historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/capstone/arch/X86/X86DisassemblerDecoder.c

2407 lines
67 KiB
C
Raw Normal View History

2024-01-16 11:20:27 -06:00
/*===-- X86DisassemblerDecoder.c - Disassembler decoder ------------*- C -*-===*
*
* The LLVM Compiler Infrastructure
*
* This file is distributed under the University of Illinois Open Source
* License. See LICENSE.TXT for details.
*
*===----------------------------------------------------------------------===*
*
* This file is part of the X86 Disassembler.
* It contains the implementation of the instruction decoder.
* Documentation for the disassembler can be found in X86Disassembler.h.
*
*===----------------------------------------------------------------------===*/
/* Capstone Disassembly Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2014 */
#ifdef CAPSTONE_HAS_X86
#include <stdarg.h> /* for va_*() */
#if defined(CAPSTONE_HAS_OSXKERNEL)
#include <libkern/libkern.h>
#else
#include <stdlib.h> /* for exit() */
#endif
#include "../../cs_priv.h"
#include "../../utils.h"
#include "X86DisassemblerDecoder.h"
/// Specifies whether a ModR/M byte is needed and (if so) which
/// instruction each possible value of the ModR/M byte corresponds to. Once
/// this information is known, we have narrowed down to a single instruction.
struct ModRMDecision {
uint8_t modrm_type;
uint16_t instructionIDs;
};
/// Specifies which set of ModR/M->instruction tables to look at
/// given a particular opcode.
struct OpcodeDecision {
struct ModRMDecision modRMDecisions[256];
};
/// Specifies which opcode->instruction tables to look at given
/// a particular context (set of attributes). Since there are many possible
/// contexts, the decoder first uses CONTEXTS_SYM to determine which context
/// applies given a specific set of attributes. Hence there are only IC_max
/// entries in this table, rather than 2^(ATTR_max).
struct ContextDecision {
struct OpcodeDecision opcodeDecisions[IC_max];
};
#ifdef CAPSTONE_X86_REDUCE
#include "X86GenDisassemblerTables_reduce.inc"
#else
#include "X86GenDisassemblerTables.inc"
#endif
//#define GET_INSTRINFO_ENUM
#define GET_INSTRINFO_MC_DESC
#ifdef CAPSTONE_X86_REDUCE
#include "X86GenInstrInfo_reduce.inc"
#else
#include "X86GenInstrInfo.inc"
#endif
/*
* contextForAttrs - Client for the instruction context table. Takes a set of
* attributes and returns the appropriate decode context.
*
* @param attrMask - Attributes, from the enumeration attributeBits.
* @return - The InstructionContext to use when looking up an
* an instruction with these attributes.
*/
static InstructionContext contextForAttrs(uint16_t attrMask)
{
return CONTEXTS_SYM[attrMask];
}
/*
* modRMRequired - Reads the appropriate instruction table to determine whether
* the ModR/M byte is required to decode a particular instruction.
*
* @param type - The opcode type (i.e., how many bytes it has).
* @param insnContext - The context for the instruction, as returned by
* contextForAttrs.
* @param opcode - The last byte of the instruction's opcode, not counting
* ModR/M extensions and escapes.
* @return - true if the ModR/M byte is required, false otherwise.
*/
static int modRMRequired(OpcodeType type,
InstructionContext insnContext,
uint16_t opcode)
{
const struct OpcodeDecision *decision = NULL;
const uint8_t *indextable = NULL;
uint8_t index;
switch (type) {
default:
case ONEBYTE:
decision = ONEBYTE_SYM;
indextable = index_x86DisassemblerOneByteOpcodes;
break;
case TWOBYTE:
decision = TWOBYTE_SYM;
indextable = index_x86DisassemblerTwoByteOpcodes;
break;
case THREEBYTE_38:
decision = THREEBYTE38_SYM;
indextable = index_x86DisassemblerThreeByte38Opcodes;
break;
case THREEBYTE_3A:
decision = THREEBYTE3A_SYM;
indextable = index_x86DisassemblerThreeByte3AOpcodes;
break;
#ifndef CAPSTONE_X86_REDUCE
case XOP8_MAP:
decision = XOP8_MAP_SYM;
indextable = index_x86DisassemblerXOP8Opcodes;
break;
case XOP9_MAP:
decision = XOP9_MAP_SYM;
indextable = index_x86DisassemblerXOP9Opcodes;
break;
case XOPA_MAP:
decision = XOPA_MAP_SYM;
indextable = index_x86DisassemblerXOPAOpcodes;
break;
case T3DNOW_MAP:
// 3DNow instructions always have ModRM byte
return true;
#endif
}
index = indextable[insnContext];
if (index)
return decision[index - 1].modRMDecisions[opcode].modrm_type != MODRM_ONEENTRY;
else
return false;
}
/*
* decode - Reads the appropriate instruction table to obtain the unique ID of
* an instruction.
*
* @param type - See modRMRequired().
* @param insnContext - See modRMRequired().
* @param opcode - See modRMRequired().
* @param modRM - The ModR/M byte if required, or any value if not.
* @return - The UID of the instruction, or 0 on failure.
*/
static InstrUID decode(OpcodeType type,
InstructionContext insnContext,
uint8_t opcode,
uint8_t modRM)
{
const struct ModRMDecision *dec = NULL;
const uint8_t *indextable = NULL;
uint8_t index;
switch (type) {
default:
case ONEBYTE:
indextable = index_x86DisassemblerOneByteOpcodes;
index = indextable[insnContext];
if (index)
dec = &ONEBYTE_SYM[index - 1].modRMDecisions[opcode];
else
dec = &emptyTable.modRMDecisions[opcode];
break;
case TWOBYTE:
indextable = index_x86DisassemblerTwoByteOpcodes;
index = indextable[insnContext];
if (index)
dec = &TWOBYTE_SYM[index - 1].modRMDecisions[opcode];
else
dec = &emptyTable.modRMDecisions[opcode];
break;
case THREEBYTE_38:
indextable = index_x86DisassemblerThreeByte38Opcodes;
index = indextable[insnContext];
if (index)
dec = &THREEBYTE38_SYM[index - 1].modRMDecisions[opcode];
else
dec = &emptyTable.modRMDecisions[opcode];
break;
case THREEBYTE_3A:
indextable = index_x86DisassemblerThreeByte3AOpcodes;
index = indextable[insnContext];
if (index)
dec = &THREEBYTE3A_SYM[index - 1].modRMDecisions[opcode];
else
dec = &emptyTable.modRMDecisions[opcode];
break;
#ifndef CAPSTONE_X86_REDUCE
case XOP8_MAP:
indextable = index_x86DisassemblerXOP8Opcodes;
index = indextable[insnContext];
if (index)
dec = &XOP8_MAP_SYM[index - 1].modRMDecisions[opcode];
else
dec = &emptyTable.modRMDecisions[opcode];
break;
case XOP9_MAP:
indextable = index_x86DisassemblerXOP9Opcodes;
index = indextable[insnContext];
if (index)
dec = &XOP9_MAP_SYM[index - 1].modRMDecisions[opcode];
else
dec = &emptyTable.modRMDecisions[opcode];
break;
case XOPA_MAP:
indextable = index_x86DisassemblerXOPAOpcodes;
index = indextable[insnContext];
if (index)
dec = &XOPA_MAP_SYM[index - 1].modRMDecisions[opcode];
else
dec = &emptyTable.modRMDecisions[opcode];
break;
case T3DNOW_MAP:
indextable = index_x86DisassemblerT3DNOWOpcodes;
index = indextable[insnContext];
if (index)
dec = &T3DNOW_MAP_SYM[index - 1].modRMDecisions[opcode];
else
dec = &emptyTable.modRMDecisions[opcode];
break;
#endif
}
switch (dec->modrm_type) {
default:
//debug("Corrupt table! Unknown modrm_type");
return 0;
case MODRM_ONEENTRY:
return modRMTable[dec->instructionIDs];
case MODRM_SPLITRM:
if (modFromModRM(modRM) == 0x3)
return modRMTable[dec->instructionIDs+1];
return modRMTable[dec->instructionIDs];
case MODRM_SPLITREG:
if (modFromModRM(modRM) == 0x3)
return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
case MODRM_SPLITMISC:
if (modFromModRM(modRM) == 0x3)
return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8];
return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
case MODRM_FULL:
return modRMTable[dec->instructionIDs+modRM];
}
}
/*
* specifierForUID - Given a UID, returns the name and operand specification for
* that instruction.
*
* @param uid - The unique ID for the instruction. This should be returned by
* decode(); specifierForUID will not check bounds.
