/****************************************************************************** * Copyright (c) 2004, 2011 IBM Corporation * All rights reserved. * This program and the accompanying materials * are made available under the terms of the BSD License * which accompanies this distribution, and is available at * http://www.opensource.org/licenses/bsd-license.php * * Contributors: * IBM Corporation - initial implementation *****************************************************************************/ /* * 64-bit ELF loader for PowerPC. * See the "64-bit PowerPC ELF Application Binary Interface Supplement" and * the "ELF-64 Object File Format" documentation for details. */ #include #include #include #include #include struct ehdr64 { uint32_t ei_ident; uint8_t ei_class; uint8_t ei_data; uint8_t ei_version; uint8_t ei_pad[9]; uint16_t e_type; uint16_t e_machine; uint32_t e_version; uint64_t e_entry; uint64_t e_phoff; uint64_t e_shoff; uint32_t e_flags; uint16_t e_ehsize; uint16_t e_phentsize; uint16_t e_phnum; uint16_t e_shentsize; uint16_t e_shnum; uint16_t e_shstrndx; }; struct phdr64 { uint32_t p_type; uint32_t p_flags; uint64_t p_offset; uint64_t p_vaddr; uint64_t p_paddr; uint64_t p_filesz; uint64_t p_memsz; uint64_t p_align; }; struct shdr64 { uint32_t sh_name; /* Section name */ uint32_t sh_type; /* Section type */ uint64_t sh_flags; /* Section attributes */ uint64_t sh_addr; /* Virtual address in memory */ uint64_t sh_offset; /* Offset in file */ uint64_t sh_size; /* Size of section */ uint32_t sh_link; /* Link to other section */ uint32_t sh_info; /* Miscellaneous information */ uint64_t sh_addralign; /* Address alignment boundary */ uint64_t sh_entsize; /* Size of entries, if section has table */ }; struct rela /* RelA relocation table entry */ { uint64_t r_offset; /* Address of reference */ uint64_t r_info; /* Symbol index and type of relocation */ int64_t r_addend; /* Constant part of expression */ }; struct sym64 { uint32_t st_name; /* Symbol name */ uint8_t st_info; /* Type and Binding attributes */ uint8_t st_other; /* Reserved */ uint16_t st_shndx; /* Section table index */ uint64_t st_value; /* Symbol value */ uint64_t st_size; /* Size of object (e.g., common) */ }; /* For relocations */ #define ELF_R_SYM(i) ((i)>>32) #define ELF_R_TYPE(i) ((uint32_t)(i) & 0xFFFFFFFF) #define ELF_R_INFO(s,t) ((((uint64_t) (s)) << 32) + (t)) /* * Relocation types for PowerPC64. */ #define R_PPC64_NONE 0 #define R_PPC64_ADDR32 1 #define R_PPC64_ADDR24 2 #define R_PPC64_ADDR16 3 #define R_PPC64_ADDR16_LO 4 #define R_PPC64_ADDR16_HI 5 #define R_PPC64_ADDR16_HA 6 #define R_PPC64_ADDR14 7 #define R_PPC64_ADDR14_BRTAKEN 8 #define R_PPC64_ADDR14_BRNTAKEN 9 #define R_PPC64_REL24 10 #define R_PPC64_REL14 11 #define R_PPC64_REL14_BRTAKEN 12 #define R_PPC64_REL14_BRNTAKEN 13 #define R_PPC64_GOT16 14 #define R_PPC64_GOT16_LO 15 #define R_PPC64_GOT16_HI 16 #define R_PPC64_GOT16_HA 17 #define R_PPC64_COPY 19 #define R_PPC64_GLOB_DAT 20 #define R_PPC64_JMP_SLOT 21 #define R_PPC64_RELATIVE 22 #define R_PPC64_UADDR32 24 #define R_PPC64_UADDR16 25 #define R_PPC64_REL32 26 #define R_PPC64_PLT32 27 #define R_PPC64_PLTREL32 28 #define R_PPC64_PLT16_LO 29 #define R_PPC64_PLT16_HI 30 #define R_PPC64_PLT16_HA 31 #define R_PPC64_SECTOFF 33 #define R_PPC64_SECTOFF_LO 34 #define R_PPC64_SECTOFF_HI 35 #define R_PPC64_SECTOFF_HA 36 #define R_PPC64_ADDR30 37 #define R_PPC64_ADDR64 38 #define R_PPC64_ADDR16_HIGHER 39 #define