//==-- AArch64InstPrinter.cpp - Convert AArch64 MCInst to assembly syntax --==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This class prints an AArch64 MCInst to a .s file. // //===----------------------------------------------------------------------===// /* Capstone Disassembly Engine */ /* By Nguyen Anh Quynh , 2013-2014 */ #ifdef CAPSTONE_HAS_ARM64 #include #include #include #include "AArch64InstPrinter.h" #include "AArch64BaseInfo.h" #include "../../utils.h" #include "../../MCInst.h" #include "../../SStream.h" #include "../../MCRegisterInfo.h" #include "../../MathExtras.h" #include "AArch64Mapping.h" #include "AArch64AddressingModes.h" #define GET_REGINFO_ENUM #include "AArch64GenRegisterInfo.inc" #define GET_INSTRINFO_ENUM #include "AArch64GenInstrInfo.inc" static const char *getRegisterName(unsigned RegNo, int AltIdx); static void printOperand(MCInst *MI, unsigned OpNo, SStream *O); static bool printSysAlias(MCInst *MI, SStream *O); static char *printAliasInstr(MCInst *MI, SStream *OS, void *info); static void printInstruction(MCInst *MI, SStream *O, MCRegisterInfo *MRI); static void printShifter(MCInst *MI, unsigned OpNum, SStream *O); static void set_mem_access(MCInst *MI, bool status) { if (MI->csh->detail != CS_OPT_ON) return; MI->csh->doing_mem = status; if (status) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_MEM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].mem.base = ARM64_REG_INVALID; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].mem.index = ARM64_REG_INVALID; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].mem.disp = 0; } else { // done, create the next operand slot MI->flat_insn->detail->arm64.op_count++; } } void AArch64_printInst(MCInst *MI, SStream *O, void *Info) { // Check for special encodings and print the canonical alias instead. unsigned Opcode = MCInst_getOpcode(MI); int LSB; int Width; char *mnem; if (Opcode == AArch64_SYSxt && printSysAlias(MI, O)) return; // SBFM/UBFM should print to a nicer aliased form if possible. if (Opcode == AArch64_SBFMXri || Opcode == AArch64_SBFMWri || Opcode == AArch64_UBFMXri || Opcode == AArch64_UBFMWri) { MCOperand *Op0 = MCInst_getOperand(MI, 0); MCOperand *Op1 = MCInst_getOperand(MI, 1); MCOperand *Op2 = MCInst_getOperand(MI, 2); MCOperand *Op3 = MCInst_getOperand(MI, 3); bool IsSigned = (Opcode == AArch64_SBFMXri || Opcode == AArch64_SBFMWri); bool Is64Bit = (Opcode == AArch64_SBFMXri || Opcode == AArch64_UBFMXri); if (MCOperand_isImm(Op2) && MCOperand_getImm(Op2) == 0 && MCOperand_isImm(Op3)) { const char *AsmMnemonic = NULL; switch (MCOperand_getImm(Op3)) { default: break; case 7: if (IsSigned) AsmMnemonic = "sxtb"; else if (!Is64Bit) AsmMnemonic = "uxtb"; break; case 15: if (IsSigned) AsmMnemonic = "sxth"; else if (!Is64Bit) AsmMnemonic = "uxth"; break; case 31: // *xtw is only valid for signed 64-bit operations. if (Is64Bit && IsSigned) AsmMnemonic = "sxtw"; break; } if (AsmMnemonic) { SStream_concat(O, "%s\t%s, %s", AsmMnemonic, getRegisterName(MCOperand_getReg(Op0), AArch64_NoRegAltName), getRegisterName(getWRegFromXReg(MCOperand_getReg(Op1)), AArch64_NoRegAltName)); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op0); MI->flat_insn->detail->arm64.op_count++; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = getWRegFromXReg(MCOperand_getReg(Op1)); MI->flat_insn->detail->arm64.op_count++; } MCInst_setOpcodePub(MI, AArch64_map_insn(AsmMnemonic)); return; } } // All immediate shifts are aliases, implemented using the Bitfield // instruction. In all cases the immediate shift amount shift must be in // the range 0 to (reg.size -1). if (MCOperand_isImm(Op2) && MCOperand_isImm(Op3)) { const char *AsmMnemonic = NULL; int shift = 0; int immr = (int)MCOperand_getImm(Op2); int imms = (int)MCOperand_getImm(Op3); if (Opcode == AArch64_UBFMWri && imms != 0x1F && ((imms + 1) == immr)) { AsmMnemonic = "lsl"; shift = 31 - imms; } else if (Opcode == AArch64_UBFMXri && imms != 0x3f && ((imms + 1 == immr))) { AsmMnemonic = "lsl"; shift = 63 - imms; } else if (Opcode == AArch64_UBFMWri && imms == 0x1f) { AsmMnemonic = "lsr"; shift = immr; } else if (Opcode == AArch64_UBFMXri && imms == 0x3f) { AsmMnemonic = "lsr"; shift = immr; } else if (Opcode == AArch64_SBFMWri && imms == 0x1f) { AsmMnemonic = "asr"; shift = immr; } else if (Opcode == AArch64_SBFMXri && imms == 0x3f) { AsmMnemonic = "asr"; shift = immr; } if (AsmMnemonic) { SStream_concat(O, "%s\t%s, %s, ", AsmMnemonic, getRegisterName(MCOperand_getReg(Op0), AArch64_NoRegAltName), getRegisterName(MCOperand_getReg(Op1), AArch64_NoRegAltName)); printInt32Bang(O, shift); MCInst_setOpcodePub(MI, AArch64_map_insn(AsmMnemonic)); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op0); MI->flat_insn->detail->arm64.op_count++; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op1); MI->flat_insn->detail->arm64.op_count++; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = shift; MI->flat_insn->detail->arm64.op_count++; } return; } } // SBFIZ/UBFIZ aliases if (MCOperand_getImm(Op2) > MCOperand_getImm(Op3)) { SStream_concat(O, "%s\t%s, %s, ", (IsSigned ? "sbfiz" : "ubfiz"), getRegisterName(MCOperand_getReg(Op0), AArch64_NoRegAltName), getRegisterName(MCOperand_getReg(Op1), AArch64_NoRegAltName)); printInt32Bang(O, (int)((Is64Bit ? 