* @return - A pointer to the specification for that instruction.
*/
static const struct InstructionSpecifier *specifierForUID(InstrUID uid)
{
return &INSTRUCTIONS_SYM[uid];
}
/*
* consumeByte - Uses the reader function provided by the user to consume one
* byte from the instruction's memory and advance the cursor.
*
* @param insn - The instruction with the reader function to use. The cursor
* for this instruction is advanced.
* @param byte - A pointer to a pre-allocated memory buffer to be populated
* with the data read.
* @return - 0 if the read was successful; nonzero otherwise.
*/
static int consumeByte(struct InternalInstruction *insn, uint8_t *byte)
{
int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
if (!ret)
++(insn->readerCursor);
return ret;
}
/*
* lookAtByte - Like consumeByte, but does not advance the cursor.
*
* @param insn - See consumeByte().
* @param byte - See consumeByte().
* @return - See consumeByte().
*/
static int lookAtByte(struct InternalInstruction *insn, uint8_t *byte)
{
return insn->reader(insn->readerArg, byte, insn->readerCursor);
}
static void unconsumeByte(struct InternalInstruction *insn)
{
insn->readerCursor--;
}
#define CONSUME_FUNC(name, type) \
static int name(struct InternalInstruction *insn, type *ptr) { \
type combined = 0; \
unsigned offset; \
for (offset = 0; offset < sizeof(type); ++offset) { \
uint8_t byte; \
int ret = insn->reader(insn->readerArg, \
&byte, \
insn->readerCursor + offset); \
if (ret) \
return ret; \
combined = combined | (type)((uint64_t)byte << (offset * 8)); \
} \
*ptr = combined; \
insn->readerCursor += sizeof(type); \
return 0; \
}
/*
* consume* - Use the reader function provided by the user to consume data
* values of various sizes from the instruction's memory and advance the
* cursor appropriately. These readers perform endian conversion.
*
* @param insn - See consumeByte().
* @param ptr - A pointer to a pre-allocated memory of appropriate size to
* be populated with the data read.
* @return - See consumeByte().
*/
CONSUME_FUNC(consumeInt8, int8_t)
CONSUME_FUNC(consumeInt16, int16_t)
CONSUME_FUNC(consumeInt32, int32_t)
CONSUME_FUNC(consumeUInt16, uint16_t)
CONSUME_FUNC(consumeUInt32, uint32_t)
CONSUME_FUNC(consumeUInt64, uint64_t)
/*
* setPrefixPresent - Marks that a particular prefix is present at a particular
* location.
*
* @param insn - The instruction to be marked as having the prefix.
* @param prefix - The prefix that is present.
* @param location - The location where the prefix is located (in the address
* space of the instruction's reader).
*/
static void setPrefixPresent(struct InternalInstruction *insn,
uint8_t prefix, uint64_t location)
{
switch (prefix) {
case 0x26:
insn->isPrefix26 = true;
insn->prefix26 = location;
break;
case 0x2e:
insn->isPrefix2e = true;
insn->prefix2e = location;
break;
case 0x36:
insn->isPrefix36 = true;
insn->prefix36 = location;
break;
case 0x3e:
insn->isPrefix3e = true;
insn->prefix3e = location;
break;
case 0x64:
insn->isPrefix64 = true;
insn->prefix64 = location;
break;
case 0x65:
insn->isPrefix65 = true;
insn->prefix65 = location;
break;
case 0x66:
insn->isPrefix66 = true;
insn->prefix66 = location;
break;
case 0x67:
insn->isPrefix67 = true;
insn->prefix67 = location;
break;
case 0xf0:
insn->isPrefixf0 = true;
insn->prefixf0 = location;
break;
case 0xf2:
insn->isPrefixf2 = true;
insn->prefixf2 = location;
break;
case 0xf3:
insn->isPrefixf3 = true;
insn->prefixf3 = location;
break;
default:
break;
}
}
/*
* isPrefixAtLocation - Queries an instruction to determine whether a prefix is
* present at a given location.
*
* @param insn - The instruction to be queried.
* @param prefix - The prefix.
* @param location - The location to query.
* @return - Whether the prefix is at that location.
*/
static bool isPrefixAtLocation(struct InternalInstruction *insn, uint8_t prefix,
uint64_t location)
{
switch (prefix) {
case 0x26:
if (insn->isPrefix26 && insn->prefix26 == location)
return true;
break;
case 0x2e:
if (insn->isPrefix2e && insn->prefix2e == location)
return true;
break;
case 0x36:
if (insn->isPrefix36 && insn->prefix36 == location)
return true;
break;
case 0x3e:
if (insn->isPrefix3e && insn->prefix3e == location)
return true;
break;
case 0x64:
if (insn->isPrefix64 && insn->prefix64 == location)
return true;
break;
case 0x65:
if (insn->isPrefix65 && insn->prefix65 == location)
return true;
break;
case 0x66:
if (insn->isPrefix66 && insn->prefix66 == location)
return true;
break;
case 0x67:
if (insn->isPrefix67 && insn->prefix67 == location)
return true;
break;
case 0xf0:
if (insn->isPrefixf0 && insn->prefixf0 == location)
return true;
break;
case 0xf2:
if (insn->isPrefixf2 && insn->prefixf2 == location)
return true;
break;
case 0xf3:
if (insn->isPrefixf3 && insn->prefixf3 == location)
return true;
break;
default:
break;
}
return false;
}
/*
* readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
* instruction as having them. Also sets the instruction's default operand,
* address, and other relevant data sizes to report operands correctly.
*
* @param insn - The instruction whose prefixes are to be read.
* @return - 0 if the instruction could be read until the end of the prefix
* bytes, and no prefixes conflicted; nonzero otherwise.
*/
static int readPrefixes(struct InternalInstruction *insn)
{
bool isPrefix = true;
uint64_t prefixLocation;
uint8_t byte = 0, nextByte;
bool hasAdSize = false;
bool hasOpSize = false;
while (isPrefix) {
if (insn->mode == MODE_64BIT) {
// eliminate consecutive redundant REX bytes in front
if (consumeByte(insn, &byte))
return -1;
if ((byte & 0xf0) == 0x40) {
while(true) {
if (lookAtByte(insn, &byte)) // out of input code
return -1;
if ((byte & 0xf0) == 0x40) {
// another REX prefix, but we only remember the last one
if (consumeByte(insn, &byte))
return -1;
} else
break;
}
// recover the last REX byte if next byte is not a legacy prefix
switch (byte) {
case 0xf2: /* REPNE/REPNZ */
case 0xf3: /* REP or REPE/REPZ */
case 0xf0: /* LOCK */
case 0x2e: /* CS segment override -OR- Branch not taken */
case 0x36: /* SS segment override -OR- Branch taken */
case 0x3e: /* DS segment override */
case 0x26: /* ES segment override */
case 0x64: /* FS segment override */
case 0x65: /* GS segment override */
case 0x66: /* Operand-size override */
case 0x67: /* Address-size override */
break;
default: /* Not a prefix byte */
unconsumeByte(insn);
break;
}
} else {
unconsumeByte(insn);
}
}
prefixLocation = insn->readerCursor;
/* If we fail reading prefixes, just stop here and let the opcode reader deal with it */
if (consumeByte(insn, &byte))
return -1;
if (insn->readerCursor - 1 == insn->startLocation
&& (byte == 0xf2 || byte == 0xf3)) {
if (lookAtByte(insn, &nextByte))
return -1;
/*
* If the byte is 0xf2 or 0xf3, and any of the following conditions are
* met:
* - it is followed by a LOCK (0xf0) prefix
* - it is followed by an xchg instruction
* then it should be disassembled as a xacquire/xrelease not repne/rep.
*/
if ((byte == 0xf2 || byte == 0xf3) &&
((nextByte == 0xf0) |
((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90)))
insn->xAcquireRelease = true;
/*
* Also if the byte is 0xf3, and the following condition is met:
* - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
* "mov mem, imm" (opcode 0xc6/0xc7) instructions.
* then it should be disassembled as an xrelease not rep.
