historical/gems-kernel.git/source/THIRDPARTY/linux-old/kernel/time.c

443 lines
12 KiB
C
Raw Normal View History

/*
* linux/kernel/time.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* This file contains the interface functions for the various
* time related system calls: time, stime, gettimeofday, settimeofday,
* adjtime
*/
/*
* Modification history kernel/time.c
*
* 02 Sep 93 Philip Gladstone
* Created file with time related functions from sched.c and adjtimex()
* 08 Oct 93 Torsten Duwe
* adjtime interface update and CMOS clock write code
*/
#include <linux/config.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <asm/segment.h>
#include <asm/io.h>
#include <linux/mc146818rtc.h>
#define RTC_ALWAYS_BCD 1
#include <linux/timex.h>
extern struct timeval xtime;
#include <linux/mktime.h>
extern long kernel_mktime(struct mktime * time);
void time_init(void)
{
struct mktime time;
int i;
/* checking for Update-In-Progress could be done more elegantly
* (using the "update finished"-interrupt for example), but that
* would require excessive testing. promise I'll do that when I find
* the time. - Torsten
*/
/* read RTC exactly on falling edge of update flag */
for (i = 0 ; i < 1000000 ; i++) /* may take up to 1 second... */
if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
break;
for (i = 0 ; i < 1000000 ; i++) /* must try at least 2.228 ms*/
if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
break;
do { /* Isn't this overkill ? UIP above should guarantee consistency */
time.sec = CMOS_READ(RTC_SECONDS);
time.min = CMOS_READ(RTC_MINUTES);
time.hour = CMOS_READ(RTC_HOURS);
time.day = CMOS_READ(RTC_DAY_OF_MONTH);
time.mon = CMOS_READ(RTC_MONTH);
time.year = CMOS_READ(RTC_YEAR);
} while (time.sec != CMOS_READ(RTC_SECONDS));
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
{
BCD_TO_BIN(time.sec);
BCD_TO_BIN(time.min);
BCD_TO_BIN(time.hour);
BCD_TO_BIN(time.day);
BCD_TO_BIN(time.mon);
BCD_TO_BIN(time.year);
}
time.mon--;
xtime.tv_sec = kernel_mktime(&time);
}
/*
* The timezone where the local system is located. Used as a default by some
* programs who obtain this value by using gettimeofday.
*/
struct timezone sys_tz = { 0, 0};
asmlinkage int sys_time(long * tloc)
{
int i, error;
i = CURRENT_TIME;
if (tloc) {
error = verify_area(VERIFY_WRITE, tloc, 4);
if (error)
return error;
put_fs_long(i,(unsigned long *)tloc);
}
return i;
}
asmlinkage int sys_stime(long * tptr)
{
if (!suser())
return -EPERM;
cli();
xtime.tv_sec = get_fs_long((unsigned long *) tptr);
xtime.tv_usec = 0;
time_status = TIME_BAD;
time_maxerror = 0x70000000;
time_esterror = 0x70000000;
sti();
return 0;
}
/* This function must be called with interrupts disabled
* It was inspired by Steve McCanne's microtime-i386 for BSD. -- jrs
*
* However, the pc-audio speaker driver changes the divisor so that
* it gets interrupted rather more often - it loads 64 into the
* counter rather than 11932! This has an adverse impact on
* do_gettimeoffset() -- it stops working! What is also not
* good is that the interval that our timer function gets called
* is no longer 10.0002 msecs, but 9.9767 msec. To get around this
* would require using a different timing source. Maybe someone
* could use the RTC - I know that this can interrupt at frequencies
* ranging from 8192Hz to 2Hz. If I had the energy, I'd somehow fix
* it so that at startup, the timer code in sched.c would select
* using either the RTC or the 8253 timer. The decision would be
* based on whether there was any other device around that needed
* to trample on the 8253. I'd set up the RTC to interrupt at 1024Hz,
* and then do some jiggery to have a version of do_timer that
* advanced the clock by 1/1024 sec. Every time that reached over 1/100
* of a second, then do all the old code. If the time was kept correct
* then do_gettimeoffset could just return 0 - there is no low order
* divider that can be accessed.
*
* Ideally, you would be able to use the RTC for the speaker driver,
* but it appears that the speaker driver really needs interrupt more
* often than every 120us or so.
*
* Anyway, this needs more thought.... pjsg (28 Aug 93)
*
* If you are really that interested, you should be reading
* comp.protocols.time.ntp!