R_PPC64_ADDR16_HIGHERA 40 #define R_PPC64_ADDR16_HIGHEST 41 #define R_PPC64_ADDR16_HIGHESTA 42 #define R_PPC64_UADDR64 43 #define R_PPC64_REL64 44 #define R_PPC64_PLT64 45 #define R_PPC64_PLTREL64 46 #define R_PPC64_TOC16 47 #define R_PPC64_TOC16_LO 48 #define R_PPC64_TOC16_HI 49 #define R_PPC64_TOC16_HA 50 #define R_PPC64_TOC 51 #define R_PPC64_PLTGOT16 52 #define R_PPC64_PLTGOT16_LO 53 #define R_PPC64_PLTGOT16_HI 54 #define R_PPC64_PLTGOT16_HA 55 #define R_PPC64_ADDR16_DS 56 #define R_PPC64_ADDR16_LO_DS 57 #define R_PPC64_GOT16_DS 58 #define R_PPC64_GOT16_LO_DS 59 #define R_PPC64_PLT16_LO_DS 60 #define R_PPC64_SECTOFF_DS 61 #define R_PPC64_SECTOFF_LO_DS 62 #define R_PPC64_TOC16_DS 63 #define R_PPC64_TOC16_LO_DS 64 #define R_PPC64_PLTGOT16_DS 65 #define R_PPC64_PLTGOT16_LO_DS 66 #define R_PPC64_TLS 67 #define R_PPC64_DTPMOD64 68 #define R_PPC64_TPREL16 69 #define R_PPC64_TPREL16_LO 60 #define R_PPC64_TPREL16_HI 71 #define R_PPC64_TPREL16_HA 72 #define R_PPC64_TPREL64 73 #define R_PPC64_DTPREL16 74 #define R_PPC64_DTPREL16_LO 75 #define R_PPC64_DTPREL16_HI 76 #define R_PPC64_DTPREL16_HA 77 #define R_PPC64_DTPREL64 78 #define R_PPC64_GOT_TLSGD16 79 #define R_PPC64_GOT_TLSGD16_LO 80 #define R_PPC64_GOT_TLSGD16_HI 81 #define R_PPC64_GOT_TLSGD16_HA 82 #define R_PPC64_GOT_TLSLD16 83 #define R_PPC64_GOT_TLSLD16_LO 84 #define R_PPC64_GOT_TLSLD16_HI 85 #define R_PPC64_GOT_TLSLD16_HA 86 #define R_PPC64_GOT_TPREL16_DS 87 #define R_PPC64_GOT_TPREL16_LO_ DS 88 #define R_PPC64_GOT_TPREL16_HI 89 #define R_PPC64_GOT_TPREL16_HA 90 #define R_PPC64_GOT_DTPREL16_DS 91 #define R_PPC64_GOT_DTPREL16_LO_DS 92 #define R_PPC64_GOT_DTPREL16_HI 93 #define R_PPC64_GOT_DTPREL16_HA 94 #define R_PPC64_TPREL16_DS 95 #define R_PPC64_TPREL16_LO_DS 96 #define R_PPC64_TPREL16_HIGHER 97 #define R_PPC64_TPREL16_HIGHERA 98 #define R_PPC64_TPREL16_HIGHEST 99 #define R_PPC64_TPREL16_HIGHESTA 100 #define R_PPC64_DTPREL16_DS 101 #define R_PPC64_DTPREL16_LO_DS 102 #define R_PPC64_DTPREL16_HIGHER 103 #define R_PPC64_DTPREL16_HIGHERA 104 #define R_PPC64_DTPREL16_HIGHEST 105 #define R_PPC64_DTPREL16_HIGHESTA 106 static struct phdr64* get_phdr64(unsigned long *file_addr) { return (struct phdr64 *) (((unsigned char *) file_addr) + ((struct ehdr64 *)file_addr)->e_phoff); } static void load_segment64(unsigned long *file_addr, struct phdr64 *phdr, signed long offset, int (*pre_load)(void*, long), void (*post_load)(void*, long)) { unsigned long src = phdr->p_offset + (unsigned long) file_addr; unsigned long destaddr; destaddr = phdr->p_paddr + offset; /* check if we're allowed to copy */ if (pre_load != NULL) { if (pre_load((void*)destaddr, phdr->p_memsz) != 0) return; } /* copy into storage */ memmove((void*)destaddr, (void*)src, phdr->p_filesz); /* clear bss */ memset((void*)(destaddr + phdr->p_filesz), 0, phdr->p_memsz - phdr->p_filesz); if (phdr->p_memsz && post_load != NULL) { post_load((void*)destaddr, phdr->p_memsz); } } unsigned long elf_load_segments64(void *file_addr, signed long offset, int (*pre_load)(void*, long), void (*post_load)(void*, long)) { struct ehdr64 *ehdr = (struct ehdr64 *) file_addr; /* Calculate program header address */ struct phdr64 *phdr = get_phdr64(file_addr); int i; /* loop e_phnum times */ for (i = 0; i <= ehdr->e_phnum; i++) { /* PT_LOAD ? */ if (phdr->p_type == PT_LOAD) { if (phdr->p_paddr != phdr->p_vaddr) { printf("ELF64: VirtAddr(%lx) != PhysAddr(%lx) not supported, aborting\n", (long)phdr->p_vaddr, (long)phdr->p_paddr); return 