*/
if (byte == 0xf3 &&
(nextByte == 0x88 || nextByte == 0x89 ||
nextByte == 0xc6 || nextByte == 0xc7))
insn->xAcquireRelease = true;
if (insn->mode == MODE_64BIT && (nextByte & 0xf0) == 0x40) {
if (consumeByte(insn, &nextByte))
return -1;
if (lookAtByte(insn, &nextByte))
return -1;
unconsumeByte(insn);
}
}
switch (byte) {
case 0xf2: /* REPNE/REPNZ */
case 0xf3: /* REP or REPE/REPZ */
case 0xf0: /* LOCK */
// only accept the last prefix
insn->isPrefixf2 = false;
insn->isPrefixf3 = false;
insn->isPrefixf0 = false;
setPrefixPresent(insn, byte, prefixLocation);
insn->prefix0 = byte;
break;
case 0x2e: /* CS segment override -OR- Branch not taken */
insn->segmentOverride = SEG_OVERRIDE_CS;
// only accept the last prefix
insn->isPrefix2e = false;
insn->isPrefix36 = false;
insn->isPrefix3e = false;
insn->isPrefix26 = false;
insn->isPrefix64 = false;
insn->isPrefix65 = false;
setPrefixPresent(insn, byte, prefixLocation);
insn->prefix1 = byte;
break;
case 0x36: /* SS segment override -OR- Branch taken */
insn->segmentOverride = SEG_OVERRIDE_SS;
// only accept the last prefix
insn->isPrefix2e = false;
insn->isPrefix36 = false;
insn->isPrefix3e = false;
insn->isPrefix26 = false;
insn->isPrefix64 = false;
insn->isPrefix65 = false;
setPrefixPresent(insn, byte, prefixLocation);
insn->prefix1 = byte;
break;
case 0x3e: /* DS segment override */
insn->segmentOverride = SEG_OVERRIDE_DS;
// only accept the last prefix
insn->isPrefix2e = false;
insn->isPrefix36 = false;
insn->isPrefix3e = false;
insn->isPrefix26 = false;
insn->isPrefix64 = false;
insn->isPrefix65 = false;
setPrefixPresent(insn, byte, prefixLocation);
insn->prefix1 = byte;
break;
case 0x26: /* ES segment override */
insn->segmentOverride = SEG_OVERRIDE_ES;
// only accept the last prefix
insn->isPrefix2e = false;
insn->isPrefix36 = false;
insn->isPrefix3e = false;
insn->isPrefix26 = false;
insn->isPrefix64 = false;
insn->isPrefix65 = false;
setPrefixPresent(insn, byte, prefixLocation);
insn->prefix1 = byte;
break;
case 0x64: /* FS segment override */
insn->segmentOverride = SEG_OVERRIDE_FS;
// only accept the last prefix
insn->isPrefix2e = false;
insn->isPrefix36 = false;
insn->isPrefix3e = false;
insn->isPrefix26 = false;
insn->isPrefix64 = false;
insn->isPrefix65 = false;
setPrefixPresent(insn, byte, prefixLocation);
insn->prefix1 = byte;
break;
case 0x65: /* GS segment override */
insn->segmentOverride = SEG_OVERRIDE_GS;
// only accept the last prefix
insn->isPrefix2e = false;
insn->isPrefix36 = false;
insn->isPrefix3e = false;
insn->isPrefix26 = false;
insn->isPrefix64 = false;
insn->isPrefix65 = false;
setPrefixPresent(insn, byte, prefixLocation);
insn->prefix1 = byte;
break;
case 0x66: /* Operand-size override */
hasOpSize = true;
setPrefixPresent(insn, byte, prefixLocation);
insn->prefix2 = byte;
break;
case 0x67: /* Address-size override */
hasAdSize = true;
setPrefixPresent(insn, byte, prefixLocation);
insn->prefix3 = byte;
break;
default: /* Not a prefix byte */
isPrefix = false;
break;
}
//if (isPrefix)
// dbgprintf(insn, "Found prefix 0x%hhx", byte);
}
insn->vectorExtensionType = TYPE_NO_VEX_XOP;
if (byte == 0x62) {
uint8_t byte1, byte2;
if (consumeByte(insn, &byte1)) {
//dbgprintf(insn, "Couldn't read second byte of EVEX prefix");
return -1;
}
if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
((~byte1 & 0xc) == 0xc)) {
if (lookAtByte(insn, &byte2)) {
//dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
return -1;
}
if ((byte2 & 0x4) == 0x4) {
insn->vectorExtensionType = TYPE_EVEX;
} else {
unconsumeByte(insn); /* unconsume byte1 */
unconsumeByte(insn); /* unconsume byte */
insn->necessaryPrefixLocation = insn->readerCursor - 2;
}
if (insn->vectorExtensionType == TYPE_EVEX) {
insn->vectorExtensionPrefix[0] = byte;
insn->vectorExtensionPrefix[1] = byte1;
if (consumeByte(insn, &insn->vectorExtensionPrefix[2])) {
//dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
return -1;
}
if (consumeByte(insn, &insn->vectorExtensionPrefix[3])) {
//dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix");
return -1;
}
/* We simulate the REX prefix for simplicity's sake */
if (insn->mode == MODE_64BIT) {
insn->rexPrefix = 0x40
| (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3)
| (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2)
| (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1)
| (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
}
switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
default:
break;
case VEX_PREFIX_66:
hasOpSize = true;
break;
}
//dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
// insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
// insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]);
}
} else {
// BOUND instruction
unconsumeByte(insn); /* unconsume byte1 */
unconsumeByte(insn); /* unconsume byte */
}
} else if (byte == 0xc4) {
uint8_t byte1;
if (lookAtByte(insn, &byte1)) {
//dbgprintf(insn, "Couldn't read second byte of VEX");
return -1;
}
if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
insn->vectorExtensionType = TYPE_VEX_3B;
insn->necessaryPrefixLocation = insn->readerCursor - 1;
} else {
unconsumeByte(insn);
insn->necessaryPrefixLocation = insn->readerCursor - 1;
}
if (insn->vectorExtensionType == TYPE_VEX_3B) {
insn->vectorExtensionPrefix[0] = byte;
if (consumeByte(insn, &insn->vectorExtensionPrefix[1]))
return -1;
if (consumeByte(insn, &insn->vectorExtensionPrefix[2]))
return -1;
/* We simulate the REX prefix for simplicity's sake */
if (insn->mode == MODE_64BIT) {
insn->rexPrefix = 0x40
| (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3)
| (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2)
| (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1)
| (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
}
switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
default:
break;
case VEX_PREFIX_66:
hasOpSize = true;
break;
}
}
} else if (byte == 0xc5) {
uint8_t byte1;
if (lookAtByte(insn, &byte1)) {
//dbgprintf(insn, "Couldn't read second byte of VEX");
return -1;
}
if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
insn->vectorExtensionType = TYPE_VEX_2B;
} else {
unconsumeByte(insn);
}
if (insn->vectorExtensionType == TYPE_VEX_2B) {
insn->vectorExtensionPrefix[0] = byte;
if (consumeByte(insn, &insn->vectorExtensionPrefix[1]))
return -1;
if (insn->mode == MODE_64BIT) {
insn->rexPrefix = 0x40
| (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
}
switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
default:
break;
case VEX_PREFIX_66:
hasOpSize = true;
break;
}
}
} else if (byte == 0x8f) {
uint8_t byte1;
if (lookAtByte(insn, &byte1)) {
// dbgprintf(insn, "Couldn't read second byte of XOP");
return -1;
}
if ((byte1 & 0x38) != 0x0) { /* 0 in these 3 bits is a POP instruction. */
insn->vectorExtensionType = TYPE_XOP;
insn->necessaryPrefixLocation = insn->readerCursor - 1;
} else {
unconsumeByte(insn);
insn->necessaryPrefixLocation = insn->readerCursor - 1;
}
if (insn->vectorExtensionType == TYPE_XOP) {
insn->vectorExtensionPrefix[0] = byte;
if (consumeByte(insn, &insn->vectorExtensionPrefix[1]))
return -1;
if (consumeByte(insn, &insn->vectorExtensionPrefix[2]))
return -1;
/* We simulate the REX prefix for simplicity's sake */
if (insn->mode == MODE_64BIT) {
insn->rexPrefix = 0x40
| (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3)
| (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2)
| (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1)
| (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
}
switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
default:
break;
case VEX_PREFIX_66:
hasOpSize = true;
break;
}
}
} else {
if (insn->mode == MODE_64BIT) {
if ((byte & 0xf0) == 0x40) {
uint8_t opcodeByte;
while(true) {
if (lookAtByte(insn, &opcodeByte)) // out of input code
return -1;
if ((opcodeByte & 0xf0) == 0x40) {
// another REX prefix, but we only remember the last one
if (consumeByte(insn, &byte))
return -1;
} else
break;
}
insn->rexPrefix = byte;
insn->necessaryPrefixLocation = insn->readerCursor - 2;
// dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
} else {
unconsumeByte(insn);
insn->necessaryPrefixLocation = insn->readerCursor - 1;
}
} else {
unconsumeByte(insn);
insn->necessaryPrefixLocation = insn->readerCursor - 1;
}
}
if (insn->mode == MODE_16BIT) {
insn->registerSize = (hasOpSize ? 4 : 2);
insn->addressSize = (hasAdSize ? 4 : 2);
insn->displacementSize = (hasAdSize ? 4 : 2);
insn->immediateSize = (hasOpSize ? 4 : 2);
insn->immSize = (hasOpSize ? 4 : 2);
} else if (insn->mode == MODE_32BIT) {
insn->registerSize = (hasOpSize ? 2 : 4);
insn->addressSize = (hasAdSize ? 2 : 4);
insn->displacementSize = (hasAdSize ? 2 : 4);
insn->immediateSize = (hasOpSize ? 2 : 4);
insn->immSize = (hasOpSize ? 2 : 4);
} else if (insn->mode == MODE_64BIT) {
if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
insn->registerSize = 8;
insn->addressSize = (hasAdSize ? 4 : 8);
insn->displacementSize = 4;
insn->immediateSize = 4;
insn->immSize = 4;
} else if (insn->rexPrefix) {
insn->registerSize = (hasOpSize ? 2 : 4);
insn->addressSize = (hasAdSize ? 4 : 8);
insn->displacementSize = (hasOpSize ? 2 : 4);
insn->immediateSize = (hasOpSize ? 2 : 4);
insn->immSize = (hasOpSize ? 2 : 4);
} else {
insn->registerSize = (hasOpSize ? 2 : 4);
insn->addressSize = (hasAdSize ? 4 : 8);
insn->displacementSize = (hasOpSize ? 2 : 4);
insn->immediateSize = (hasOpSize ? 2 : 4);
insn->immSize = (hasOpSize ? 4 : 8);
}
}
return 0;
}
static int readModRM(struct InternalInstruction *insn);
/*
* readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
* extended or escape opcodes).