64 : 32) - MCOperand_getImm(Op2))); SStream_concat0(O, ", "); printInt32Bang(O, (int)MCOperand_getImm(Op3) + 1); MCInst_setOpcodePub(MI, AArch64_map_insn(IsSigned ? "sbfiz" : "ubfiz")); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op0); MI->flat_insn->detail->arm64.op_count++; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op1); MI->flat_insn->detail->arm64.op_count++; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = (Is64Bit ? 64 : 32) - (int)MCOperand_getImm(Op2); MI->flat_insn->detail->arm64.op_count++; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = MCOperand_getImm(Op3) + 1; MI->flat_insn->detail->arm64.op_count++; } return; } // Otherwise SBFX/UBFX is the preferred form SStream_concat(O, "%s\t%s, %s, ", (IsSigned ? "sbfx" : "ubfx"), getRegisterName(MCOperand_getReg(Op0), AArch64_NoRegAltName), getRegisterName(MCOperand_getReg(Op1), AArch64_NoRegAltName)); printInt32Bang(O, (int)MCOperand_getImm(Op2)); SStream_concat0(O, ", "); printInt32Bang(O, (int)MCOperand_getImm(Op3) - (int)MCOperand_getImm(Op2) + 1); MCInst_setOpcodePub(MI, AArch64_map_insn(IsSigned ? "sbfx" : "ubfx")); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op0); MI->flat_insn->detail->arm64.op_count++; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op1); MI->flat_insn->detail->arm64.op_count++; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = MCOperand_getImm(Op2); MI->flat_insn->detail->arm64.op_count++; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = MCOperand_getImm(Op3) - MCOperand_getImm(Op2) + 1; MI->flat_insn->detail->arm64.op_count++; } return; } if (Opcode == AArch64_BFMXri || Opcode == AArch64_BFMWri) { MCOperand *Op0 = MCInst_getOperand(MI, 0); // Op1 == Op0 MCOperand *Op2 = MCInst_getOperand(MI, 2); int ImmR = (int)MCOperand_getImm(MCInst_getOperand(MI, 3)); int ImmS = (int)MCOperand_getImm(MCInst_getOperand(MI, 4)); // BFI alias if (ImmS < ImmR) { int BitWidth = Opcode == AArch64_BFMXri ? 64 : 32; LSB = (BitWidth - ImmR) % BitWidth; Width = ImmS + 1; SStream_concat(O, "bfi\t%s, %s, ", getRegisterName(MCOperand_getReg(Op0), AArch64_NoRegAltName), getRegisterName(MCOperand_getReg(Op2), AArch64_NoRegAltName)); printInt32Bang(O, LSB); SStream_concat0(O, ", "); printInt32Bang(O, Width); MCInst_setOpcodePub(MI, AArch64_map_insn("bfi")); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op0); MI->flat_insn->detail->arm64.op_count++; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op2); MI->flat_insn->detail->arm64.op_count++; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = LSB; MI->flat_insn->detail->arm64.op_count++; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = Width; MI->flat_insn->detail->arm64.op_count++; } return; } LSB = ImmR; Width = ImmS - ImmR + 1; // Otherwise BFXIL the preferred form SStream_concat(O, "bfxil\t%s, %s, ", getRegisterName(MCOperand_getReg(Op0), AArch64_NoRegAltName), getRegisterName(MCOperand_getReg(Op2), AArch64_NoRegAltName)); printInt32Bang(O, LSB); SStream_concat0(O, ", "); printInt32Bang(O, Width); MCInst_setOpcodePub(MI, AArch64_map_insn("bfxil")); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op0); MI->flat_insn->detail->arm64.op_count++; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op2); MI->flat_insn->detail->arm64.op_count++; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = LSB; MI->flat_insn->detail->arm64.op_count++; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = Width; MI->flat_insn->detail->arm64.op_count++; } return; } mnem = printAliasInstr(MI, O, Info); if (mnem) { MCInst_setOpcodePub(MI, AArch64_map_insn(mnem)); cs_mem_free(mnem); } else { printInstruction(MI, O, Info); } } static bool printSysAlias(MCInst *MI, SStream *O) { // unsigned Opcode = MCInst_getOpcode(MI); //assert(Opcode == AArch64_SYSxt && "Invalid opcode for SYS alias!"); const char *Asm = NULL; MCOperand *Op1 = MCInst_getOperand(MI, 0); MCOperand *Cn = MCInst_getOperand(MI, 1); MCOperand *Cm = MCInst_getOperand(MI, 2); MCOperand *Op2 = MCInst_getOperand(MI, 3); unsigned Op1Val = (unsigned)MCOperand_getImm(Op1); unsigned CnVal = (unsigned)MCOperand_getImm(Cn); unsigned CmVal = (unsigned)MCOperand_getImm(Cm); unsigned Op2Val = (unsigned)MCOperand_getImm(Op2); unsigned insn_id = ARM64_INS_INVALID; unsigned op_ic = 0, op_dc = 0, op_at = 0, op_tlbi = 0; if (CnVal == 7) { switch (CmVal) { default: break; // IC aliases case 1: if (Op1Val == 0 && Op2Val == 0) { Asm = "ic\tialluis"; insn_id = ARM64_INS_IC; op_ic = ARM64_IC_IALLUIS; } break; case 5: if (Op1Val == 0 && Op2Val == 0) { Asm = "ic\tiallu"; insn_id = ARM64_INS_IC; op_ic = ARM64_IC_IALLU; } else if (Op1Val == 3 && Op2Val == 1) { Asm = "ic\tivau"; insn_id = ARM64_INS_IC; op_ic = ARM64_IC_IVAU; } break; // DC aliases case 4: if (Op1Val == 3 && Op2Val == 1) { Asm = "dc\tzva"; insn_id = ARM64_INS_DC; op_dc = ARM64_DC_ZVA; } break; case 6: if (Op1Val == 0 && Op2Val == 1) { Asm = "dc\tivac"; insn_id = ARM64_INS_DC; op_dc = ARM64_DC_IVAC; } if (Op1Val == 0 && Op2Val == 2) { Asm = "dc\tisw"; insn_id = ARM64_INS_DC; op_dc = ARM64_DC_ISW; } break; case 10: if (Op1Val == 3 && Op2Val == 1) { Asm = "dc\tcvac"; insn_id = ARM64_INS_DC; op_dc = ARM64_DC_CVAC; } else if (Op1Val == 0 && Op2Val == 2) { Asm = "dc\tcsw"; insn_id = ARM64_INS_DC; op_dc = ARM64_DC_CSW; } break; case 11: if (Op1Val == 3 && Op2Val == 1) { Asm = "dc\tcvau"; insn_id = ARM64_INS_DC; op_dc = ARM64_DC_CVAU; } break; case 14: if (Op1Val == 3 && Op2Val == 1) { Asm = "dc\tcivac"; insn_id = ARM64_INS_DC; op_dc = ARM64_DC_CIVAC; } else if (Op1Val == 0 && Op2Val == 2) { Asm = "dc\tcisw"; insn_id = ARM64_INS_DC; op_dc = ARM64_DC_CISW; } break; // AT aliases case 8: switch (Op1Val) { default: break; case 0: switch (Op2Val) { default: break; case 0: Asm = "at\ts1e1r"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E1R; break; case 1: Asm = "at\ts1e1w"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E1W; break; case 2: Asm = "at\ts1e0r"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E0R; break; case 3: Asm = "at\ts1e0w"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E0W; break; } break; case 4: switch (Op2Val) { default: break; case 0: Asm = "at\ts1e2r"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E2R; break; case 1: Asm = "at\ts1e2w"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E2W; break; case 4: Asm = "at\ts12e1r"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E1R; break; case 5: Asm = "at\ts12e1w"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E1W; break; case 6: Asm = "at\ts12e0r"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E0R; break; case 7: Asm = "at\ts12e0w"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E0W; break; } break; case 6: switch (Op2Val) { default: break; case 0: Asm = "at\ts1e3r"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E3R; break; case 1: Asm = "at\ts1e3w"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E3W; break; } break; } break; } } else if (CnVal == 8) { // TLBI aliases switch (CmVal) { default: break; case 3: switch (Op1Val) { default: break; case 0: switch (Op2Val) { default: break; case 0: Asm = "tlbi\tvmalle1is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VMALLE1IS; break; case 1: Asm = "tlbi\tvae1is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VAE1IS; break; case 2: Asm = "tlbi\taside1is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_ASIDE1IS; break; case 3: Asm = "tlbi\tvaae1is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VAAE1IS; break; case 5: Asm = "tlbi\tvale1is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VALE1IS; break; case 7: Asm = "tlbi\tvaale1is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VAALE1IS; break; } break; case 4: switch (Op2Val) { default: break; case 0: Asm = "tlbi\talle2is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_ALLE2IS; break; case 1: Asm = "tlbi\tvae2is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VAE2IS; break; case 4: Asm = "tlbi\talle1is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_ALLE1IS; break; case 5: Asm = "tlbi\tvale2is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VALE2IS; break; case 6: Asm = "tlbi\tvmalls12e1is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VMALLS12E1IS; break; } break; case 6: switch (Op2Val) { default: break; case 0: Asm = "tlbi\talle3is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_ALLE3IS; break; case 1: Asm = "tlbi\tvae3is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VAE3IS; break; case 5: Asm = "tlbi\tvale3is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VALE3IS; break; } break; } break; case 0: switch (Op1Val) { default: break; case 4: switch (Op2Val) { default: break; case 1: Asm = "tlbi\tipas2e1is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_IPAS2E1IS; break; case 5: Asm = "tlbi\tipas2le1is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_IPAS2LE1IS; break; } break; } break; case 4: switch (Op1Val) { default: break; case 4: switch (Op2Val) { default: break; case 1: Asm = "tlbi\tipas2e1"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_IPAS2E1; break; case 5: Asm = "tlbi\tipas2le1"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_IPAS2LE1; break; } break; } break; case 7: switch (Op1Val) { default: break; case 0: switch (Op2Val) { default: break; case 0: Asm = "tlbi\tvmalle1"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VMALLE1; break; case 1: Asm = "tlbi\tvae1"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VAE1; break; case 2: Asm = "tlbi\taside1"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_ASIDE1; break; case 3: Asm = "tlbi\tvaae1"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VAAE1; break; case 5: Asm = "tlbi\tvale1"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VALE1; break; case 7: Asm = "tlbi\tvaale1"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VAALE1; break; } break; case 4: switch (Op2Val) { default: break; case 0: Asm = "tlbi\talle2"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_ALLE2; break; case 1: Asm = "tlbi\tvae2"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VAE2; break; case 4: Asm = "tlbi\talle1"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_ALLE1; break; case 5: Asm = "tlbi\tvale2"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VALE2; break; case 6: Asm = "tlbi\tvmalls12e1"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VMALLS12E1; break; } break; case 6: switch (Op2Val) { default: break; case 0: Asm = "tlbi\talle3"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_ALLE3; break; case 1: Asm = "tlbi\tvae3"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VAE3; break; case 5: Asm = "tlbi\tvale3"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VALE3; break; } break; } break; } } if (Asm) { MCInst_setOpcodePub(MI, insn_id); SStream_concat0(O, Asm); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_SYS; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].sys = op_ic + op_dc + op_at + op_tlbi; MI->flat_insn->detail->arm64.op_count++; } if (!strstr(Asm, "all")) { unsigned Reg = MCOperand_getReg(MCInst_getOperand(MI, 4)); SStream_concat(O, ", %s", getRegisterName(Reg, AArch64_NoRegAltName)); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = Reg; MI->flat_insn->detail->arm64.op_count++; } } } return Asm != NULL; } static void printOperand(MCInst *MI, unsigned OpNo, SStream *O) { MCOperand *Op = MCInst_getOperand(MI, OpNo); if (MCOperand_isReg(Op)) { unsigned Reg = MCOperand_getReg(Op); SStream_concat0(O, getRegisterName(Reg, AArch64_NoRegAltName)); if (MI->csh->detail) { if (MI->csh->doing_mem) { if (MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].mem.base == ARM64_REG_INVALID) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].mem.base = Reg; } else if (MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].mem.index == ARM64_REG_INVALID) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].mem.index = Reg; } } else { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = Reg; MI->flat_insn->detail->arm64.op_count++; } } } else if (MCOperand_isImm(Op)) { int64_t imm = MCOperand_getImm(Op); if (MI->Opcode == AArch64_ADR) { imm += MI->address; printUInt64Bang(O, imm); } else printUInt64Bang(O, imm); if (MI->csh->detail) { if (MI->csh->doing_mem) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].mem.disp = (int32_t)imm; } else { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = imm; MI->flat_insn->detail->arm64.op_count++; } } } } static void printHexImm(MCInst *MI, unsigned OpNo, SStream *O) { MCOperand *Op = MCInst_getOperand(MI, OpNo); SStream_concat(O, "#%#llx", MCOperand_getImm(Op)); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = MCOperand_getImm(Op); MI->flat_insn->detail->arm64.op_count++; } } static void printPostIncOperand(MCInst *MI, unsigned OpNo, unsigned Imm, SStream *O) { MCOperand *Op = MCInst_getOperand(MI, OpNo); if (MCOperand_isReg(Op)) { unsigned Reg = MCOperand_getReg(Op); if (Reg == AArch64_XZR) { printInt32Bang(O, Imm); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = Imm; MI->flat_insn->detail->arm64.op_count++; } } else { SStream_concat0(O, getRegisterName(Reg, AArch64_NoRegAltName)); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = Reg; MI->flat_insn->detail->arm64.op_count++; } } } //llvm_unreachable("unknown operand kind in printPostIncOperand64"); } static void printPostIncOperand2(MCInst *MI, unsigned OpNo, SStream *O, int Amount) { printPostIncOperand(MI, OpNo, Amount, O); } static void printVRegOperand(MCInst *MI, unsigned OpNo, SStream *O) { MCOperand *Op = MCInst_getOperand(MI, OpNo); //assert(Op.isReg() && "Non-register vreg operand!"); unsigned Reg = MCOperand_getReg(Op); SStream_concat0(O, getRegisterName(Reg, AArch64_vreg)); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = AArch64_map_vregister(Reg); MI->flat_insn->detail->arm64.op_count++; } } static void printSysCROperand(MCInst *MI, unsigned