
||
|
cumlc = lastlc + 1;
|
||
|
break;
|
||
|
|
||
|
/* Skip over LOAD_CONST trueconst
|
||
|
POP_JUMP_IF_FALSE xx. This improves
|
||
|
"while 1" performance. */
|
||
|
case LOAD_CONST:
|
||
|
cumlc = lastlc + 1;
|
||
|
j = GETARG(codestr, i);
|
||
|
if (codestr[i+3] != POP_JUMP_IF_FALSE ||
|
||
|
!ISBASICBLOCK(blocks,i,6) ||
|
||
|
!PyObject_IsTrue(PyList_GET_ITEM(consts, j)))
|
||
|
continue;
|
||
|
memset(codestr+i, NOP, 6);
|
||
|
cumlc = 0;
|
||
|
break;
|
||
|
|
||
|
/* Try to fold tuples of constants (includes a case for lists
|
||
|
which are only used for "in" and "not in" tests).
|
||
|
Skip over BUILD_SEQN 1 UNPACK_SEQN 1.
|
||
|
Replace BUILD_SEQN 2 UNPACK_SEQN 2 with ROT2.
|
||
|
Replace BUILD_SEQN 3 UNPACK_SEQN 3 with ROT3 ROT2. */
|
||
|
case BUILD_TUPLE:
|
||
|
case BUILD_LIST:
|
||
|
j = GETARG(codestr, i);
|
||
|
h = i - 3 * j;
|
||
|
if (h >= 0 &&
|
||
|
j <= lastlc &&
|
||
|
((opcode == BUILD_TUPLE &&
|
||
|
ISBASICBLOCK(blocks, h, 3*(j+1))) ||
|
||
|
(opcode == BUILD_LIST &&
|
||
|
codestr[i+3]==COMPARE_OP &&
|
||
|
ISBASICBLOCK(blocks, h, 3*(j+2)) &&
|
||
|
(GETARG(codestr,i+3)==6 ||
|
||
|
GETARG(codestr,i+3)==7))) &&
|
||
|
tuple_of_constants(&codestr[h], j, consts)) {
|
||
|
assert(codestr[i] == LOAD_CONST);
|
||
|
cumlc = 1;
|
||
|
break;
|
||
|
}
|
||
|
if (codestr[i+3] != UNPACK_SEQUENCE ||
|
||
|
!ISBASICBLOCK(blocks,i,6) ||
|
||
|
j != GETARG(codestr, i+3))
|
||
|
continue;
|
||
|
if (j == 1) {
|
||
|
memset(codestr+i, NOP, 6);
|
||
|
} else if (j == 2) {
|
||
|
codestr[i] = ROT_TWO;
|
||
|
memset(codestr+i+1, NOP, 5);
|
||
|
} else if (j == 3) {
|
||
|
codestr[i] = ROT_THREE;
|
||
|
codestr[i+1] = ROT_TWO;
|
||
|
memset(codestr+i+2, NOP, 4);
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
/* Fold binary ops on constants.
|
||
|
LOAD_CONST c1 LOAD_CONST c2 BINOP --> LOAD_CONST binop(c1,c2) */
|
||
|
case BINARY_POWER:
|
||
|
case BINARY_MULTIPLY:
|
||
|
case BINARY_TRUE_DIVIDE:
|
||
|
case BINARY_FLOOR_DIVIDE:
|
||
|
case BINARY_MODULO:
|
||
|
case BINARY_ADD:
|
||
|
case BINARY_SUBTRACT:
|
||
|
case BINARY_SUBSCR:
|
||
|
case BINARY_LSHIFT:
|
||
|
case BINARY_RSHIFT:
|
||
|
case BINARY_AND:
|
||
|
case BINARY_XOR:
|
||
|
case BINARY_OR:
|
||
|
if (lastlc >= 2 &&
|
||
|
ISBASICBLOCK(blocks, i-6, 7) &&
|
||
|
fold_binops_on_constants(&codestr[i-6], consts)) {
|
||
|
i -= 2;
|
||
|
assert(codestr[i] == LOAD_CONST);
|
||
|
cumlc = 1;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
/* Fold unary ops on constants.
