/* * linux/kernel/hd.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * This is the low-level hd interrupt support. It traverses the * request-list, using interrupts to jump between functions. As * all the functions are called within interrupts, we may not * sleep. Special care is recommended. * * modified by Drew Eckhardt to check nr of hd's from the CMOS. * * Thanks to Branko Lankester, lankeste@fwi.uva.nl, who found a bug * in the early extended-partition checks and added DM partitions */ #include #include #include #include #include #include #include #include #include #define REALLY_SLOW_IO #include #include #include #define MAJOR_NR HD_MAJOR #include "blk.h" #define HD_IRQ 14 static int revalidate_hddisk(int, int); static inline unsigned char CMOS_READ(unsigned char addr) { outb_p(addr,0x70); return inb_p(0x71); } #define HD_DELAY 0 #define MAX_ERRORS 16 /* Max read/write errors/sector */ #define RESET_FREQ 8 /* Reset controller every 8th retry */ #define RECAL_FREQ 4 /* Recalibrate every 4th retry */ #define MAX_HD 2 static void recal_intr(void); static void bad_rw_intr(void); static char recalibrate[ MAX_HD ] = { 0, }; static int access_count[MAX_HD] = {0, }; static char busy[MAX_HD] = {0, }; static struct wait_queue * busy_wait = NULL; static int reset = 0; static int hd_error = 0; #if (HD_DELAY > 0) unsigned long last_req, read_timer(); #endif /* * This struct defines the HD's and their types. */ struct hd_i_struct { unsigned int head,sect,cyl,wpcom,lzone,ctl; }; #ifdef HD_TYPE struct hd_i_struct hd_info[] = { HD_TYPE }; static int NR_HD = ((sizeof (hd_info))/(sizeof (struct hd_i_struct))); #else struct hd_i_struct hd_info[] = { {0,0,0,0,0,0},{0,0,0,0,0,0} }; static int NR_HD = 0; #endif static struct hd_struct hd[MAX_HD<<6]={{0,0},}; static int hd_sizes[MAX_HD<<6] = {0, }; static int hd_blocksizes[MAX_HD<<6] = {0, }; #if (HD_DELAY > 0) unsigned long read_timer(void) { unsigned long t; int i; cli(); t = jiffies * 11932; outb_p(0, 0x43); i = inb_p(0x40); i |= inb(0x40) << 8; sti(); return(t - i); } #endif void hd_setup(char *str, int *ints) { int hdind = 0; if (ints[0] != 3) return; if (hd_info[0].head != 0) hdind=1; hd_info[hdind].head = ints[2]; hd_info[hdind].sect = ints[3]; hd_info[hdind].cyl = ints[1]; hd_info[hdind].wpcom = 0; hd_info[hdind].lzone = ints[1]; hd_info[hdind].ctl = (ints[2] > 8 ? 8 : 0); NR_HD = hdind+1; } static int win_result(void) { int i=inb_p(HD_STATUS); if ((i & (BUSY_STAT | READY_STAT | WRERR_STAT | SEEK_STAT | ERR_STAT)) == (READY_STAT | SEEK_STAT)) { hd_error = 0; return 0; /* ok */ } printk("HD: win_result: status = 0x%02x\n",i); if (i&1) { hd_error = inb(HD_ERROR); printk("HD: win_result: error = 0x%02x\n",hd_error); } return 1; } static int controller_busy(void); static int status_ok(void); static int controller_ready(unsigned int drive, unsigned int head) { int retry = 100; do { if (controller_busy() & BUSY_STAT) return 0; outb_p(0xA0 | (drive<<4) | head, HD_CURRENT); if (status_ok()) return 1; } while (--retry); return 0; } static int status_ok(void) { unsigned char status = inb_p(HD_STATUS); if (status & BUSY_STAT) return 1; if (status & WRERR_STAT) return 0; if (!