*
* @param insn - The instruction whose opcode is to be read.
* @return - 0 if the opcode could be read successfully; nonzero otherwise.
*/
static int readOpcode(struct InternalInstruction *insn)
{
/* Determine the length of the primary opcode */
uint8_t current;
// printf(">>> readOpcode() = %x\n", insn->readerCursor);
insn->opcodeType = ONEBYTE;
insn->firstByte = 0x00;
if (insn->vectorExtensionType == TYPE_EVEX) {
switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
default:
// dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)",
// mmFromEVEX2of4(insn->vectorExtensionPrefix[1]));
return -1;
case VEX_LOB_0F:
insn->opcodeType = TWOBYTE;
return consumeByte(insn, &insn->opcode);
case VEX_LOB_0F38:
insn->opcodeType = THREEBYTE_38;
return consumeByte(insn, &insn->opcode);
case VEX_LOB_0F3A:
insn->opcodeType = THREEBYTE_3A;
return consumeByte(insn, &insn->opcode);
}
} else if (insn->vectorExtensionType == TYPE_VEX_3B) {
switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
default:
// dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
// mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
return -1;
case VEX_LOB_0F:
insn->twoByteEscape = 0x0f;
insn->opcodeType = TWOBYTE;
return consumeByte(insn, &insn->opcode);
case VEX_LOB_0F38:
insn->twoByteEscape = 0x0f;
insn->threeByteEscape = 0x38;
insn->opcodeType = THREEBYTE_38;
return consumeByte(insn, &insn->opcode);
case VEX_LOB_0F3A:
insn->twoByteEscape = 0x0f;
insn->threeByteEscape = 0x3a;
insn->opcodeType = THREEBYTE_3A;
return consumeByte(insn, &insn->opcode);
}
} else if (insn->vectorExtensionType == TYPE_VEX_2B) {
insn->twoByteEscape = 0x0f;
insn->opcodeType = TWOBYTE;
return consumeByte(insn, &insn->opcode);
} else if (insn->vectorExtensionType == TYPE_XOP) {
switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
default:
// dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
// mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
return -1;
case XOP_MAP_SELECT_8:
// FIXME: twoByteEscape?
insn->opcodeType = XOP8_MAP;
return consumeByte(insn, &insn->opcode);
case XOP_MAP_SELECT_9:
// FIXME: twoByteEscape?
insn->opcodeType = XOP9_MAP;
return consumeByte(insn, &insn->opcode);
case XOP_MAP_SELECT_A:
// FIXME: twoByteEscape?
insn->opcodeType = XOPA_MAP;
return consumeByte(insn, &insn->opcode);
}
}
if (consumeByte(insn, &current))
return -1;
// save this first byte for MOVcr, MOVdr, MOVrc, MOVrd
insn->firstByte = current;
if (current == 0x0f) {
// dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
insn->twoByteEscape = current;
if (consumeByte(insn, &current))
return -1;
if (current == 0x38) {
// dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
insn->threeByteEscape = current;
if (consumeByte(insn, &current))
return -1;
insn->opcodeType = THREEBYTE_38;
} else if (current == 0x3a) {
// dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
insn->threeByteEscape = current;
if (consumeByte(insn, &current))
return -1;
insn->opcodeType = THREEBYTE_3A;
} else {
#ifndef CAPSTONE_X86_REDUCE
switch(current) {
default:
// dbgprintf(insn, "Didn't find a three-byte escape prefix");
insn->opcodeType = TWOBYTE;
break;
case 0x0e: // HACK for femms. to be handled properly in next version 3.x
insn->opcodeType = T3DNOW_MAP;
// this encode does not have ModRM
insn->consumedModRM = true;
break;
case 0x0f:
// 3DNow instruction has weird format: ModRM/SIB/displacement + opcode
if (readModRM(insn))
return -1;
// next is 3DNow opcode
if (consumeByte(insn, &current))
return -1;
insn->opcodeType = T3DNOW_MAP;
break;
}
#endif
}
}
/*
* At this point we have consumed the full opcode.
* Anything we consume from here on must be unconsumed.
*/
insn->opcode = current;
return 0;
}
// Hacky for FEMMS
#define GET_INSTRINFO_ENUM
#ifndef CAPSTONE_X86_REDUCE
#include "X86GenInstrInfo.inc"
#else
#include "X86GenInstrInfo_reduce.inc"
#endif
/*
* getIDWithAttrMask - Determines the ID of an instruction, consuming
* the ModR/M byte as appropriate for extended and escape opcodes,
* and using a supplied attribute mask.
*
* @param instructionID - A pointer whose target is filled in with the ID of the
* instruction.
* @param insn - The instruction whose ID is to be determined.
* @param attrMask - The attribute mask to search.
* @return - 0 if the ModR/M could be read when needed or was not
* needed; nonzero otherwise.
*/
static int getIDWithAttrMask(uint16_t *instructionID,
struct InternalInstruction *insn,
uint16_t attrMask)
{
bool hasModRMExtension;
InstructionContext instructionClass;
#ifndef CAPSTONE_X86_REDUCE
// HACK for femms. to be handled properly in next version 3.x
if (insn->opcode == 0x0e && insn->opcodeType == T3DNOW_MAP) {
*instructionID = X86_FEMMS;
return 0;
}
#endif
if (insn->opcodeType == T3DNOW_MAP)
instructionClass = IC_OF;
else
instructionClass = contextForAttrs(attrMask);
hasModRMExtension = modRMRequired(insn->opcodeType,
instructionClass,
insn->opcode) != 0;
if (hasModRMExtension) {
if (readModRM(insn))
return -1;
*instructionID = decode(insn->opcodeType,
instructionClass,
insn->opcode,
insn->modRM);
} else {
*instructionID = decode(insn->opcodeType,
instructionClass,
insn->opcode,
0);
}
return 0;
}
/*
* is16BitEquivalent - Determines whether two instruction names refer to
* equivalent instructions but one is 16-bit whereas the other is not.
*
* @param orig - The instruction ID that is not 16-bit
* @param equiv - The instruction ID that is 16-bit
*/
static bool is16BitEquivalent(unsigned orig, unsigned equiv)
{
size_t i;
uint16_t idx;
if ((idx = x86_16_bit_eq_lookup[orig]) != 0) {
for (i = idx - 1; i < ARR_SIZE(x86_16_bit_eq_tbl) && x86_16_bit_eq_tbl[i].first == orig; i++) {
if (x86_16_bit_eq_tbl[i].second == equiv)
return true;
}
}
return false;
}
/*
* getID - Determines the ID of an instruction, consuming the ModR/M byte as
* appropriate for extended and escape opcodes. Determines the attributes and
* context for the instruction before doing so.