0; } /* copy segment */ load_segment64(file_addr, phdr, offset, pre_load, post_load); } /* step to next header */ phdr = (struct phdr64 *)(((uint8_t *)phdr) + ehdr->e_phentsize); } /* Entry point is always a virtual address, so translate it * to physical before returning it */ return ehdr->e_entry; } /** * Return the base address for loading (i.e. the address of the first PT_LOAD * segment) * @param file_addr pointer to the ELF file in memory * @return the base address */ long elf_get_base_addr64(void *file_addr) { struct ehdr64 *ehdr = (struct ehdr64 *) file_addr; /* Calculate program header address */ struct phdr64 *phdr = get_phdr64(file_addr); int i; /* loop e_phnum times */ for (i = 0; i <= ehdr->e_phnum; i++) { /* PT_LOAD ? */ if (phdr->p_type == PT_LOAD) { /* Return base address */ return phdr->p_paddr; } /* step to next header */ phdr = (struct phdr64 *)(((uint8_t *)phdr) + ehdr->e_phentsize); } return 0; } /** * Apply one relocation entry. */ static void elf_apply_rela64(void *file_addr, signed long offset, struct rela *relaentry, struct sym64 *symtabentry) { void *addr; unsigned long s_a; unsigned long base_addr; base_addr = elf_get_base_addr64(file_addr); /* Sanity check */ if (relaentry->r_offset < base_addr) { printf("\nELF relocation out of bounds!\n"); return; } base_addr += offset; /* Actual address where the relocation will be applied at. */ addr = (void*)(relaentry->r_offset + offset); /* Symbol value (S) + Addend (A) */ s_a = symtabentry->st_value + offset + relaentry->r_addend; switch (ELF_R_TYPE(relaentry->r_info)) { case R_PPC64_ADDR32: /* S + A */ *(uint32_t *)addr = (uint32_t) s_a; break; case R_PPC64_ADDR64: /* S + A */ *(uint64_t *)addr = (uint64_t) s_a; break; case R_PPC64_TOC: /* .TOC */ *(uint64_t *)addr += offset; break; case R_PPC64_ADDR16_HIGHEST: /* #highest(S + A) */ *(uint16_t *)addr = ((s_a >> 48) & 0xffff); break; case R_PPC64_ADDR16_HIGHER: /* #higher(S + A) */ *(uint16_t *)addr = ((s_a >> 32) & 0xffff); break; case R_PPC64_ADDR16_HI: /* #hi(S + A) */ *(uint16_t *)addr = ((s_a >> 16) & 0xffff); break; case R_PPC64_ADDR16_LO: /* #lo(S + A) */ *(uint16_t *)addr = s_a & 0xffff; break; case R_PPC64_ADDR16_LO_DS: *(uint16_t *)addr = (s_a & 0xfffc); break; case R_PPC64_ADDR16_HA: /* #ha(S + A) */ *(uint16_t *)addr = (((s_a >> 16) + ((s_a & 0x8000) ? 1 : 0)) & 0xffff); break; case R_PPC64_TOC16: /* half16* S + A - .TOC. */ case R_PPC64_TOC16_LO_DS: case R_PPC64_TOC16_LO: /* #lo(S + A - .TOC.) */ case R_PPC64_TOC16_HI: /* #hi(S + A - .TOC.) */ case R_PPC64_TOC16_HA: case R_PPC64_TOC16_DS: /* (S + A - .TOC) >> 2 */ case R_PPC64_REL14: case R_PPC64_REL24: /* (S + A - P) >> 2 */ case R_PPC64_REL32: /* S + A - P */ case R_PPC64_REL64: /* S + A - P */ case R_PPC64_GOT16_DS: case R_PPC64_GOT16_LO_DS: // printf("\t\tignoring relocation type %i\n", // ELF_R_TYPE(relaentry->r_info)); break; default: printf("ERROR: Unhandled relocation (A) type %i\n", ELF_R_TYPE(relaentry->r_info)); } } /** * Step through all relocation entries and apply them one by one. */ static void elf_apply_all_rela64(void *file_addr, signed long offset, struct shdr64 *shdrs, int idx) { struct shdr64 *rela_shdr = &shdrs[idx]; struct shdr64 *dst_shdr = &shdrs[rela_shdr->sh_info]; struct shdr64 *sym_shdr = &shdrs[rela_shdr->sh_link]; struct rela *relaentry; struct sym64 *symtabentry; uint32_t symbolidx; int i; /* If the referenced section has not been allocated, then it has * not