|
||
|
LOAD_CONST c1 UNARY_OP --> LOAD_CONST unary_op(c) */
|
||
|
case UNARY_NEGATIVE:
|
||
|
case UNARY_CONVERT:
|
||
|
case UNARY_INVERT:
|
||
|
if (lastlc >= 1 &&
|
||
|
ISBASICBLOCK(blocks, i-3, 4) &&
|
||
|
fold_unaryops_on_constants(&codestr[i-3], consts)) {
|
||
|
i -= 2;
|
||
|
assert(codestr[i] == LOAD_CONST);
|
||
|
cumlc = 1;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
/* Simplify conditional jump to conditional jump where the
|
||
|
result of the first test implies the success of a similar
|
||
|
test or the failure of the opposite test.
|
||
|
Arises in code like:
|
||
|
"if a and b:"
|
||
|
"if a or b:"
|
||
|
"a and b or c"
|
||
|
"(a and b) and c"
|
||
|
x:JUMP_IF_FALSE_OR_POP y y:JUMP_IF_FALSE_OR_POP z
|
||
|
--> x:JUMP_IF_FALSE_OR_POP z
|
||
|
x:JUMP_IF_FALSE_OR_POP y y:JUMP_IF_TRUE_OR_POP z
|
||
|
--> x:POP_JUMP_IF_FALSE y+3
|
||
|
where y+3 is the instruction following the second test.
|
||
|
*/
|
||
|
case JUMP_IF_FALSE_OR_POP:
|
||
|
case JUMP_IF_TRUE_OR_POP:
|
||
|
tgt = GETJUMPTGT(codestr, i);
|
||
|
j = codestr[tgt];
|
||
|
if (CONDITIONAL_JUMP(j)) {
|
||
|
/* NOTE: all possible jumps here are absolute! */
|
||
|
if (JUMPS_ON_TRUE(j) == JUMPS_ON_TRUE(opcode)) {
|
||
|
/* The second jump will be
|
||
|
taken iff the first is. */
|
||
|
tgttgt = GETJUMPTGT(codestr, tgt);
|
||
|
/* The current opcode inherits
|
||
|
its target's stack behaviour */
|
||
|
codestr[i] = j;
|
||
|
SETARG(codestr, i, tgttgt);
|
||
|
goto reoptimize_current;
|
||
|
} else {
|
||
|
/* The second jump is not taken if the first is (so
|
||
|
jump past it), and all conditional jumps pop their
|
||
|
argument when they're not taken (so change the
|
||
|
first jump to pop its argument when it's taken). */
|
||
|
if (JUMPS_ON_TRUE(opcode))
|
||
|
codestr[i] = POP_JUMP_IF_TRUE;
|
||
|
else
|
||
|
codestr[i] = POP_JUMP_IF_FALSE;
|
||
|
SETARG(codestr, i, (tgt + 3));
|
||
|
goto reoptimize_current;
|
||
|
}
|
||
|
}
|
||
|
/* Intentional fallthrough */
|
||
|
|
||
|
/* Replace jumps to unconditional jumps */
|
||
|
case POP_JUMP_IF_FALSE:
|
||
|
case POP_JUMP_IF_TRUE:
|
||
|
case FOR_ITER:
|
||
|
case JUMP_FORWARD:
|
||
|
case JUMP_ABSOLUTE:
|
||
|
case CONTINUE_LOOP:
|
||
|
case SETUP_LOOP:
|
||
|
case SETUP_EXCEPT:
|
||
|
case SETUP_FINALLY:
|
||
|
case SETUP_WITH:
|
||
|
tgt = GETJUMPTGT(codestr, i);
|
||
|
/* Replace JUMP_* to a RETURN into just a RETURN */
|
||
|
if (UNCONDITIONAL_JUMP(opcode) &&
|
||
|
codestr[tgt] == RETURN_VALUE) {
|
||
|
codestr[i] = RETURN_VALUE;
|
||
|
memset(codestr+i+1, NOP, 2);
|
||
|
continue;
|
||
|
}
|
||
|
if (!UNCONDITIONAL_JUMP(codestr[tgt]))
|
||
|
continue;
|
||
|
tgttgt = GETJUMPTGT(codestr, tgt);
|
||
