306 lines
7 KiB
Text
306 lines
7 KiB
Text
|
/**
|
||
|
* PANDA 3D SOFTWARE
|
||
|
* Copyright (c) Carnegie Mellon University. All rights reserved.
|
||
|
*
|
||
|
* All use of this software is subject to the terms of the revised BSD
|
||
|
* license. You should have received a copy of this license along
|
||
|
* with this source code in a file named "LICENSE."
|
||
|
*
|
||
|
* @file collisionBox.I
|
||
|
* @author amith tudur
|
||
|
* @date 2009-07-31
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* Create the Box by giving a Center and distances of each of the sides of
|
||
|
* box from the Center.
|
||
|
*/
|
||
|
INLINE CollisionBox::
|
||
|
CollisionBox(const LPoint3 ¢er, PN_stdfloat x, PN_stdfloat y, PN_stdfloat z) :
|
||
|
_center(center), _x(x), _y(y), _z(z)
|
||
|
{
|
||
|
_min = LPoint3(_center.get_x() - _x, _center.get_y() - _y, _center.get_z() - _z);
|
||
|
_max = LPoint3(_center.get_x() + _x, _center.get_y() + _y, _center.get_z() + _z);
|
||
|
_radius = sqrt(_x*_x + _y*_y + _z*_z);
|
||
|
for(int v = 0; v < 8; v++)
|
||
|
_vertex[v] = get_point_aabb(v);
|
||
|
for(int p = 0; p < 6; p++)
|
||
|
_planes[p] = set_plane(p);
|
||
|
setup_box();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Create the Box by Specifying the Diagonal Points
|
||
|
*/
|
||
|
INLINE CollisionBox::
|
||
|
CollisionBox(const LPoint3 &min, const LPoint3 &max) :
|
||
|
_min(min), _max(max)
|
||
|
{
|
||
|
_center = (_min + _max) / 2;
|
||
|
_x = _center.get_x() - _min.get_x();
|
||
|
_y = _center.get_y() - _min.get_y();
|
||
|
_z = _center.get_z() - _min.get_z();
|
||
|
_radius = sqrt(_x*_x + _y*_y + _z*_z);
|
||
|
for(int v = 0; v < 8; v++)
|
||
|
_vertex[v] = get_point_aabb(v);
|
||
|
for(int p = 0; p < 6; p++)
|
||
|
_planes[p] = set_plane(p);
|
||
|
setup_box();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Creates an invalid Box. Only used when reading from a bam file.
|
||
|
*/
|
||
|
INLINE CollisionBox::
|
||
|
CollisionBox() {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE CollisionBox::
|
||
|
CollisionBox(const CollisionBox ©) :
|
||
|
CollisionSolid(copy),
|
||
|
_center(copy._center),
|
||
|
_min(copy._min),
|
||
|
_max(copy._max),
|
||
|
_x(copy._x ),
|
||
|
_y(copy._y ),
|
||
|
_z(copy._z ),
|
||
|
_radius(copy._radius )
|
||
|
{
|
||
|
for(int v = 0; v < 8; v++)
|
||
|
_vertex[v] = copy._vertex[v];
|
||
|
for(int p = 0; p < 6; p++)
|
||
|
_planes[p] = copy._planes[p];
|
||
|
setup_box();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Flushes the PStatCollectors used during traversal.
|
||
|
*/
|
||
|
INLINE void CollisionBox::
|
||
|
flush_level() {
|
||
|
_volume_pcollector.flush_level();
|
||
|
_test_pcollector.flush_level();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE void CollisionBox::
|
||
|
set_center(const LPoint3 ¢er) {
|
||
|
_center = center;
|
||
|
mark_internal_bounds_stale();
|
||
|
mark_viz_stale();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE void CollisionBox::
|
||
|
set_center(PN_stdfloat x, PN_stdfloat y, PN_stdfloat z) {
|
||
|
set_center(LPoint3(x, y, z));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE const LPoint3 &CollisionBox::
|
||
|
get_center() const {
|
||
|
return _center;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE const LPoint3 &CollisionBox::
|
||
|
get_min() const {
|
||
|
return _min;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE const LPoint3 &CollisionBox::
|
||
|
get_max() const {
|
||
|
return _max;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE LVector3 CollisionBox::
|
||
|
get_dimensions() const {
|
||
|
return _max - _min;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns 8: the number of vertices of a rectangular solid.
|
||
|
*/
|
||
|
INLINE int CollisionBox::
|
||
|
get_num_points() const {
|
||
|
return 8;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the nth vertex of the OBB.
|
||
|
*/
|
||
|
INLINE LPoint3 CollisionBox::
|
||
|
get_point(int n) const {
|
||
|
nassertr(n >= 0 && n < 8, LPoint3::zero());
|
||
|
return _vertex[n];
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Returns the nth vertex of the Axis Aligned Bounding Box.
|
||
|
*/
|
||
|
INLINE LPoint3 CollisionBox::
|
||
|
get_point_aabb(int n) const {
|
||
|
nassertr(n >= 0 && n < 8, LPoint3::zero());
|
||
|
|
||
|
// We do some trickery assuming that _min and _max are consecutive in
|
||
|
// memory.