*/
#define TICK_SIZE tick
static inline unsigned long do_gettimeoffset(void)
{
int count;
unsigned long offset = 0;
/* timer count may underflow right here */
outb_p(0x00, 0x43); /* latch the count ASAP */
count = inb_p(0x40); /* read the latched count */
count |= inb(0x40) << 8;
/* we know probability of underflow is always MUCH less than 1% */
if (count > (LATCH - LATCH/100)) {
/* check for pending timer interrupt */
outb_p(0x0a, 0x20);
if (inb(0x20) & 1)
offset = TICK_SIZE;
}
count = ((LATCH-1) - count) * TICK_SIZE;
count = (count + LATCH/2) / LATCH;
return offset + count;
}
/*
* This version of gettimeofday has near microsecond resolution.
*/
static inline void do_gettimeofday(struct timeval *tv)
{
#ifdef __i386__
cli();
*tv = xtime;
tv->tv_usec += do_gettimeoffset();
if (tv->tv_usec >= 1000000) {
tv->tv_usec -= 1000000;
tv->tv_sec++;
}
sti();
#else /* not __i386__ */
cli();
*tv = xtime;
sti();
#endif /* not __i386__ */
}
asmlinkage int sys_gettimeofday(struct timeval *tv, struct timezone *tz)
{
int error;
if (tv) {
struct timeval ktv;
error = verify_area(VERIFY_WRITE, tv, sizeof *tv);
if (error)
return error;
do_gettimeofday(&ktv);
put_fs_long(ktv.tv_sec, (unsigned long *) &tv->tv_sec);
put_fs_long(ktv.tv_usec, (unsigned long *) &tv->tv_usec);
}
if (tz) {
error = verify_area(VERIFY_WRITE, tz, sizeof *tz);
if (error)
return error;
put_fs_long(sys_tz.tz_minuteswest, (unsigned long *) tz);
put_fs_long(sys_tz.tz_dsttime, ((unsigned long *) tz)+1);
}
return 0;
}
/*
* Adjust the time obtained from the CMOS to be GMT time instead of
* local time.
*
* This is ugly, but preferable to the alternatives. Otherwise we
* would either need to write a program to do it in /etc/rc (and risk
* confusion if the program gets run more than once; it would also be
* hard to make the program warp the clock precisely n hours) or
* compile in the timezone information into the kernel. Bad, bad....
*
* XXX Currently does not adjust for daylight savings time. May not
* need to do anything, depending on how smart (dumb?) the BIOS
* is. Blast it all.... the best thing to do not depend on the CMOS
* clock at all, but get the time via NTP or timed if you're on a
* network.... - TYT, 1/1/92
*/
inline static void warp_clock(void)
{
cli();
xtime.tv_sec += sys_tz.tz_minuteswest * 60;
sti();
}
/*
* The first time we set the timezone, we will warp the clock so that
* it is ticking GMT time instead of local time. Presumably,
* if someone is setting the timezone then we are running in an
* environment where the programs understand about timezones.
* This should be done at boot time in the /etc/rc script, as
* soon as possible, so that the clock can be set right. Otherwise,
* various programs will get confused when the clock gets warped.
*/
asmlinkage int sys_settimeofday(struct timeval *tv, struct timezone *tz)
{
static int firsttime = 1;
if (!suser())
return -EPERM;
if (tz) {
sys_tz.tz_minuteswest = get_fs_long((unsigned long *) tz);
sys_tz.tz_dsttime = get_fs_long(((unsigned long *) tz)+1);
if (firsttime) {
firsttime = 0;
if (!tv)
warp_clock();
}
}
if (tv) {
int sec, usec;
sec = get_fs_long((unsigned long *)tv);
usec = get_fs_long(((unsigned long *)tv)+1);
cli();
/* This is revolting. We need to set the xtime.tv_usec
* correctly. However, the value in this location is
* is value at the last tick.
* Discover what correction gettimeofday
* would have done, and then undo it!
*/
usec -= do_gettimeoffset();
if (usec < 0)
{
usec += 1000000;
sec--;
}
xtime.tv_sec = sec;
xtime.tv_usec = usec;
time_status = TIME_BAD;
time_maxerror = 0x70000000;
time_esterror = 0x70000000;
sti();
}
return 0;
}
/* adjtimex mainly allows reading (and writing, if superuser) of
* kernel time-keeping variables. used by xntpd.