OpNo, SStream *O) { MCOperand *Op = MCInst_getOperand(MI, OpNo); //assert(Op.isImm() && "System instruction C[nm] operands must be immediates!"); SStream_concat(O, "c%u", MCOperand_getImm(Op)); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_CIMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = MCOperand_getImm(Op); MI->flat_insn->detail->arm64.op_count++; } } static void printAddSubImm(MCInst *MI, unsigned OpNum, SStream *O) { MCOperand *MO = MCInst_getOperand(MI, OpNum); if (MCOperand_isImm(MO)) { unsigned Val = (MCOperand_getImm(MO) & 0xfff); //assert(Val == MO.getImm() && "Add/sub immediate out of range!"); unsigned Shift = AArch64_AM_getShiftValue((int)MCOperand_getImm(MCInst_getOperand(MI, OpNum + 1))); printInt32Bang(O, Val); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = Val; MI->flat_insn->detail->arm64.op_count++; } if (Shift != 0) printShifter(MI, OpNum + 1, O); } } static void printLogicalImm32(MCInst *MI, unsigned OpNum, SStream *O) { int64_t Val = MCOperand_getImm(MCInst_getOperand(MI, OpNum)); Val = AArch64_AM_decodeLogicalImmediate(Val, 32); printUInt32Bang(O, (int)Val); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = Val; MI->flat_insn->detail->arm64.op_count++; } } static void printLogicalImm64(MCInst *MI, unsigned OpNum, SStream *O) { int64_t Val = MCOperand_getImm(MCInst_getOperand(MI, OpNum)); Val = AArch64_AM_decodeLogicalImmediate(Val, 64); switch(MI->flat_insn->id) { default: printInt64Bang(O, Val); break; case ARM64_INS_ORR: case ARM64_INS_AND: case ARM64_INS_EOR: case ARM64_INS_TST: // do not print number in negative form if (Val >= 0 && Val <= HEX_THRESHOLD) SStream_concat(O, "#%u", (int)Val); else SStream_concat(O, "#0x%"PRIx64, Val); break; } if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = Val; MI->flat_insn->detail->arm64.op_count++; } } static void printShifter(MCInst *MI, unsigned OpNum, SStream *O) { unsigned Val = (unsigned)MCOperand_getImm(MCInst_getOperand(MI, OpNum)); // LSL #0 should not be printed. if (AArch64_AM_getShiftType(Val) == AArch64_AM_LSL && AArch64_AM_getShiftValue(Val) == 0) return; SStream_concat(O, ", %s ", AArch64_AM_getShiftExtendName(AArch64_AM_getShiftType(Val))); printInt32BangDec(O, AArch64_AM_getShiftValue(Val)); if (MI->csh->detail) { arm64_shifter shifter = ARM64_SFT_INVALID; switch(AArch64_AM_getShiftType(Val)) { default: // never reach case AArch64_AM_LSL: shifter = ARM64_SFT_LSL; break; case AArch64_AM_LSR: shifter = ARM64_SFT_LSR; break; case AArch64_AM_ASR: shifter = ARM64_SFT_ASR; break; case AArch64_AM_ROR: shifter = ARM64_SFT_ROR; break; case AArch64_AM_MSL: shifter = ARM64_SFT_MSL; break; } MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count - 1].shift.type = shifter; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count - 1].shift.value = AArch64_AM_getShiftValue(Val); } } static void printShiftedRegister(MCInst *MI, unsigned OpNum, SStream *O) { SStream_concat0(O, getRegisterName(MCOperand_getReg(MCInst_getOperand(MI, OpNum)), AArch64_NoRegAltName)); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)); MI->flat_insn->detail->arm64.op_count++; } printShifter(MI, OpNum + 1, O); } static void printArithExtend(MCInst *MI, unsigned OpNum, SStream *O) { unsigned Val = (unsigned)MCOperand_getImm(MCInst_getOperand(MI, OpNum)); AArch64_AM_ShiftExtendType ExtType = AArch64_AM_getArithExtendType(Val); unsigned ShiftVal = AArch64_AM_getArithShiftValue(Val); // If the destination or first source register operand is [W]SP, print // UXTW/UXTX as LSL, and if the shift amount is also zero, print nothing at // all. if (ExtType == AArch64_AM_UXTW || ExtType == AArch64_AM_UXTX) { unsigned Dest = MCOperand_getReg(MCInst_getOperand(MI, 0)); unsigned Src1 = MCOperand_getReg(MCInst_getOperand(MI, 1)); if ( ((Dest == AArch64_SP || Src1 == AArch64_SP) && ExtType == AArch64_AM_UXTX) || ((Dest == AArch64_WSP || Src1 == AArch64_WSP) && ExtType == AArch64_AM_UXTW) ) { if (ShiftVal != 0) { SStream_concat0(O, ", lsl "); printInt32Bang(O, ShiftVal); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count - 1].shift.type = ARM64_SFT_LSL; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count - 1].shift.value = ShiftVal; } } return; } } SStream_concat(O, ", %s", AArch64_AM_getShiftExtendName(ExtType)); if (MI->csh->detail) { arm64_extender ext = ARM64_EXT_INVALID; switch(ExtType) { default: // never reach case AArch64_AM_UXTB: ext = ARM64_EXT_UXTB; break; case AArch64_AM_UXTH: ext = ARM64_EXT_UXTH; break; case AArch64_AM_UXTW: ext = ARM64_EXT_UXTW; break; case AArch64_AM_UXTX: ext = ARM64_EXT_UXTX; break; case AArch64_AM_SXTB: ext = ARM64_EXT_SXTB; break; case AArch64_AM_SXTH: ext = ARM64_EXT_SXTH; break; case AArch64_AM_SXTW: ext = ARM64_EXT_SXTW; break; case AArch64_AM_SXTX: ext = ARM64_EXT_SXTX; break; } MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count - 1].ext = ext; } if (ShiftVal != 0) { SStream_concat0(O, " "); printInt32Bang(O, ShiftVal); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count - 1].shift.type = ARM64_SFT_LSL; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count - 1].shift.value = ShiftVal; } } } static void printExtendedRegister(MCInst *MI, unsigned OpNum, SStream *O) { unsigned Reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)); SStream_concat0(O, getRegisterName(Reg, AArch64_NoRegAltName)); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = Reg; MI->flat_insn->detail->arm64.op_count++; } printArithExtend(MI, OpNum + 1, O); } static void printMemExtend(MCInst *MI, unsigned OpNum, SStream *O, char SrcRegKind, unsigned Width) { unsigned SignExtend = (unsigned)MCOperand_getImm(MCInst_getOperand(MI, OpNum)); unsigned DoShift = (unsigned)MCOperand_getImm(MCInst_getOperand(MI, OpNum + 1)); // sxtw, sxtx, uxtw or lsl (== uxtx) bool IsLSL = !SignExtend && SrcRegKind == 'x'; if (IsLSL) { SStream_concat0(O, "lsl"); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].shift.type = ARM64_SFT_LSL; } } else { SStream_concat(O, "%cxt%c", (SignExtend ? 's' : 'u'), SrcRegKind); if (MI->csh->detail) { if (!SignExtend) { switch(SrcRegKind) { default: break; case 'b': MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].ext = ARM64_EXT_UXTB; break; case 'h': MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].ext = ARM64_EXT_UXTH; break; case 'w': MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].ext = ARM64_EXT_UXTW; break; } } else { switch(SrcRegKind) { default: break; case 'b': MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].ext = ARM64_EXT_SXTB; break; case 'h': MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].ext = ARM64_EXT_SXTH; break; case 'w': MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].ext = ARM64_EXT_SXTW; break; case 'x': MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].ext = ARM64_EXT_SXTX; break; } } } } if (DoShift || IsLSL) { SStream_concat(O, " #%u", Log2_32(Width / 8)); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].shift.type = ARM64_SFT_LSL; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].shift.value = Log2_32(Width / 8); } } } static void printCondCode(MCInst *MI, unsigned OpNum, SStream *O) { A64CC_CondCode CC = (A64CC_CondCode)MCOperand_getImm(MCInst_getOperand(MI, OpNum)); SStream_concat0(O, getCondCodeName(CC)); if (MI->csh->detail) MI->flat_insn->detail->arm64.cc = (arm64_cc)(CC + 1); } static void printInverseCondCode(MCInst *MI, unsigned OpNum, SStream *O) { A64CC_CondCode CC = (A64CC_CondCode)MCOperand_getImm(MCInst_getOperand(MI, OpNum)); SStream_concat0(O, getCondCodeName(getInvertedCondCode(CC))); if (MI->csh->detail) { MI->flat_insn->detail->arm64.cc = (arm64_cc)(getInvertedCondCode(CC) + 1); } } static void printImmScale(MCInst *MI, unsigned OpNum, SStream *O, int Scale) { int64_t val = Scale * MCOperand_getImm(MCInst_getOperand(MI, OpNum)); printInt64Bang(O, val); if (MI->csh->detail) { if (MI->csh->doing_mem) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].mem.disp = (int32_t)val; } else { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = val; MI->flat_insn->detail->arm64.op_count++; } } } static void printUImm12Offset(MCInst *MI, unsigned OpNum, unsigned Scale, SStream *O) { MCOperand *MO = MCInst_getOperand(MI, OpNum); if (MCOperand_isImm(MO)) { int64_t val = Scale * MCOperand_getImm(MO); printInt64Bang(O, val); if (MI->csh->detail) { if (MI->csh->doing_mem) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].mem.disp = (int32_t)val; } else { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = val; MI->flat_insn->detail->arm64.op_count++; } } } } static void printUImm12Offset2(MCInst *MI, unsigned OpNum, SStream *O, int Scale) { printUImm12Offset(MI, OpNum, Scale, O); } static void printPrefetchOp(MCInst *MI, unsigned OpNum, SStream *O) { unsigned prfop = (unsigned)MCOperand_getImm(MCInst_getOperand(MI, OpNum)); bool Valid; const char *Name = A64NamedImmMapper_toString(&A64PRFM_PRFMMapper, prfop, &Valid); if (Valid) { SStream_concat0(O, Name); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_PREFETCH; // we have to plus 1 to prfop because 0 is a valid value of prfop MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].prefetch = prfop + 1; MI->flat_insn->detail->arm64.op_count++; } } else { printInt32Bang(O, prfop); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = prfop; MI->flat_insn->detail->arm64.op_count++; } } } static void printFPImmOperand(MCInst *MI, unsigned OpNum, SStream *O) { MCOperand *MO = MCInst_getOperand(MI, OpNum); double FPImm = MCOperand_isFPImm(MO) ? MCOperand_getFPImm(MO) : AArch64_AM_getFPImmFloat((int)MCOperand_getImm(MO)); // 