|
||
|
const LPoint3 *a = &_min;
|
||
|
return LPoint3(a[(n>>2)&1][0], a[(n>>1)&1][1], a[(n)&1][2]);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns 6: the number of faces of a rectangular solid.
|
||
|
*/
|
||
|
INLINE int CollisionBox::
|
||
|
get_num_planes() const {
|
||
|
return 6;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the nth face of the rectangular solid.
|
||
|
*/
|
||
|
INLINE LPlane CollisionBox::
|
||
|
get_plane(int n) const {
|
||
|
nassertr(n >= 0 && n < 6, LPlane());
|
||
|
return _planes[n];
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Creates the nth face of the rectangular solid.
|
||
|
*/
|
||
|
INLINE LPlane CollisionBox::
|
||
|
set_plane(int n) const {
|
||
|
nassertr(n >= 0 && n < 6, LPlane());
|
||
|
return LPlane(get_point(plane_def[n][0]),
|
||
|
get_point(plane_def[n][1]),
|
||
|
get_point(plane_def[n][2]));
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Returns true if the 2-d v1 is to the right of v2.
|
||
|
*/
|
||
|
INLINE bool CollisionBox::
|
||
|
is_right(const LVector2 &v1, const LVector2 &v2) {
|
||
|
return (v1[0] * v2[1] - v1[1] * v2[0]) > 1.0e-6f;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the linear distance of p to the line defined by f and f+v, where v
|
||
|
* is a normalized vector. The result is negative if p is left of the line,
|
||
|
* positive if it is right of the line.
|
||
|
*/
|
||
|
INLINE PN_stdfloat CollisionBox::
|
||
|
dist_to_line(const LPoint2 &p,
|
||
|
const LPoint2 &f, const LVector2 &v) {
|
||
|
LVector2 v1 = (p - f);
|
||
|
return (v1[0] * v[1] - v1[1] * v[0]);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Assuming the indicated point in 3-d space lies within the polygon's plane,
|
||
|
* returns the corresponding point in the polygon's 2-d definition space.
|
||
|
*/
|
||
|
INLINE LPoint2 CollisionBox::
|
||
|
to_2d(const LVecBase3 &point3d, int plane) const {
|
||
|
LPoint3 point = LPoint3(point3d) * _to_2d_mat[plane];
|
||
|
return LPoint2(point[0], point[2]);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Fills the indicated matrix with the appropriate rotation transform to move
|
||
|
* points from the 2-d plane into the 3-d (X, 0, Z) plane.
|
||
|
*/
|
||
|
INLINE void CollisionBox::
|
||
|
calc_to_3d_mat(LMatrix4 &to_3d_mat,int plane) const {
|
||
|
// We have to be explicit about the coordinate system--we specifically mean
|
||
|
// CS_zup_right, because that points the forward vector down the Y axis and
|
||
|
// moves the coords in (X, 0, Z). We want this effect regardless of the
|
||
|
// user's coordinate system of choice.
|
||
|
|
||
|
// The up vector, on the other hand, is completely arbitrary.
|
||
|
|
||
|
look_at(to_3d_mat, -get_plane(plane).get_normal(),
|
||
|
LVector3(0.0f, 0.0f, 1.0f), CS_zup_right);
|
||
|
to_3d_mat.set_row(3, get_plane(plane).get_point());
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Fills the indicated matrix with the appropriate rotation transform to move
|
||
|
* points from the 2-d plane into the 3-d (X, 0, Z) plane.
|
||
|
*
|
||
|
* This is essentially similar to calc_to_3d_mat, except that the matrix is
|
||
|
* rederived from whatever is stored in _to_2d_mat, guaranteeing that it will
|
||
|
* match whatever algorithm produced that one, even if it was produced on a
|
||
|
* different machine with different numerical precision.
|
||
|
*/
|
||
|
INLINE void CollisionBox::
|
||
|
rederive_to_3d_mat(LMatrix4 &to_3d_mat, int plane) const {
|
||
|
to_3d_mat.invert_from(_to_2d_mat[plane]);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Extrude the indicated point in the polygon's 2-d definition space back into
|
||
|
* 3-d coordinates.
|
||
|
*/
|
||
|
INLINE LPoint3 CollisionBox::
|
||
|
to_3d(const LVecBase2 &point2d, const LMatrix4 &to_3d_mat) {
|
||
|
return LPoint3(point2d[0], 0.0f, point2d[1]) * to_3d_mat;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE CollisionBox::PointDef::
|
||
|
PointDef(const LPoint2 &p, const LVector2 &v) : _p(p), _v(v) {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE CollisionBox::PointDef::
|
||
|
PointDef(PN_stdfloat x, PN_stdfloat y) : _p(x, y), _v(0.0f, 0.0f) {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE CollisionBox::PointDef::
|
||
|
PointDef(const CollisionBox::PointDef ©) : _p(copy._p), _v(copy._v) {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
INLINE void CollisionBox::PointDef::
|
||
|
operator = (const CollisionBox::PointDef ©) {
|
||
|
_p = copy._p;
|
||
|
_v = copy._v;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* returns the points that form the nth plane
|
||
|
*/
|
||
|
INLINE CollisionBox::Points CollisionBox::
|
||
|
get_plane_points(int n) {
|
||
|
return _points[n];
|
||
|
}
|