|
if (opcode == JUMP_FORWARD) /* JMP_ABS can go backwards */
|
||
|
opcode = JUMP_ABSOLUTE;
|
||
|
if (!ABSOLUTE_JUMP(opcode))
|
||
|
tgttgt -= i + 3; /* Calc relative jump addr */
|
||
|
if (tgttgt < 0) /* No backward relative jumps */
|
||
|
continue;
|
||
|
codestr[i] = opcode;
|
||
|
SETARG(codestr, i, tgttgt);
|
||
|
break;
|
||
|
|
||
|
case EXTENDED_ARG:
|
||
|
goto exitUnchanged;
|
||
|
|
||
|
/* Replace RETURN LOAD_CONST None RETURN with just RETURN */
|
||
|
/* Remove unreachable JUMPs after RETURN */
|
||
|
case RETURN_VALUE:
|
||
|
if (i+4 >= codelen)
|
||
|
continue;
|
||
|
if (codestr[i+4] == RETURN_VALUE &&
|
||
|
ISBASICBLOCK(blocks,i,5))
|
||
|
memset(codestr+i+1, NOP, 4);
|
||
|
else if (UNCONDITIONAL_JUMP(codestr[i+1]) &&
|
||
|
ISBASICBLOCK(blocks,i,4))
|
||
|
memset(codestr+i+1, NOP, 3);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Fixup linenotab */
|
||
|
for (i=0, nops=0 ; i<codelen ; i += CODESIZE(codestr[i])) {
|
||
|
addrmap[i] = i - nops;
|
||
|
if (codestr[i] == NOP)
|
||
|
nops++;
|
||
|
}
|
||
|
cum_orig_line = 0;
|
||
|
last_line = 0;
|
||
|
for (i=0 ; i < tabsiz ; i+=2) {
|
||
|
cum_orig_line += lineno[i];
|
||
|
new_line = addrmap[cum_orig_line];
|
||
|
assert (new_line - last_line < 255);
|
||
|
lineno[i] =((unsigned char)(new_line - last_line));
|
||
|
last_line = new_line;
|
||
|
}
|
||
|
|
||
|
/* Remove NOPs and fixup jump targets */
|
||
|
for (i=0, h=0 ; i<codelen ; ) {
|
||
|
opcode = codestr[i];
|
||
|
switch (opcode) {
|
||
|
case NOP:
|
||
|
i++;
|
||
|
continue;
|
||
|
|
||
|
case JUMP_ABSOLUTE:
|
||
|
case CONTINUE_LOOP:
|
||
|
case POP_JUMP_IF_FALSE:
|
||
|
case POP_JUMP_IF_TRUE:
|
||
|
case JUMP_IF_FALSE_OR_POP:
|
||
|
case JUMP_IF_TRUE_OR_POP:
|
||
|
j = addrmap[GETARG(codestr, i)];
|
||
|
SETARG(codestr, i, j);
|
||
|
break;
|
||
|
|
||
|
case FOR_ITER:
|
||
|
case JUMP_FORWARD:
|
||
|
case SETUP_LOOP:
|
||
|
case SETUP_EXCEPT:
|
||
|
case SETUP_FINALLY:
|
||
|
case SETUP_WITH:
|
||
|
j = addrmap[GETARG(codestr, i) + i + 3] - addrmap[i] - 3;
|
||
|
SETARG(codestr, i, j);
|
||
|
break;
|
||
|
}
|
||
|
adj = CODESIZE(opcode);
|
||
|
while (adj--)
|
||
|
codestr[h++] = codestr[i++];
|
||
|
}
|
||
|
assert(h + nops == codelen);
|
||
|
|
||
|
code = PyString_FromStringAndSize((char *)codestr, h);
|
||
|
PyMem_Free(addrmap);
|
||
|
PyMem_Free(codestr);
|
||
|
PyMem_Free(blocks);
|
||
|
return code;
|
||
|
|
||
|
exitError:
|
||
|
code = NULL;
|
||
|
|
||
|
exitUnchanged:
|
||
|
if (blocks != NULL)
|
||
|
PyMem_Free(blocks);
|
||
|
if (addrmap != NULL)
|
||
|
PyMem_Free(addrmap);
|
||
|
if (codestr != NULL)
|
||
|
PyMem_Free(codestr);
|
||
|
Py_XINCREF(code);
|
||
|
return code;
|
||
|
}
|