8 decimal places are enough to perfectly represent permitted floats. #if defined(_KERNEL_MODE) // Issue #681: Windows kernel does not support formatting float point SStream_concat(O, "#"); #else SStream_concat(O, "#%.8f", FPImm); #endif if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_FP; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].fp = FPImm; MI->flat_insn->detail->arm64.op_count++; } } //static unsigned getNextVectorRegister(unsigned Reg, unsigned Stride = 1) static unsigned getNextVectorRegister(unsigned Reg, unsigned Stride) { while (Stride--) { switch (Reg) { default: // llvm_unreachable("Vector register expected!"); case AArch64_Q0: Reg = AArch64_Q1; break; case AArch64_Q1: Reg = AArch64_Q2; break; case AArch64_Q2: Reg = AArch64_Q3; break; case AArch64_Q3: Reg = AArch64_Q4; break; case AArch64_Q4: Reg = AArch64_Q5; break; case AArch64_Q5: Reg = AArch64_Q6; break; case AArch64_Q6: Reg = AArch64_Q7; break; case AArch64_Q7: Reg = AArch64_Q8; break; case AArch64_Q8: Reg = AArch64_Q9; break; case AArch64_Q9: Reg = AArch64_Q10; break; case AArch64_Q10: Reg = AArch64_Q11; break; case AArch64_Q11: Reg = AArch64_Q12; break; case AArch64_Q12: Reg = AArch64_Q13; break; case AArch64_Q13: Reg = AArch64_Q14; break; case AArch64_Q14: Reg = AArch64_Q15; break; case AArch64_Q15: Reg = AArch64_Q16; break; case AArch64_Q16: Reg = AArch64_Q17; break; case AArch64_Q17: Reg = AArch64_Q18; break; case AArch64_Q18: Reg = AArch64_Q19; break; case AArch64_Q19: Reg = AArch64_Q20; break; case AArch64_Q20: Reg = AArch64_Q21; break; case AArch64_Q21: Reg = AArch64_Q22; break; case AArch64_Q22: Reg = AArch64_Q23; break; case AArch64_Q23: Reg = AArch64_Q24; break; case AArch64_Q24: Reg = AArch64_Q25; break; case AArch64_Q25: Reg = AArch64_Q26; break; case AArch64_Q26: Reg = AArch64_Q27; break; case AArch64_Q27: Reg = AArch64_Q28; break; case AArch64_Q28: Reg = AArch64_Q29; break; case AArch64_Q29: Reg = AArch64_Q30; break; case AArch64_Q30: Reg = AArch64_Q31; break; // Vector lists can wrap around. case AArch64_Q31: Reg = AArch64_Q0; break; } } return Reg; } static void printVectorList(MCInst *MI, unsigned OpNum, SStream *O, char *LayoutSuffix, MCRegisterInfo *MRI, arm64_vas vas, arm64_vess vess) { #define GETREGCLASS_CONTAIN0(_class, _reg) MCRegisterClass_contains(MCRegisterInfo_getRegClass(MRI, _class), _reg) unsigned Reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)); unsigned NumRegs = 1, FirstReg, i; SStream_concat0(O, "{"); // Work out how many registers there are in the list (if there is an actual // list). if (GETREGCLASS_CONTAIN0(AArch64_DDRegClassID , Reg) || GETREGCLASS_CONTAIN0(AArch64_QQRegClassID, Reg)) NumRegs = 2; else if (GETREGCLASS_CONTAIN0(AArch64_DDDRegClassID, Reg) || GETREGCLASS_CONTAIN0(AArch64_QQQRegClassID, Reg)) NumRegs = 3; else if (GETREGCLASS_CONTAIN0(AArch64_DDDDRegClassID, Reg) || GETREGCLASS_CONTAIN0(AArch64_QQQQRegClassID, Reg)) NumRegs = 4; // Now forget about the list and find out what the first register is. if ((FirstReg = MCRegisterInfo_getSubReg(MRI, Reg, AArch64_dsub0))) Reg = FirstReg; else if ((FirstReg = MCRegisterInfo_getSubReg(MRI, Reg, AArch64_qsub0))) Reg = FirstReg; // If it's a D-reg, we need to promote it to the equivalent Q-reg before // printing (otherwise getRegisterName fails). if (GETREGCLASS_CONTAIN0(AArch64_FPR64RegClassID, Reg)) { const MCRegisterClass *FPR128RC = MCRegisterInfo_getRegClass(MRI, AArch64_FPR128RegClassID); Reg = MCRegisterInfo_getMatchingSuperReg(MRI, Reg, AArch64_dsub, FPR128RC); } for (i = 0; i < NumRegs; ++i, Reg = getNextVectorRegister(Reg, 1)) { SStream_concat(O, "%s%s", getRegisterName(Reg, AArch64_vreg), LayoutSuffix); if (i + 1 != NumRegs) SStream_concat0(O, ", "); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = AArch64_map_vregister(Reg); MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].vas = vas; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].vess = vess; MI->flat_insn->detail->arm64.op_count++; } } SStream_concat0(O, "}"); } static void printTypedVectorList(MCInst *MI, unsigned OpNum, SStream *O, unsigned NumLanes, char LaneKind, MCRegisterInfo *MRI) { char Suffix[32]; arm64_vas vas = 0; arm64_vess vess = 0; if (NumLanes) { cs_snprintf(Suffix, sizeof(Suffix), ".%u%c", NumLanes, LaneKind); switch(LaneKind) { default: break; case 'b': switch(NumLanes) { default: break; case 8: vas = ARM64_VAS_8B; break; case 16: vas = ARM64_VAS_16B; break; } break; case 'h': switch(NumLanes) { default: break; case 4: vas = ARM64_VAS_4H; break; case 8: vas = ARM64_VAS_8H; break; } break; case 's': switch(NumLanes) { default: break; case 2: vas = ARM64_VAS_2S; break; case 4: vas = ARM64_VAS_4S; break; } break; case 'd': switch(NumLanes) { default: break; case 1: vas = ARM64_VAS_1D; break; case 2: vas = ARM64_VAS_2D; break; } break; case 'q': switch(NumLanes) { default: break; case 1: vas = ARM64_VAS_1Q; break; } break; } } else { cs_snprintf(Suffix, sizeof(Suffix), ".