(status & READY_STAT)) return 0; if (!(status & SEEK_STAT)) return 0; return 1; } static int controller_busy(void) { int retries = 100000; unsigned char status; do { status = inb_p(HD_STATUS); } while ((status & BUSY_STAT) && --retries); return status; } static void hd_out(unsigned int drive,unsigned int nsect,unsigned int sect, unsigned int head,unsigned int cyl,unsigned int cmd, void (*intr_addr)(void)) { unsigned short port; if (drive>1 || head>15) panic("Trying to write bad sector"); #if (HD_DELAY > 0) while (read_timer() - last_req < HD_DELAY) /* nothing */; #endif if (reset) return; if (!controller_ready(drive, head)) { reset = 1; return; } SET_INTR(intr_addr); outb_p(hd_info[drive].ctl,HD_CMD); port=HD_DATA; outb_p(hd_info[drive].wpcom>>2,++port); outb_p(nsect,++port); outb_p(sect,++port); outb_p(cyl,++port); outb_p(cyl>>8,++port); outb_p(0xA0|(drive<<4)|head,++port); outb_p(cmd,++port); } static int drive_busy(void) { unsigned int i; unsigned char c; for (i = 0; i < 500000 ; i++) { c = inb_p(HD_STATUS); c &= (BUSY_STAT | READY_STAT | SEEK_STAT); if (c == (READY_STAT | SEEK_STAT)) return 0; } printk("HD controller times out, status = 0x%02x\n",c); return 1; } static void reset_controller(void) { int i; printk(KERN_DEBUG "HD-controller reset\n"); outb_p(4,HD_CMD); for(i = 0; i < 1000; i++) nop(); outb(hd_info[0].ctl & 0x0f ,HD_CMD); if (drive_busy()) printk("HD-controller still busy\n"); if ((hd_error = inb(HD_ERROR)) != 1) printk("HD-controller reset failed: %02x\n",hd_error); } static void reset_hd(void) { static int i; repeat: if (reset) { reset = 0; i = -1; reset_controller(); } else if (win_result()) { bad_rw_intr(); if (reset) goto repeat; } i++; if (i < NR_HD) { hd_out(i,hd_info[i].sect,hd_info[i].sect,hd_info[i].head-1, hd_info[i].cyl,WIN_SPECIFY,&reset_hd); if (reset) goto repeat; } else do_hd_request(); } /* * Ok, don't know what to do with the unexpected interrupts: on some machines * doing a reset and a retry seems to result in an eternal loop. Right now I * ignore it, and just set the timeout. */ void unexpected_hd_interrupt(void) { sti(); printk(KERN_DEBUG "Unexpected HD interrupt\n"); SET_TIMER; } /* * bad_rw_intr() now tries to be a bit smarter and does things * according to the error returned by the controller. * -Mika Liljeberg (liljeber@cs.Helsinki.FI) */ static void bad_rw_intr(void) { int dev; if (!CURRENT) return; dev = MINOR(CURRENT->dev) >> 6; if (++CURRENT->errors >= MAX_ERRORS || (hd_error & BBD_ERR)) { end_request(0); recalibrate[dev] = 1; } else if (CURRENT->errors % RESET_FREQ == 0) reset = 1; else if ((hd_error & TRK0_ERR) || CURRENT->errors % RECAL_FREQ == 0) recalibrate[dev] = 1; /* Otherwise just retry */ } static inline int wait_DRQ(void) { int retries = 100000; while (--retries > 0) if (inb_p(HD_STATUS) & DRQ_STAT) return 0; return -1; } #define STAT_MASK (BUSY_STAT | READY_STAT | WRERR_STAT | SEEK_STAT | ERR_STAT) #define STAT_OK (READY_STAT | SEEK_STAT) static void read_intr(void) { int i; int retries = 100000; do { i = (unsigned) inb_p(HD_STATUS); if (i & BUSY_STAT) continue; if ((i & STAT_MASK) != STAT_OK) break; if (i & DRQ_STAT) goto ok_to_read; } while (--retries > 0); sti(); printk("HD: read_intr: status = 0x%02x\n",i); if (i & ERR_STAT) { hd_error = (unsigned) inb(HD_ERROR); printk("HD: read_intr: error = 0x%02x\n",hd_error); } bad_rw_intr(); cli(); do_hd_request(); return; ok_to_read: insw(HD_DATA,CURRENT->buffer,256); CURRENT->errors = 0; CURRENT->buffer += 512; CURRENT->sector++; i = --CURRENT->nr_sectors; --CURRENT->current_nr_sectors; #ifdef DEBUG printk("hd%d : sector = %d, %d remaining to buffer = %08x\n", MINOR(CURRENT->dev), CURRENT->sector, i, CURRENT-> buffer); #endif if (!i || (CURRENT->bh && !SUBSECTOR(i))) end_request(1); if (i > 0) { SET_INTR(&read_intr); sti(); return; } (void) inb_p(HD_STATUS); #if (HD_DELAY > 0) last_req = read_timer(); #endif do_hd_request(); return; } static void write_intr(void) { int i; int retries = 100000; do { i = (unsigned) inb_p(HD_STATUS); if (i & BUSY_STAT) continue; if ((i & STAT_MASK) != STAT_OK) break; if ((CURRENT->nr_sectors <= 1) || (i & DRQ_STAT)) goto ok_to_write; } while (--retries > 0); sti(); printk("HD: write_intr: status = 0x%02x\n",i); if (i & ERR_STAT) { hd_error = (unsigned) inb(HD_ERROR); printk("HD: write_intr: error = 0x%02x\n",hd_error); } bad_rw_intr(); cli(); do_hd_request(); return; ok_to_write: CURRENT->sector++; i = --CURRENT->nr_sectors; --CURRENT->current_nr_sectors; CURRENT->buffer += 512; if (!i || (CURRENT->bh && !SUBSECTOR(i))) end_request(1); if (i > 0) { SET_INTR(&write_intr); outsw(HD_DATA,CURRENT->buffer,256); sti(); } else { #if (HD_DELAY > 0) last_req = read_timer(); #endif do_hd_request(); } return; } static void recal_intr(void) { if (win_result()) bad_rw_intr(); do_hd_request(); } /* * This is another of the error-routines I don't know what to do with. The * best idea seems to just set reset, and start all over again. */ static void hd_times_out(void) { DEVICE_INTR = NULL; sti(); reset = 1; if (!CURRENT) return; printk(KERN_DEBUG "HD timeout\n"); cli(); if (++CURRENT->errors >= MAX_ERRORS) { #ifdef DEBUG printk("hd : too many errors.\n"); #endif end_request(0); } do_hd_request(); } /* * The driver has been modified to enable interrupts a bit more: in order to * do this we first (a) disable the timeout-interrupt and (b) clear the * device-interrupt. This way the interrupts won't mess with out code (the * worst that can happen is that an unexpected HD-interrupt comes in and * sets the "reset" variable and starts the timer) */ static void do_hd_request(void) { unsigned int block,dev; unsigned int sec,head,cyl,track; unsigned int nsect; if (CURRENT && CURRENT->dev < 0) return; if (DEVICE_INTR) return; repeat: timer_active &= ~(1<dev); block = CURRENT->sector; nsect = CURRENT->nr_sectors; if (dev >= (NR_HD<<6) || block >= hd[dev].nr_sects) { #ifdef DEBUG printk("hd%d : attempted read for sector %d past end of device at sector %d.