been loaded and thus does not need to be relocated. */ if ((dst_shdr->sh_flags & SHF_ALLOC) != SHF_ALLOC) return; for (i = 0; i < rela_shdr->sh_size; i += rela_shdr->sh_entsize) { relaentry = (struct rela *)(file_addr + rela_shdr->sh_offset + i); symbolidx = ELF_R_SYM(relaentry->r_info); symtabentry = (struct sym64*)(file_addr + sym_shdr->sh_offset) + symbolidx; elf_apply_rela64(file_addr, offset, relaentry, symtabentry); } } /** * Apply ELF relocations */ void elf_relocate64(void *file_addr, signed long offset) { struct ehdr64 *ehdr = (struct ehdr64 *) file_addr; /* Calculate section header address */ struct shdr64 *shdrs = (struct shdr64 *) (((unsigned char *) file_addr) + ehdr->e_shoff); int i; /* loop over all segments */ for (i = 0; i <= ehdr->e_shnum; i++) { /* Skip if it is not a relocation segment */ if (shdrs[i].sh_type == SHT_RELA) { elf_apply_all_rela64(file_addr, offset, shdrs, i); } } } void elf_byteswap_header64(void *file_addr) { struct ehdr64 *ehdr = (struct ehdr64 *) file_addr; struct phdr64 *phdr; int i; bswap_16p(&ehdr->e_type); bswap_16p(&ehdr->e_machine); bswap_32p(&ehdr->e_version); bswap_64p(&ehdr->e_entry); bswap_64p(&ehdr->e_phoff); bswap_64p(&ehdr->e_shoff); bswap_32p(&ehdr->e_flags); bswap_16p(&ehdr->e_ehsize); bswap_16p(&ehdr->e_phentsize); bswap_16p(&ehdr->e_phnum); bswap_16p(&ehdr->e_shentsize); bswap_16p(&ehdr->e_shnum); bswap_16p(&ehdr->e_shstrndx); phdr = get_phdr64(file_addr); /* loop e_phnum times */ for (i = 0; i <= ehdr->e_phnum; i++) { bswap_32p(&phdr->p_type); bswap_32p(&phdr->p_flags); bswap_64p(&phdr->p_offset); bswap_64p(&phdr->p_vaddr); bswap_64p(&phdr->p_paddr); bswap_64p(&phdr->p_filesz); bswap_64p(&phdr->p_memsz); bswap_64p(&phdr->p_align); /* step to next header */ phdr = (struct phdr64 *)(((uint8_t *)phdr) + ehdr->e_phentsize); } } uint32_t elf_get_eflags_64(void *file_addr) { struct ehdr64 *ehdr = (struct ehdr64 *) file_addr; return ehdr->e_flags; } /* * Determine the size of an ELF image that has been loaded into * a buffer larger than its size. We search all program headers * and sections for the one that shows the farthest extent of the * file. * @return Return -1 on error, size of file otherwise. */ long elf_get_file_size64(const void *buffer, const long buffer_size) { const struct ehdr64 *ehdr = (const struct ehdr64 *) buffer; const uint8_t *buffer_end = buffer + buffer_size; const struct phdr64 *phdr; const struct shdr64 *shdr; long elf_size = -1; uint16_t entsize; unsigned i; if (buffer_size < sizeof(struct ehdr) || ehdr->e_ehsize != sizeof(struct ehdr64)) return -1; phdr = buffer + elf64_to_cpu(ehdr->e_phoff, ehdr); entsize = elf16_to_cpu(ehdr->e_phentsize, ehdr); for (i = 0; i < elf16_to_cpu(ehdr->e_phnum, ehdr); i++) { if (((uint8_t *)phdr) + entsize > buffer_end) return -1; elf_size = MAX(elf64_to_cpu(phdr->p_offset, ehdr) + elf64_to_cpu(phdr->p_filesz, ehdr), elf_size); /* step to next header */ phdr = (struct phdr64 *)(((uint8_t *)phdr) + entsize); } shdr = buffer + elf64_to_cpu(ehdr->e_shoff, ehdr); entsize = elf16_to_cpu(ehdr->e_shentsize, ehdr); for (i = 0; i < elf16_to_cpu(ehdr->e_shnum, ehdr); i++) { if (((uint8_t *)shdr) + entsize > buffer_end) return -1; elf_size = MAX(elf64_to_cpu(shdr->sh_offset, ehdr) + elf64_to_cpu(shdr->sh_size, ehdr), elf_size); /* step to next header */ shdr = (struct shdr64 *)(((uint8_t *)shdr) + entsize); } elf_size = ROUNDUP(elf_size, 4); if (elf_size > buffer_size) return -1; return elf_size; }