%c", LaneKind); switch(LaneKind) { default: break; case 'b': vess = ARM64_VESS_B; break; case 'h': vess = ARM64_VESS_H; break; case 's': vess = ARM64_VESS_S; break; case 'd': vess = ARM64_VESS_D; break; } } printVectorList(MI, OpNum, O, Suffix, MRI, vas, vess); } static void printVectorIndex(MCInst *MI, unsigned OpNum, SStream *O) { SStream_concat0(O, "["); printInt32(O, (int)MCOperand_getImm(MCInst_getOperand(MI, OpNum))); SStream_concat0(O, "]"); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count - 1].vector_index = (int)MCOperand_getImm(MCInst_getOperand(MI, OpNum)); } } static void printAlignedLabel(MCInst *MI, unsigned OpNum, SStream *O) { MCOperand *Op = MCInst_getOperand(MI, OpNum); // If the label has already been resolved to an immediate offset (say, when // we're running the disassembler), just print the immediate. if (MCOperand_isImm(Op)) { uint64_t imm = (MCOperand_getImm(Op) << 2) + MI->address; printUInt64Bang(O, imm); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = imm; MI->flat_insn->detail->arm64.op_count++; } return; } } static void printAdrpLabel(MCInst *MI, unsigned OpNum, SStream *O) { MCOperand *Op = MCInst_getOperand(MI, OpNum); if (MCOperand_isImm(Op)) { // ADRP sign extends a 21-bit offset, shifts it left by 12 // and adds it to the value of the PC with its bottom 12 bits cleared uint64_t imm = (MCOperand_getImm(Op) << 12) + (MI->address & ~0xfff); if (imm > HEX_THRESHOLD) SStream_concat(O, "#0x%"PRIx64, imm); else SStream_concat(O, "#%"PRIu64, imm); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = imm; MI->flat_insn->detail->arm64.op_count++; } return; } } static void printBarrierOption(MCInst *MI, unsigned OpNo, SStream *O) { unsigned Val = (unsigned)MCOperand_getImm(MCInst_getOperand(MI, OpNo)); unsigned Opcode = MCInst_getOpcode(MI); bool Valid; const char *Name; if (Opcode == AArch64_ISB) Name = A64NamedImmMapper_toString(&A64ISB_ISBMapper, Val, &Valid); else Name = A64NamedImmMapper_toString(&A64DB_DBarrierMapper, Val, &Valid); if (Valid) { SStream_concat0(O, Name); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_BARRIER; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].barrier = Val; MI->flat_insn->detail->arm64.op_count++; } } else { printUInt32Bang(O, Val); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = Val; MI->flat_insn->detail->arm64.op_count++; } } } static void printMRSSystemRegister(MCInst *MI, unsigned OpNo, SStream *O) { unsigned Val = (unsigned)MCOperand_getImm(MCInst_getOperand(MI, OpNo)); bool Valid; char Name[128]; A64SysRegMapper_toString(&AArch64_MRSMapper, Val, &Valid, Name); if (Valid) { SStream_concat0(O, Name); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG_MRS; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = Val; MI->flat_insn->detail->arm64.op_count++; } } } static void printMSRSystemRegister(MCInst *MI, unsigned OpNo, SStream *O) { unsigned Val = (unsigned)MCOperand_getImm(MCInst_getOperand(MI, OpNo)); bool Valid; char Name[128]; A64SysRegMapper_toString(&AArch64_MSRMapper, Val, &Valid, Name); if (Valid) { SStream_concat0(O, Name); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG_MSR; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = Val; MI->flat_insn->detail->arm64.op_count++; } } } static void printSystemPStateField(MCInst *MI, unsigned OpNo, SStream *O) { unsigned Val = (unsigned)MCOperand_getImm(MCInst_getOperand(MI, OpNo)); bool Valid; const char *Name; Name = A64NamedImmMapper_toString(&A64PState_PStateMapper, Val, &Valid); if (Valid) { SStream_concat0(O, Name); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_PSTATE; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].pstate = Val; MI->flat_insn->detail->arm64.op_count++; } } else { printInt32Bang(O, Val); MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = Val; MI->flat_insn->detail->arm64.op_count++; } } static void printSIMDType10Operand(MCInst *MI, unsigned OpNo, SStream *O) { uint8_t RawVal = (uint8_t)MCOperand_getImm(MCInst_getOperand(MI, OpNo)); uint64_t Val = AArch64_AM_decodeAdvSIMDModImmType10(RawVal); SStream_concat(O, "#%#016llx", Val); if (MI->csh->detail) { MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM; MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = Val; MI->flat_insn->detail->arm64.op_count++; } } #define PRINT_ALIAS_INSTR #include "AArch64GenAsmWriter.inc" void AArch64_post_printer(csh handle, cs_insn *flat_insn, char *insn_asm, MCInst *mci) { if (((cs_struct *)handle)->detail != CS_OPT_ON) return; // check if this insn requests write-back if (strrchr(insn_asm, '!') != NULL) flat_insn->detail->arm64.writeback = true; } #endif