*/
asmlinkage int sys_adjtimex(struct timex *txc_p)
{
long ltemp, mtemp, save_adjust;
int error;
/* Local copy of parameter */
struct timex txc;
error = verify_area(VERIFY_WRITE, txc_p, sizeof(struct timex));
if (error)
return error;
/* Copy the user data space into the kernel copy
* structure. But bear in mind that the structures
* may change
*/
memcpy_fromfs(&txc, txc_p, sizeof(struct timex));
/* In order to modify anything, you gotta be super-user! */
if (txc.mode && !suser())
return -EPERM;
/* Now we validate the data before disabling interrupts
*/
if (txc.mode & ADJ_OFFSET)
/* Microsec field limited to -131000 .. 131000 usecs */
if (txc.offset <= -(1 << (31 - SHIFT_UPDATE))
|| txc.offset >= (1 << (31 - SHIFT_UPDATE)))
return -EINVAL;
/* time_status must be in a fairly small range */
if (txc.mode & ADJ_STATUS)
if (txc.status < TIME_OK || txc.status > TIME_BAD)
return -EINVAL;
/* if the quartz is off by more than 10% something is VERY wrong ! */
if (txc.mode & ADJ_TICK)
if (txc.tick < 900000/HZ || txc.tick > 1100000/HZ)
return -EINVAL;
cli();
/* Save for later - semantics of adjtime is to return old value */
save_adjust = time_adjust;
/* If there are input parameters, then process them */
if (txc.mode)
{
if (time_status == TIME_BAD)
time_status = TIME_OK;
if (txc.mode & ADJ_STATUS)
time_status = txc.status;
if (txc.mode & ADJ_FREQUENCY)
time_freq = txc.frequency << (SHIFT_KF - 16);
if (txc.mode & ADJ_MAXERROR)
time_maxerror = txc.maxerror;
if (txc.mode & ADJ_ESTERROR)
time_esterror = txc.esterror;
if (txc.mode & ADJ_TIMECONST)
time_constant = txc.time_constant;
if (txc.mode & ADJ_OFFSET)
if (txc.mode == ADJ_OFFSET_SINGLESHOT)
{
time_adjust = txc.offset;
}
else /* XXX should give an error if other bits set */
{
time_offset = txc.offset << SHIFT_UPDATE;
mtemp = xtime.tv_sec - time_reftime;
time_reftime = xtime.tv_sec;
if (mtemp > (MAXSEC+2) || mtemp < 0)
mtemp = 0;
if (txc.offset < 0)
time_freq -= (-txc.offset * mtemp) >>
(time_constant + time_constant);
else
time_freq += (txc.offset * mtemp) >>
(time_constant + time_constant);
ltemp = time_tolerance << SHIFT_KF;
if (time_freq > ltemp)
time_freq = ltemp;
else if (time_freq < -ltemp)
time_freq = -ltemp;
}
if (txc.mode & ADJ_TICK)
tick = txc.tick;
}
txc.offset = save_adjust;
txc.frequency = ((time_freq+1) >> (SHIFT_KF - 16));
txc.maxerror = time_maxerror;
txc.esterror = time_esterror;
txc.status = time_status;
txc.time_constant = time_constant;
txc.precision = time_precision;
txc.tolerance = time_tolerance;
txc.time = xtime;
txc.tick = tick;
sti();
memcpy_tofs(txc_p, &txc, sizeof(struct timex));
return time_status;
}
int set_rtc_mmss(unsigned long nowtime)
{
int retval = 0;
short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60;
unsigned char save_control, save_freq_select, cmos_minutes;
save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
cmos_minutes = CMOS_READ(RTC_MINUTES);
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
BCD_TO_BIN(cmos_minutes);
/* since we're only adjusting minutes and seconds,
* don't interfere with hour overflow. This avoids
* messing with unknown time zones but requires your
* RTC not to be off by more than 30 minutes
*/
if (((cmos_minutes < real_minutes) ?
(real_minutes - cmos_minutes) :
(cmos_minutes - real_minutes)) < 30)
{
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
{
BIN_TO_BCD(real_seconds);
BIN_TO_BCD(real_minutes);
}
CMOS_WRITE(real_seconds,RTC_SECONDS);
CMOS_WRITE(real_minutes,RTC_MINUTES);
}
else
retval = -1;
CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
CMOS_WRITE(save_control, RTC_CONTROL);
return retval;
}