*
* @param insn - The instruction whose ID is to be determined.
* @return - 0 if the ModR/M could be read when needed or was not needed;
* nonzero otherwise.
*/
static int getID(struct InternalInstruction *insn)
{
uint16_t attrMask;
uint16_t instructionID;
const struct InstructionSpecifier *spec;
// printf(">>> getID()\n");
attrMask = ATTR_NONE;
if (insn->mode == MODE_64BIT)
attrMask |= ATTR_64BIT;
if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
if (insn->vectorExtensionType == TYPE_EVEX) {
switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
case VEX_PREFIX_66:
attrMask |= ATTR_OPSIZE;
break;
case VEX_PREFIX_F3:
attrMask |= ATTR_XS;
break;
case VEX_PREFIX_F2:
attrMask |= ATTR_XD;
break;
}
if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
attrMask |= ATTR_EVEXKZ;
if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
attrMask |= ATTR_EVEXB;
if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
attrMask |= ATTR_EVEXK;
if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
attrMask |= ATTR_EVEXL;
if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
attrMask |= ATTR_EVEXL2;
} else if (insn->vectorExtensionType == TYPE_VEX_3B) {
switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
case VEX_PREFIX_66:
attrMask |= ATTR_OPSIZE;
break;
case VEX_PREFIX_F3:
attrMask |= ATTR_XS;
break;
case VEX_PREFIX_F2:
attrMask |= ATTR_XD;
break;
}
if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
attrMask |= ATTR_VEXL;
} else if (insn->vectorExtensionType == TYPE_VEX_2B) {
switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
case VEX_PREFIX_66:
attrMask |= ATTR_OPSIZE;
break;
case VEX_PREFIX_F3:
attrMask |= ATTR_XS;
break;
case VEX_PREFIX_F2:
attrMask |= ATTR_XD;
break;
}
if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
attrMask |= ATTR_VEXL;
} else if (insn->vectorExtensionType == TYPE_XOP) {
switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
case VEX_PREFIX_66:
attrMask |= ATTR_OPSIZE;
break;
case VEX_PREFIX_F3:
attrMask |= ATTR_XS;
break;
case VEX_PREFIX_F2:
attrMask |= ATTR_XD;
break;
}
if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
attrMask |= ATTR_VEXL;
} else {
return -1;
}
} else {
if (insn->mode != MODE_16BIT && isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation)) {
attrMask |= ATTR_OPSIZE;
} else if (isPrefixAtLocation(insn, 0x67, insn->necessaryPrefixLocation)) {
attrMask |= ATTR_ADSIZE;
} else if (insn->mode != MODE_16BIT && isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation)) {
attrMask |= ATTR_XS;
} else if (insn->mode != MODE_16BIT && isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation)) {
attrMask |= ATTR_XD;
}
}
if (insn->rexPrefix & 0x08)
attrMask |= ATTR_REXW;
if (getIDWithAttrMask(&instructionID, insn, attrMask))
return -1;
/* Fixing CALL and JMP instruction when in 64bit mode and x66 prefix is used */
if (insn->mode == MODE_64BIT && insn->isPrefix66 &&
(insn->opcode == 0xE8 || insn->opcode == 0xE9))
{
attrMask ^= ATTR_OPSIZE;
if (getIDWithAttrMask(&instructionID, insn, attrMask))
return -1;
}
/*
* JCXZ/JECXZ need special handling for 16-bit mode because the meaning
* of the AdSize prefix is inverted w.r.t. 32-bit mode.
*/
if (insn->mode == MODE_16BIT && insn->opcode == 0xE3) {
spec = specifierForUID(instructionID);
/*
* Check for Ii8PCRel instructions. We could alternatively do a
* string-compare on the names, but this is probably cheaper.
*/
if (x86OperandSets[spec->operands][0].type == TYPE_REL8) {
attrMask ^= ATTR_ADSIZE;
if (getIDWithAttrMask(&instructionID, insn, attrMask))
return -1;
}
}
/* The following clauses compensate for limitations of the tables. */
if ((insn->mode == MODE_16BIT || insn->isPrefix66) &&
!(attrMask & ATTR_OPSIZE)) {
/*
* The instruction tables make no distinction between instructions that
* allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
* particular spot (i.e., many MMX operations). In general we're
* conservative, but in the specific case where OpSize is present but not
* in the right place we check if there's a 16-bit operation.
*/
const struct InstructionSpecifier *spec;
uint16_t instructionIDWithOpsize;
spec = specifierForUID(instructionID);
if (getIDWithAttrMask(&instructionIDWithOpsize,
insn, attrMask | ATTR_OPSIZE)) {
/*
* ModRM required with OpSize but not present; give up and return version
* without OpSize set
*/
insn->instructionID = instructionID;
insn->spec = spec;
return 0;
}
if (is16BitEquivalent(instructionID, instructionIDWithOpsize) &&
(insn->mode == MODE_16BIT) ^ insn->isPrefix66) {
insn->instructionID = instructionIDWithOpsize;
insn->spec = specifierForUID(instructionIDWithOpsize);
} else {
insn->instructionID = instructionID;
insn->spec = spec;
}
return 0;
}
if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
insn->rexPrefix & 0x01) {
/*
* NOOP shouldn't decode as NOOP if REX.b is set. Instead
* it should decode as XCHG %r8, %eax.
*/
const struct InstructionSpecifier *spec;
uint16_t instructionIDWithNewOpcode;
const struct InstructionSpecifier *specWithNewOpcode;
spec = specifierForUID(instructionID);
/* Borrow opcode from one of the other XCHGar opcodes */
insn->opcode = 0x91;
if (getIDWithAttrMask(&instructionIDWithNewOpcode,
insn,
attrMask)) {
insn->opcode = 0x90;
insn->instructionID = instructionID;
insn->spec = spec;
return 0;
}
specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
/* Change back */
insn->opcode = 0x90;
insn->instructionID = instructionIDWithNewOpcode;
insn->spec = specWithNewOpcode;
return 0;
}
insn->instructionID = instructionID;
insn->spec = specifierForUID(insn->instructionID);
return 0;
}
/*
* readSIB - Consumes the SIB byte to determine addressing information for an
* instruction.
*
* @param insn - The instruction whose SIB byte is to be read.
* @return - 0 if the SIB byte was successfully read; nonzero otherwise.
*/
static int readSIB(struct InternalInstruction *insn)
{
SIBIndex sibIndexBase = SIB_INDEX_NONE;
SIBBase sibBaseBase = SIB_BASE_NONE;
uint8_t index, base;
// dbgprintf(insn, "readSIB()");
if (insn->consumedSIB)
return 0;
insn->consumedSIB = true;
switch (insn->addressSize) {
case 2:
// dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
return -1;
case 4:
sibIndexBase = SIB_INDEX_EAX;
sibBaseBase = SIB_BASE_EAX;
break;
case 8:
sibIndexBase = SIB_INDEX_RAX;
sibBaseBase = SIB_BASE_RAX;
break;
}
if (consumeByte(insn, &insn->sib))
return -1;
index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
if (insn->vectorExtensionType == TYPE_EVEX)
index |= v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4;
switch (index) {
case 0x4:
insn->sibIndex = SIB_INDEX_NONE;
break;
default:
insn->sibIndex = (SIBIndex)(sibIndexBase + index);
if (insn->sibIndex == SIB_INDEX_sib ||
insn->sibIndex == SIB_INDEX_sib64)
insn->sibIndex = SIB_INDEX_NONE;
break;
}
switch (scaleFromSIB(insn->sib)) {
case 0:
insn->sibScale = 1;
break;
case 1:
insn->sibScale = 2;
break;
case 2:
insn->sibScale = 4;
break;
case 3:
insn->sibScale = 8;
break;
}
base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
switch (base) {
case 0x5:
case 0xd:
switch (modFromModRM(insn->modRM)) {
case 0x0:
insn->eaDisplacement = EA_DISP_32;
insn->sibBase = SIB_BASE_NONE;
break;
case 0x1:
insn->eaDisplacement = EA_DISP_8;
insn->sibBase = (SIBBase)(sibBaseBase + base);
break;
case 0x2:
insn->eaDisplacement = EA_DISP_32;
insn->sibBase = (SIBBase)(sibBaseBase + base);
break;
case 0x3:
//debug("Cannot have Mod = 0b11 and a SIB byte");
return -1;
}
break;
default:
insn->sibBase = (SIBBase)(sibBaseBase + base);
break;
}
return 0;
}
/*
* readDisplacement - Consumes the displacement of an instruction.