\n", block, hd[dev].nr_sects); #endif end_request(0); goto repeat; } block += hd[dev].start_sect; dev >>= 6; sec = block % hd_info[dev].sect + 1; track = block / hd_info[dev].sect; head = track % hd_info[dev].head; cyl = track / hd_info[dev].head; #ifdef DEBUG printk("hd%d : cyl = %d, head = %d, sector = %d, buffer = %08x\n", dev, cyl, head, sec, CURRENT->buffer); #endif cli(); if (reset) { int i; for (i=0; i < NR_HD; i++) recalibrate[i] = 1; reset_hd(); sti(); return; } if (recalibrate[dev]) { recalibrate[dev] = 0; hd_out(dev,hd_info[dev].sect,0,0,0,WIN_RESTORE,&recal_intr); if (reset) goto repeat; sti(); return; } if (CURRENT->cmd == WRITE) { hd_out(dev,nsect,sec,head,cyl,WIN_WRITE,&write_intr); if (reset) goto repeat; if (wait_DRQ()) { printk("HD: do_hd_request: no DRQ\n"); bad_rw_intr(); goto repeat; } outsw(HD_DATA,CURRENT->buffer,256); sti(); return; } if (CURRENT->cmd == READ) { hd_out(dev,nsect,sec,head,cyl,WIN_READ,&read_intr); if (reset) goto repeat; sti(); return; } panic("unknown hd-command"); } static int hd_ioctl(struct inode * inode, struct file * file, unsigned int cmd, unsigned long arg) { struct hd_geometry *loc = (struct hd_geometry *) arg; int dev, err; if (!inode) return -EINVAL; dev = MINOR(inode->i_rdev) >> 6; if (dev >= NR_HD) return -EINVAL; switch (cmd) { case HDIO_GETGEO: if (!loc) return -EINVAL; err = verify_area(VERIFY_WRITE, loc, sizeof(*loc)); if (err) return err; put_fs_byte(hd_info[dev].head, (char *) &loc->heads); put_fs_byte(hd_info[dev].sect, (char *) &loc->sectors); put_fs_word(hd_info[dev].cyl, (short *) &loc->cylinders); put_fs_long(hd[MINOR(inode->i_rdev)].start_sect, (long *) &loc->start); return 0; case BLKGETSIZE: /* Return device size */ if (!arg) return -EINVAL; err = verify_area(VERIFY_WRITE, (long *) arg, sizeof(long)); if (err) return err; put_fs_long(hd[MINOR(inode->i_rdev)].nr_sects, (long *) arg); return 0; case BLKFLSBUF: if(!suser()) return -EACCES; if(!inode->i_rdev) return -EINVAL; fsync_dev(inode->i_rdev); invalidate_buffers(inode->i_rdev); return 0; case BLKRRPART: /* Re-read partition tables */ return revalidate_hddisk(inode->i_rdev, 1); RO_IOCTLS(inode->i_rdev,arg); default: return -EINVAL; } } static int hd_open(struct inode * inode, struct file * filp) { int target; target = DEVICE_NR(MINOR(inode->i_rdev)); while (busy[target]) sleep_on(&busy_wait); access_count[target]++; return 0; } /* * Releasing a block device means we sync() it, so that it can safely * be forgotten about... */ static void hd_release(struct inode * inode, struct file * file) { int target; sync_dev(inode->i_rdev); target = DEVICE_NR(MINOR(inode->i_rdev)); access_count[target]--; } static void hd_geninit(void); static struct gendisk hd_gendisk = { MAJOR_NR, /* Major number */ "hd", /* Major name */ 6, /* Bits to shift to get real from partition */ 1 << 6, /* Number of partitions per real */ MAX_HD, /* maximum number of real */ hd_geninit, /* init function */ hd, /* hd struct */ hd_sizes, /* block sizes */ 0, /* number */ (void *) hd_info, /* internal */ NULL /* next */ }; static void hd_interrupt(int unused) { void (*handler)(void) = DEVICE_INTR; DEVICE_INTR = NULL; timer_active &= ~(1< are the primary drives in the system, and the ones reflected as drive 1 or 2. The first drive is stored in the high nibble of CMOS byte 0x12, the second in the low nibble. This will be either a 4 bit drive