/* * context switching * 2003-10 by SONE Takeshi * * Residual data portions: * Copyright (c) 2004-2005 Jocelyn Mayer */ #include "config.h" #include "kernel/kernel.h" #include "context.h" #include "arch/ppc/processor.h" #include "arch/ppc/residual.h" #include "drivers/drivers.h" #include "libopenbios/bindings.h" #include "libopenbios/ofmem.h" #include "libopenbios/initprogram.h" #include "libopenbios/sys_info.h" #include "arch/ppc/processor.h" #define MAIN_STACK_SIZE 16384 #define IMAGE_STACK_SIZE 4096*2 #define debug printk #ifdef CONFIG_PPC_64BITSUPPORT #ifdef __powerpc64__ #define ULONG_SIZE 8 #define STACKFRAME_MINSIZE 48 #define STKOFF STACKFRAME_MINSIZE #define SAVE_SPACE 320 #else #define ULONG_SIZE 4 #define STACKFRAME_MINSIZE 16 #define STKOFF 8 #define SAVE_SPACE 144 #endif #endif static void start_main(void); /* forward decl. */ void __exit_context(void); /* assembly routine */ void entry(void); void of_client_callback(void); /* * Main context structure * It is placed at the bottom of our stack, and loaded by assembly routine * to start us up. */ static struct context main_ctx = { .pc = (unsigned long) start_main, .return_addr = (unsigned long) __exit_context, }; /* This is used by assembly routine to load/store the context which * it is to switch/switched. */ struct context * volatile __context = &main_ctx; /* Client program context */ static struct context *client_ctx; /* Stack for loaded ELF image */ static uint8_t image_stack[IMAGE_STACK_SIZE]; /* Pointer to startup context (physical address) */ unsigned long __boot_ctx; /* * Main starter * This is the C function that runs first. */ static void start_main(void) { /* Save startup context, so we can refer to it later. * We have to keep it in physical address since we will relocate. */ __boot_ctx = virt_to_phys(__context); /* Set up client context */ client_ctx = init_context(image_stack, sizeof image_stack, 1); __context = client_ctx; /* Start the real fun */ entry(); /* Returning from here should jump to __exit_context */ __context = boot_ctx; } /* Setup a new context using the given stack. */ struct context * init_context(uint8_t *stack, uint32_t stack_size, int num_params) { struct context *ctx; ctx = (struct context *) (stack + stack_size - (sizeof(*ctx) + num_params*sizeof(unsigned long))); memset(ctx, 0, sizeof(*ctx)); /* Fill in reasonable default for flat memory model */ ctx->sp = virt_to_phys(SP_LOC(ctx)); ctx->return_addr = virt_to_phys(__exit_context); return ctx; } /* Build PReP residual data */ static void * residual_build(uint32_t memsize, uint32_t load_base, uint32_t load_size) { residual_t *res; const unsigned char model[] = "IBM PPS Model 6015\0"; int i; res = malloc(sizeof(residual_t)); if (res == NULL) { return NULL; } res->length = sizeof(residual_t); res->version = 1; res->revision = 0; memcpy(res->vital.model, model, sizeof(model)); res->vital.version = 1; res->vital.revision = 0; res->vital.firmware = 0x1D1; res->vital.NVRAM_size = 0x2000; res->vital.nSIMMslots = 1; res->vital.nISAslots = 0; res->vital.nPCIslots = 0; res->vital.nPCMCIAslots = 0; res->vital.nMCAslots = 0; res->vital.nEISAslots = 0; res->vital.CPUHz = 200 * 1000 * 1000; res->vital.busHz = 100 * 1000 * 1000; res->vital.PCIHz = 33 * 1000 * 1000; res->vital.TBdiv = 1000; res->vital.wwidth = 32; res->vital.page_size = 4096; res->vital.ChBlocSize = 32; res->vital.GrSize = 32; res->vital.cache_size = 0; res->vital.cache_type = 0; /* No cache */ res->vital.cache_assoc = 8; /* Same as 601 */ res->vital.cache_lnsize = 32; res->vital.Icache_size = 0; res->vital.Icache_assoc = 8; res->vital.Icache_lnsize = 32; res->vital.Dcache_size = 0; res->vital.Dcache_assoc = 8; res->vital.Dcache_lnsize = 32; res->vital.TLB_size = 0; res->vital.TLB_type = 0; /* None */ res->vital.TLB_assoc = 2; res->vital.ITLB_size = 0; res->vital.ITLB_assoc = 2; res->vital.DTLB_size = 0; res->vital.DTLB_assoc = 2; res->vital.ext_vital = NULL; res->nCPUs = 1; res->CPUs[0].pvr = mfpvr(); res->CPUs[0].serial = 0; res->CPUs[0].L2_size = 0; res->CPUs[0].L2_assoc = 8; /* Memory infos */ res->max_mem = memsize; res->good_mem = memsize; /* Memory mappings */ /* First segment: firmware */ res->maps[0].usage = 0x0007; res->maps[0].base = 0xfff00000; res->maps[0].count = 0x00100000 >> 12; i = 1; /* Boot image */ load_size = (load_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); res->maps[i].usage = 0x0008; res->maps[i].base = load_base >> 12; res->maps[i].count = load_size >> 12; i++; /* Free memory */ res->maps[i].usage = 0x0010; res->maps[i].base = (load_base + load_size) >> 12; res->maps[i].count = (memsize >> 12) - res->maps[i].base; i++; /* ISA IO region : 8MB */ res->maps[i].usage = 0x0040; res->maps[i].base = 0x80000000 >> 12; res->maps[i].count = 0x00800000 >> 12; i++; /* System registers : 8MB */ res->maps[i].usage = 0x0200; res->maps[i].base = 0xBF800000 >> 12; res->maps[i].count = 0x00800000 >> 12; i++; /* System ROM : 64 kB */ res->maps[i].usage = 0x2000; res->maps[i].base = 0xFFFF0000 >> 12; res->maps[i].count = 0x00010000 >> 12; i++; res->nmaps = i; /* Memory SIMMs */ res->nmems = 1; res->memories[0].size = memsize; /* Describe no devices */ res->ndevices = 0; return res; } /* init-program */ int arch_init_program(void) { volatile struct context *ctx = __context; ucell entry, param, loadbase, loadsize; ofmem_t *ofmem = ofmem_arch_get_private(); /* According to IEEE 1275, PPC bindings: * * MSR = FP, ME + (DR|IR) * r1 = stack (32 K + 32 bytes link area above) * r5 = client interface handler * r6 = address of client program arguments (unused) * r7 = length of client program arguments (unused) * * Yaboot and Linux use r3 and r4 for initrd address and size * PReP machines use r3 and r4 for residual data and load image */ ctx->regs[REG_R5] = (unsigned long)of_client_callback; ctx->regs[REG_R6] = 0; ctx->regs[REG_R7] = 0; /* Override the stack in the default context: the OpenBSD bootloader fails soon after setting up virt to phys mappings with the default stack. My best guess is that this is because the malloc() heap doesn't have a 1:1 virt to phys mapping. So for the moment we use the original (pre-context) location just under the MMU hash table (SDR1) which is mapped 1:1 and makes the bootloader happy. */ ctx->sp = mfsdr1() - 32768 - 65536; /* Set param */ feval("load-state >ls.param @"); param = POP(); ctx->param[0] = param; /* Set entry point */ feval("load-state >ls.entry @"); entry = POP(); ctx->pc = entry; /* Residual data for PReP */ if (!is_apple()) { fword("load-base"); loadbase = POP(); fword("load-size"); loadsize = POP(); ctx->regs[REG_R3] = (uintptr_t)residual_build((uint32_t)ofmem->ramsize, loadbase, loadsize); ctx->regs[REG_R4] = loadbase; } return 0; } /* Switch to another context. */ struct context *switch_to(struct context *ctx) { volatile struct context *save; struct context *ret; unsigned int lr; debug("switching to new context:\n"); save = __context; __context = ctx; asm __volatile__ ("mflr %%r9\n\t" "stw %%r9, %0\n\t" "bl __switch_context\n\t" "lwz %%r9, %0\n\t" "mtlr %%r9\n\t" : "=m" (lr) : "m" (lr) : "%r9" ); ret = __context; __context = (struct context *)save; return ret; } /* Start ELF Boot image */ unsigned int start_elf(void) { volatile struct context *ctx = __context; ctx = switch_to((struct context *)ctx); return ctx->regs[REG_R3]; }