*
* @param insn - The instruction whose displacement is to be read.
* @return - 0 if the displacement byte was successfully read; nonzero
* otherwise.
*/
static int readDisplacement(struct InternalInstruction *insn)
{
int8_t d8;
int16_t d16;
int32_t d32;
// dbgprintf(insn, "readDisplacement()");
if (insn->consumedDisplacement)
return 0;
insn->consumedDisplacement = true;
insn->displacementOffset = (uint8_t)(insn->readerCursor - insn->startLocation);
switch (insn->eaDisplacement) {
case EA_DISP_NONE:
insn->consumedDisplacement = false;
break;
case EA_DISP_8:
if (consumeInt8(insn, &d8))
return -1;
insn->displacement = d8;
break;
case EA_DISP_16:
if (consumeInt16(insn, &d16))
return -1;
insn->displacement = d16;
break;
case EA_DISP_32:
if (consumeInt32(insn, &d32))
return -1;
insn->displacement = d32;
break;
}
insn->consumedDisplacement = true;
return 0;
}
/*
* readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
* displacement) for an instruction and interprets it.
*
* @param insn - The instruction whose addressing information is to be read.
* @return - 0 if the information was successfully read; nonzero otherwise.
*/
static int readModRM(struct InternalInstruction *insn)
{
uint8_t mod, rm, reg;
// dbgprintf(insn, "readModRM()");
// already got ModRM byte?
if (insn->consumedModRM)
return 0;
if (consumeByte(insn, &insn->modRM))
return -1;
// mark that we already got ModRM
insn->consumedModRM = true;
// save original ModRM for later reference
insn->orgModRM = insn->modRM;
// handle MOVcr, MOVdr, MOVrc, MOVrd by pretending they have MRM.mod = 3
if ((insn->firstByte == 0x0f && insn->opcodeType == TWOBYTE) &&
(insn->opcode >= 0x20 && insn->opcode <= 0x23 ))
insn->modRM |= 0xC0;
mod = modFromModRM(insn->modRM);
rm = rmFromModRM(insn->modRM);
reg = regFromModRM(insn->modRM);
/*
* This goes by insn->registerSize to pick the correct register, which messes
* up if we're using (say) XMM or 8-bit register operands. That gets fixed in
* fixupReg().
*/
switch (insn->registerSize) {
case 2:
insn->regBase = MODRM_REG_AX;
insn->eaRegBase = EA_REG_AX;
break;
case 4:
insn->regBase = MODRM_REG_EAX;
insn->eaRegBase = EA_REG_EAX;
break;
case 8:
insn->regBase = MODRM_REG_RAX;
insn->eaRegBase = EA_REG_RAX;
break;
}
reg |= rFromREX(insn->rexPrefix) << 3;
rm |= bFromREX(insn->rexPrefix) << 3;
if (insn->vectorExtensionType == TYPE_EVEX) {
reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
rm |= xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
}
insn->reg = (Reg)(insn->regBase + reg);
switch (insn->addressSize) {
case 2:
insn->eaBaseBase = EA_BASE_BX_SI;
switch (mod) {
case 0x0:
if (rm == 0x6) {
insn->eaBase = EA_BASE_NONE;
insn->eaDisplacement = EA_DISP_16;
if (readDisplacement(insn))
return -1;
} else {
insn->eaBase = (EABase)(insn->eaBaseBase + rm);
insn->eaDisplacement = EA_DISP_NONE;
}
break;
case 0x1:
insn->eaBase = (EABase)(insn->eaBaseBase + rm);
insn->eaDisplacement = EA_DISP_8;
insn->displacementSize = 1;
if (readDisplacement(insn))
return -1;
break;
case 0x2:
insn->eaBase = (EABase)(insn->eaBaseBase + rm);
insn->eaDisplacement = EA_DISP_16;
if (readDisplacement(insn))
return -1;
break;
case 0x3:
insn->eaBase = (EABase)(insn->eaRegBase + rm);
insn->eaDisplacement = EA_DISP_NONE;
if (readDisplacement(insn))
return -1;
break;
}
break;
case 4:
case 8:
insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
switch (mod) {
case 0x0:
insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
switch (rm) {
case 0x14:
case 0x4:
case 0xc: /* in case REXW.b is set */
insn->eaBase = (insn->addressSize == 4 ?
EA_BASE_sib : EA_BASE_sib64);
if (readSIB(insn) || readDisplacement(insn))
return -1;
break;
case 0x5:
case 0xd:
insn->eaBase = EA_BASE_NONE;
insn->eaDisplacement = EA_DISP_32;
if (readDisplacement(insn))
return -1;
break;
default:
insn->eaBase = (EABase)(insn->eaBaseBase + rm);
break;
}
break;
case 0x1:
insn->displacementSize = 1;
/* FALLTHROUGH */
case 0x2:
insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
switch (rm) {
case 0x14:
case 0x4:
case 0xc: /* in case REXW.b is set */
insn->eaBase = EA_BASE_sib;
if (readSIB(insn) || readDisplacement(insn))
return -1;
break;
default:
insn->eaBase = (EABase)(insn->eaBaseBase + rm);
if (readDisplacement(insn))
return -1;
break;
}
break;
case 0x3:
insn->eaDisplacement = EA_DISP_NONE;
insn->eaBase = (EABase)(insn->eaRegBase + rm);
break;
}
break;
} /* switch (insn->addressSize) */
return 0;
}
#define GENERIC_FIXUP_FUNC(name, base, prefix) \
static uint8_t name(struct InternalInstruction *insn, \
OperandType type, \
uint8_t index, \
uint8_t *valid) { \
*valid = 1; \
switch (type) { \
case TYPE_R8: \
insn->operandSize = 1; \
break; \
case TYPE_R16: \
insn->operandSize = 2; \
break; \
case TYPE_R32: \
insn->operandSize = 4; \
break; \
case TYPE_R64: \
insn->operandSize = 8; \
break; \
case TYPE_XMM512: \
insn->operandSize = 64; \
break; \
case TYPE_XMM256: \
insn->operandSize = 32; \
break; \
case TYPE_XMM128: \
insn->operandSize = 16; \
break; \
case TYPE_XMM64: \
insn->operandSize = 8; \
break; \
case TYPE_XMM32: \
insn->operandSize = 4; \
break; \
case TYPE_XMM: \
insn->operandSize = 2; \
break; \
case TYPE_MM64: \
insn->operandSize = 8; \
break; \
case TYPE_MM32: \
insn->operandSize = 4; \
break; \
case TYPE_MM: \
insn->operandSize = 2; \
break; \
case TYPE_CONTROLREG: \
insn->operandSize = 4; \
break; \
default: break; \
} \
switch (type) { \
default: \
*valid = 0; \
return 0; \
case TYPE_Rv: \
return (uint8_t)(base + index); \
case TYPE_R8: \
if (insn->rexPrefix && \
index >= 4 && index <= 7) { \
return prefix##_SPL + (index - 4); \
} else { \
return prefix##_AL + index; \
} \
case TYPE_R16: \
return prefix##_AX + index; \
case TYPE_R32: \
return prefix##_EAX + index; \
case TYPE_R64: \
return prefix##_RAX + index; \
case TYPE_XMM512: \
return prefix##_ZMM0 + index; \
case TYPE_XMM256: \
return prefix##_YMM0 + index; \
case TYPE_XMM128: \
case TYPE_XMM64: \
case TYPE_XMM32: \
case TYPE_XMM: \
return prefix##_XMM0 + index; \
case TYPE_VK1: \
case TYPE_VK8: \
case TYPE_VK16: \
if (index > 7) \
*valid = 0; \
return prefix##_K0 + index; \
case TYPE_MM64: \
case TYPE_MM32: \
case TYPE_MM: \
return prefix##_MM0 + (index & 7); \
case TYPE_SEGMENTREG: \
if (index > 5) \
*valid = 0; \
return prefix##_ES + index; \
case TYPE_DEBUGREG: \
if (index > 7) \
*valid = 0; \
return prefix##_DR0 + index; \
case TYPE_CONTROLREG: \
return prefix##_CR0 + index; \
} \
}
/*
* fixup*Value - Consults an operand type to determine the meaning of the
* reg or R/M field. If the operand is an XMM operand, for example, an
* operand would be XMM0 instead of AX, which readModRM() would otherwise
* misinterpret it as.
*
* @param insn - The instruction containing the operand.
* @param type - The operand type.
* @param index - The existing value of the field as reported by readModRM().
* @param valid - The address of a uint8_t. The target is set to 1 if the
* field is valid for the register class; 0 if not.