type or 0xf indicating use byte 0x19 for an 8 bit type, drive 1, 0x1a for drive 2 in CMOS. Needless to say, a non-zero value means we have an AT controller hard disk for that drive. */ if ((cmos_disks = CMOS_READ(0x12)) & 0xf0) if (cmos_disks & 0x0f) NR_HD = 2; else NR_HD = 1; } i = NR_HD; while (i-- > 0) { hd[i<<6].nr_sects = 0; if (hd_info[i].head > 16) { printk("hd.c: ST-506 interface disk with more than 16 heads detected,\n"); printk(" probably due to non-standard sector translation. Giving up.\n"); printk(" (disk %d: cyl=%d, sect=%d, head=%d)\n", i, hd_info[i].cyl, hd_info[i].sect, hd_info[i].head); if (i+1 == NR_HD) NR_HD--; continue; } hd[i<<6].nr_sects = hd_info[i].head* hd_info[i].sect*hd_info[i].cyl; } if (NR_HD) { if (irqaction(HD_IRQ,&hd_sigaction)) { printk("hd.c: unable to get IRQ%d for the harddisk driver\n",HD_IRQ); NR_HD = 0; } } hd_gendisk.nr_real = NR_HD; for(i=0;i<(MAX_HD << 6);i++) hd_blocksizes[i] = 1024; blksize_size[MAJOR_NR] = hd_blocksizes; } static struct file_operations hd_fops = { NULL, /* lseek - default */ block_read, /* read - general block-dev read */ block_write, /* write - general block-dev write */ NULL, /* readdir - bad */ NULL, /* select */ hd_ioctl, /* ioctl */ NULL, /* mmap */ hd_open, /* open */ hd_release, /* release */ block_fsync /* fsync */ }; unsigned long hd_init(unsigned long mem_start, unsigned long mem_end) { if (register_blkdev(MAJOR_NR,"hd",&hd_fops)) { printk("Unable to get major %d for harddisk\n",MAJOR_NR); return mem_start; } blk_dev[MAJOR_NR].request_fn = DEVICE_REQUEST; read_ahead[MAJOR_NR] = 8; /* 8 sector (4kB) read-ahead */ hd_gendisk.next = gendisk_head; gendisk_head = &hd_gendisk; timer_table[HD_TIMER].fn = hd_times_out; return mem_start; } #define DEVICE_BUSY busy[target] #define USAGE access_count[target] #define CAPACITY (hd_info[target].head*hd_info[target].sect*hd_info[target].cyl) /* We assume that the the bios parameters do not change, so the disk capacity will not change */ #undef MAYBE_REINIT #define GENDISK_STRUCT hd_gendisk /* * This routine is called to flush all partitions and partition tables * for a changed scsi disk, and then re-read the new partition table. * If we are revalidating a disk because of a media change, then we * enter with usage == 0. If we are using an ioctl, we automatically have * usage == 1 (we need an open channel to use an ioctl :-), so this * is our limit. */ static int revalidate_hddisk(int dev, int maxusage) { int target, major; struct gendisk * gdev; int max_p; int start; int i; target = DEVICE_NR(MINOR(dev)); gdev = &GENDISK_STRUCT; cli(); if (DEVICE_BUSY || USAGE > maxusage) { sti(); return -EBUSY; }; DEVICE_BUSY = 1; sti(); max_p = gdev->max_p; start = target << gdev->minor_shift; major = MAJOR_NR << 8; for (i=max_p - 1; i >=0 ; i--) { sync_dev(major | start | i); invalidate_inodes(major | start | i); invalidate_buffers(major | start | i); gdev->part[start+i].start_sect = 0; gdev->part[start+i].nr_sects = 0; }; #ifdef MAYBE_REINIT MAYBE_REINIT; #endif gdev->part[start].nr_sects = CAPACITY; resetup_one_dev(gdev, target); DEVICE_BUSY = 0; wake_up(&busy_wait); return 0; }