* @return - The proper value.
*/
GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
/*
* fixupReg - Consults an operand specifier to determine which of the
* fixup*Value functions to use in correcting readModRM()'ss interpretation.
*
* @param insn - See fixup*Value().
* @param op - The operand specifier.
* @return - 0 if fixup was successful; -1 if the register returned was
* invalid for its class.
*/
static int fixupReg(struct InternalInstruction *insn,
const struct OperandSpecifier *op)
{
uint8_t valid;
// dbgprintf(insn, "fixupReg()");
switch ((OperandEncoding)op->encoding) {
default:
//debug("Expected a REG or R/M encoding in fixupReg");
return -1;
case ENCODING_VVVV:
insn->vvvv = (Reg)fixupRegValue(insn,
(OperandType)op->type,
insn->vvvv,
&valid);
if (!valid)
return -1;
break;
case ENCODING_REG:
insn->reg = (Reg)fixupRegValue(insn,
(OperandType)op->type,
(uint8_t)(insn->reg - insn->regBase),
&valid);
if (!valid)
return -1;
break;
CASE_ENCODING_RM:
if (insn->eaBase >= insn->eaRegBase) {
insn->eaBase = (EABase)fixupRMValue(insn,
(OperandType)op->type,
(uint8_t)(insn->eaBase - insn->eaRegBase),
&valid);
if (!valid)
return -1;
}
break;
}
return 0;
}
/*
* readOpcodeRegister - Reads an operand from the opcode field of an
* instruction and interprets it appropriately given the operand width.
* Handles AddRegFrm instructions.
*
* @param insn - the instruction whose opcode field is to be read.
* @param size - The width (in bytes) of the register being specified.
* 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
* RAX.
* @return - 0 on success; nonzero otherwise.
*/
static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size)
{
// dbgprintf(insn, "readOpcodeRegister()");
if (size == 0)
size = insn->registerSize;
insn->operandSize = size;
switch (size) {
case 1:
insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
| (insn->opcode & 7)));
if (insn->rexPrefix &&
insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
insn->opcodeRegister < MODRM_REG_AL + 0x8) {
insn->opcodeRegister = (Reg)(MODRM_REG_SPL
+ (insn->opcodeRegister - MODRM_REG_AL - 4));
}
break;
case 2:
insn->opcodeRegister = (Reg)(MODRM_REG_AX
+ ((bFromREX(insn->rexPrefix) << 3)
| (insn->opcode & 7)));
break;
case 4:
insn->opcodeRegister = (Reg)(MODRM_REG_EAX
+ ((bFromREX(insn->rexPrefix) << 3)
| (insn->opcode & 7)));
break;
case 8:
insn->opcodeRegister = (Reg)(MODRM_REG_RAX
+ ((bFromREX(insn->rexPrefix) << 3)
| (insn->opcode & 7)));
break;
}
return 0;
}
/*
* readImmediate - Consumes an immediate operand from an instruction, given the
* desired operand size.
*
* @param insn - The instruction whose operand is to be read.
* @param size - The width (in bytes) of the operand.
* @return - 0 if the immediate was successfully consumed; nonzero
* otherwise.
*/
static int readImmediate(struct InternalInstruction *insn, uint8_t size)
{
uint8_t imm8;
uint16_t imm16;
uint32_t imm32;
uint64_t imm64;
// dbgprintf(insn, "readImmediate()");
if (insn->numImmediatesConsumed == 2) {
//debug("Already consumed two immediates");
return -1;
}
if (size == 0)
size = insn->immediateSize;
else
insn->immediateSize = size;
insn->immediateOffset = (uint8_t)(insn->readerCursor - insn->startLocation);
switch (size) {
case 1:
if (consumeByte(insn, &imm8))
return -1;
insn->immediates[insn->numImmediatesConsumed] = imm8;
break;
case 2:
if (consumeUInt16(insn, &imm16))
return -1;
insn->immediates[insn->numImmediatesConsumed] = imm16;
break;
case 4:
if (consumeUInt32(insn, &imm32))
return -1;
insn->immediates[insn->numImmediatesConsumed] = imm32;
break;
case 8:
if (consumeUInt64(insn, &imm64))
return -1;
insn->immediates[insn->numImmediatesConsumed] = imm64;
break;
}
insn->numImmediatesConsumed++;
return 0;
}
/*
* readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
*
* @param insn - The instruction whose operand is to be read.
* @return - 0 if the vvvv was successfully consumed; nonzero
* otherwise.
*/
static int readVVVV(struct InternalInstruction *insn)
{
int vvvv;
// dbgprintf(insn, "readVVVV()");
if (insn->vectorExtensionType == TYPE_EVEX)
vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
else if (insn->vectorExtensionType == TYPE_VEX_3B)
vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
else if (insn->vectorExtensionType == TYPE_VEX_2B)
vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
else if (insn->vectorExtensionType == TYPE_XOP)
vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
else
return -1;
if (insn->mode != MODE_64BIT)
vvvv &= 0x7;
insn->vvvv = vvvv;
return 0;
}
/*
* readMaskRegister - Reads an mask register from the opcode field of an
* instruction.
*
* @param insn - The instruction whose opcode field is to be read.
* @return - 0 on success; nonzero otherwise.
*/
static int readMaskRegister(struct InternalInstruction *insn)
{
// dbgprintf(insn, "readMaskRegister()");
if (insn->vectorExtensionType != TYPE_EVEX)
return -1;
insn->writemask = aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]);
return 0;
}
/*
* readOperands - Consults the specifier for an instruction and consumes all
* operands for that instruction, interpreting them as it goes.
*
* @param insn - The instruction whose operands are to be read and interpreted.
* @return - 0 if all operands could be read; nonzero otherwise.
*/
static int readOperands(struct InternalInstruction *insn)
{
int index;
int hasVVVV, needVVVV;
int sawRegImm = 0;
// printf(">>> readOperands()\n");
/* If non-zero vvvv specified, need to make sure one of the operands
uses it. */
hasVVVV = !readVVVV(insn);
needVVVV = hasVVVV && (insn->vvvv != 0);
for (index = 0; index < X86_MAX_OPERANDS; ++index) {
//printf(">>> encoding[%u] = %u\n", index, x86OperandSets[insn->spec->operands][index].encoding);
switch (x86OperandSets[insn->spec->operands][index].encoding) {
case ENCODING_NONE:
case ENCODING_SI:
case ENCODING_DI:
break;
case ENCODING_REG:
CASE_ENCODING_RM:
if (readModRM(insn))
return -1;
if (fixupReg(insn, &x86OperandSets[insn->spec->operands][index]))
return -1;
// Apply the AVX512 compressed displacement scaling factor.
if (x86OperandSets[insn->spec->operands][index].encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
insn->displacement *= 1 << (x86OperandSets[insn->spec->operands][index].encoding - ENCODING_RM);
break;
case ENCODING_CB:
case ENCODING_CW:
case ENCODING_CD:
case ENCODING_CP:
case ENCODING_CO:
case ENCODING_CT:
// dbgprintf(insn, "We currently don't hande code-offset encodings");
return -1;
case ENCODING_IB:
if (sawRegImm) {
/* Saw a register immediate so don't read again and instead split the
previous immediate. FIXME: This is a hack. */
insn->immediates[insn->numImmediatesConsumed] =
insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
++insn->numImmediatesConsumed;
break;
}
if (readImmediate(insn, 1))
return -1;
if (x86OperandSets[insn->spec->operands][index].type == TYPE_XMM128 ||
x86OperandSets[insn->spec->operands][index].type == TYPE_XMM256)
sawRegImm = 1;
break;
case ENCODING_IW:
if (readImmediate(insn, 2))
return -1;
break;
case ENCODING_ID:
if (readImmediate(insn, 4))
return -1;
break;
case ENCODING_IO:
if (readImmediate(insn, 8))
return -1;
break;
case ENCODING_Iv:
if (readImmediate(insn, insn->immediateSize))
return -1;
break;
case ENCODING_Ia:
if (readImmediate(insn, insn->addressSize))
return -1;
break;
case ENCODING_RB:
if (readOpcodeRegister(insn, 1))
return -1;
break;
case ENCODING_RW:
if (readOpcodeRegister(insn, 2))
return -1;
break;
case ENCODING_RD:
if (readOpcodeRegister(insn, 4))
return -1;
break;
case ENCODING_RO:
if (readOpcodeRegister(insn, 8))
return -1;
break;
case ENCODING_Rv:
if (readOpcodeRegister(insn, 0))
return -1;
break;
case ENCODING_FP:
break;
case ENCODING_VVVV:
needVVVV = 0; /* Mark that we have found a VVVV operand. */
if (!hasVVVV)
return -1;
if (fixupReg(insn, &x86OperandSets[insn->spec->operands][index]))
return -1;
break;
case ENCODING_WRITEMASK:
if (readMaskRegister(insn))
return -1;
break;
case ENCODING_DUP:
break;
default:
// dbgprintf(insn, "Encountered an operand with an unknown encoding.");
return -1;
}
}
/* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
if (needVVVV) return -1;
return 0;
}
// return True if instruction is illegal to use with prefixes
// This also check & fix the prefixPresent[] when a prefix is irrelevant.
static bool checkPrefix(struct InternalInstruction *insn)
{
// LOCK prefix
if (insn->isPrefixf0) {
switch(insn->instructionID) {
default:
// invalid LOCK
return true;
// nop dword [rax]
case X86_NOOPL:
// DEC
case X86_DEC16m:
case X86_DEC32m:
case X86_DEC64_16m:
case X86_DEC64_32m:
case X86_DEC64m:
case X86_DEC8m:
// ADC
case X86_ADC16mi:
case X86_ADC16mi8:
case X86_ADC16mr:
case X86_ADC32mi:
case X86_ADC32mi8:
case X86_ADC32mr:
case X86_ADC64mi32:
case X86_ADC64mi8:
case X86_ADC64mr:
case X86_ADC8mi:
case X86_ADC8mr:
// ADD
case X86_ADD16mi:
case X86_ADD16mi8:
case X86_ADD16mr:
case X86_ADD32mi:
case X86_ADD32mi8:
case X86_ADD32mr:
case X86_ADD64mi32:
case X86_ADD64mi8:
case X86_ADD64mr:
case X86_ADD8mi:
case X86_ADD8mr:
// AND
case X86_AND16mi:
case X86_AND16mi8:
case X86_AND16mr:
case X86_AND32mi:
case X86_AND32mi8:
case X86_AND32mr:
case X86_AND64mi32:
case X86_AND64mi8:
case X86_AND64mr:
case X86_AND8mi:
case X86_AND8mr:
// BTC
case X86_BTC16mi8:
case X86_BTC16mr:
case X86_BTC32mi8:
case X86_BTC32mr:
case X86_BTC64mi8:
case X86_BTC64mr:
// BTR
case X86_BTR16mi8:
case X86_BTR16mr:
case X86_BTR32mi8:
case X86_BTR32mr:
case X86_BTR64mi8:
case X86_BTR64mr:
// BTS
case X86_BTS16mi8:
case X86_BTS16mr:
case X86_BTS32mi8:
case X86_BTS32mr:
case X86_BTS64mi8:
case X86_BTS64mr:
// CMPXCHG
case X86_CMPXCHG16B:
case X86_CMPXCHG16rm:
case X86_CMPXCHG32rm:
case X86_CMPXCHG64rm:
case X86_CMPXCHG8rm:
case X86_CMPXCHG8B:
// INC
case X86_INC16m:
case X86_INC32m:
case X86_INC64_16m:
case X86_INC64_32m:
case X86_INC64m:
case X86_INC8m:
// NEG
case X86_NEG16m:
case X86_NEG32m:
case X86_NEG64m:
case X86_NEG8m:
// NOT
case X86_NOT16m:
case X86_NOT32m:
case X86_NOT64m:
case X86_NOT8m:
// OR
case X86_OR16mi:
case X86_OR16mi8:
case X86_OR16mr:
case X86_OR32mi:
case X86_OR32mi8:
case X86_OR32mr:
case X86_OR32mrLocked:
case X86_OR64mi32:
case X86_OR64mi8:
case X86_OR64mr:
case X86_OR8mi:
case X86_OR8mr:
// SBB
case X86_SBB16mi:
case X86_SBB16mi8:
case X86_SBB16mr:
case X86_SBB32mi:
case X86_SBB32mi8:
case X86_SBB32mr:
case X86_SBB64mi32:
case X86_SBB64mi8:
case X86_SBB64mr:
case X86_SBB8mi:
case X86_SBB8mr:
// SUB
case X86_SUB16mi:
case X86_SUB16mi8:
case X86_SUB16mr:
case X86_SUB32mi:
case X86_SUB32mi8:
case X86_SUB32mr:
case X86_SUB64mi32:
case X86_SUB64mi8:
case X86_SUB64mr:
case X86_SUB8mi:
case X86_SUB8mr:
// XADD
case X86_XADD16rm:
case X86_XADD32rm:
case X86_XADD64rm:
case X86_XADD8rm:
// XCHG
case X86_XCHG16rm:
case X86_XCHG32rm:
case X86_XCHG64rm:
case X86_XCHG8rm:
// XOR
case X86_XOR16mi:
case X86_XOR16mi8:
case X86_XOR16mr:
case X86_XOR32mi:
case X86_XOR32mi8:
case X86_XOR32mr:
case X86_XOR64mi32:
case X86_XOR64mi8:
case X86_XOR64mr:
case X86_XOR8mi:
case X86_XOR8mr:
// this instruction can be used with LOCK prefix
return false;
}
}
// REPNE prefix
if (insn->isPrefixf2) {
// 0xf2 can be a part of instruction encoding, but not really a prefix.
// In such a case, clear it.
if (insn->twoByteEscape == 0x0f) {
insn->prefix0 = 0;
}
}
// no invalid prefixes
return false;
}
/*
* decodeInstruction - Reads and interprets a full instruction provided by the
* user.
*
* @param insn - A pointer to the instruction to be populated. Must be
* pre-allocated.
* @param reader - The function to be used to read the instruction's bytes.
* @param readerArg - A generic argument to be passed to the reader to store
* any internal state.
* @param startLoc - The address (in the reader's address space) of the first
* byte in the instruction.
* @param mode - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
* decode the instruction in.
* @return - 0 if instruction is valid; nonzero if not.
*/
int decodeInstruction(struct InternalInstruction *insn,
byteReader_t reader,
const void *readerArg,
uint64_t startLoc,
DisassemblerMode mode)
{
insn->reader = reader;
insn->readerArg = readerArg;
insn->startLocation = startLoc;
insn->readerCursor = startLoc;
insn->mode = mode;
if (readPrefixes(insn) ||
readOpcode(insn) ||
getID(insn) ||
insn->instructionID == 0 ||
checkPrefix(insn) ||
readOperands(insn))
return -1;
insn->length = (size_t)(insn->readerCursor - insn->startLocation);
// instruction length must be <= 15 to be valid
if (insn->length > 15)
return -1;
if (insn->operandSize == 0)
insn->operandSize = insn->registerSize;
insn->operands = &x86OperandSets[insn->spec->operands][0];
// dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
// startLoc, insn->readerCursor, insn->length);
//if (insn->length > 15)
// dbgprintf(insn, "Instruction exceeds 15-byte limit");
#if 0
printf("\n>>> x86OperandSets = %lu\n", sizeof(x86OperandSets));
printf(">>> x86DisassemblerInstrSpecifiers = %lu\n", sizeof(x86DisassemblerInstrSpecifiers));
printf(">>> x86DisassemblerContexts = %lu\n", sizeof(x86DisassemblerContexts));
printf(">>> modRMTable = %lu\n", sizeof(modRMTable));
printf(">>> x86DisassemblerOneByteOpcodes = %lu\n", sizeof(x86DisassemblerOneByteOpcodes));
printf(">>> x86DisassemblerTwoByteOpcodes = %lu\n", sizeof(x86DisassemblerTwoByteOpcodes));
printf(">>> x86DisassemblerThreeByte38Opcodes = %lu\n", sizeof(x86DisassemblerThreeByte38Opcodes));
printf(">>> x86DisassemblerThreeByte3AOpcodes = %lu\n", sizeof(x86DisassemblerThreeByte3AOpcodes));
printf(">>> x86DisassemblerThreeByteA6Opcodes = %lu\n", sizeof(x86DisassemblerThreeByteA6Opcodes));
printf(">>> x86DisassemblerThreeByteA7Opcodes= %lu\n", sizeof(x86DisassemblerThreeByteA7Opcodes));
printf(">>> x86DisassemblerXOP8Opcodes = %lu\n", sizeof(x86DisassemblerXOP8Opcodes));
printf(">>> x86DisassemblerXOP9Opcodes = %lu\n", sizeof(x86DisassemblerXOP9Opcodes));
printf(">>> x86DisassemblerXOPAOpcodes = %lu\n\n", sizeof(x86DisassemblerXOPAOpcodes));
#endif
return 0;
}
#endif