1741 lines
40 KiB
C
1741 lines
40 KiB
C
/*---------------------------------------------------------------------------+
|
|
| fpu_trig.c |
|
|
| |
|
|
| Implementation of the FPU "transcendental" functions. |
|
|
| |
|
|
| Copyright (C) 1992,1993,1994 |
|
|
| W. Metzenthen, 22 Parker St, Ormond, Vic 3163, |
|
|
| Australia. E-mail billm@vaxc.cc.monash.edu.au |
|
|
| |
|
|
| |
|
|
+---------------------------------------------------------------------------*/
|
|
|
|
#include "fpu_system.h"
|
|
#include "exception.h"
|
|
#include "fpu_emu.h"
|
|
#include "status_w.h"
|
|
#include "control_w.h"
|
|
#include "reg_constant.h"
|
|
|
|
|
|
static void rem_kernel(unsigned long long st0, unsigned long long *y,
|
|
unsigned long long st1,
|
|
unsigned long long q, int n);
|
|
|
|
#define BETTER_THAN_486
|
|
|
|
#define FCOS 4
|
|
#define FPTAN 1
|
|
|
|
|
|
/* Used only by fptan, fsin, fcos, and fsincos. */
|
|
/* This routine produces very accurate results, similar to
|
|
using a value of pi with more than 128 bits precision. */
|
|
/* Limited measurements show no results worse than 64 bit precision
|
|
except for the results for arguments close to 2^63, where the
|
|
precision of the result sometimes degrades to about 63.9 bits */
|
|
static int trig_arg(FPU_REG *X, int even)
|
|
{
|
|
FPU_REG tmp;
|
|
unsigned long long q;
|
|
int old_cw = control_word, saved_status = partial_status;
|
|
|
|
if ( X->exp >= EXP_BIAS + 63 )
|
|
{
|
|
partial_status |= SW_C2; /* Reduction incomplete. */
|
|
return -1;
|
|
}
|
|
|
|
control_word &= ~CW_RC;
|
|
control_word |= RC_CHOP;
|
|
|
|
reg_div(X, &CONST_PI2, &tmp, PR_64_BITS | RC_CHOP | 0x3f);
|
|
round_to_int(&tmp); /* Fortunately, this can't overflow
|
|
to 2^64 */
|
|
q = significand(&tmp);
|
|
if ( q )
|
|
{
|
|
rem_kernel(significand(X),
|
|
&significand(&tmp),
|
|
significand(&CONST_PI2),
|
|
q, X->exp - CONST_PI2.exp);
|
|
tmp.exp = CONST_PI2.exp;
|
|
normalize(&tmp);
|
|
reg_move(&tmp, X);
|
|
}
|
|
|
|
if ( even == FPTAN )
|
|
{
|
|
if ( ((X->exp >= EXP_BIAS) ||
|
|
((X->exp == EXP_BIAS-1)
|
|
&& (X->sigh >= 0xc90fdaa2))) ^ (q & 1) )
|
|
even = FCOS;
|
|
else
|
|
even = 0;
|
|
}
|
|
|
|
if ( (even && !(q & 1)) || (!even && (q & 1)) )
|
|
{
|
|
reg_sub(&CONST_PI2, X, X, FULL_PRECISION);
|
|
#ifdef BETTER_THAN_486
|
|
/* So far, the results are exact but based upon a 64 bit
|
|
precision approximation to pi/2. The technique used
|
|
now is equivalent to using an approximation to pi/2 which
|
|
is accurate to about 128 bits. */
|
|
if ( (X->exp <= CONST_PI2extra.exp + 64) || (q > 1) )
|
|
{
|
|
/* This code gives the effect of having p/2 to better than
|
|
128 bits precision. */
|
|
significand(&tmp) = q + 1;
|
|
tmp.exp = EXP_BIAS + 63;
|
|
tmp.tag = TW_Valid;
|
|
normalize(&tmp);
|
|
reg_mul(&CONST_PI2extra, &tmp, &tmp, FULL_PRECISION);
|
|
reg_add(X, &tmp, X, FULL_PRECISION);
|
|
if ( X->sign == SIGN_NEG )
|
|
{
|
|
/* CONST_PI2extra is negative, so the result of the addition
|
|
can be negative. This means that the argument is actually
|
|
in a different quadrant. The correction is always < pi/2,
|
|
so it can't overflow into yet another quadrant. */
|
|
X->sign = SIGN_POS;
|
|
q++;
|
|
}
|
|
}
|
|
#endif BETTER_THAN_486
|
|
}
|
|
#ifdef BETTER_THAN_486
|
|
else
|
|
{
|
|
/* So far, the results are exact but based upon a 64 bit
|
|
precision approximation to pi/2. The technique used
|
|
now is equivalent to using an approximation to pi/2 which
|
|
is accurate to about 128 bits. */
|
|
if ( ((q > 0) && (X->exp <= CONST_PI2extra.exp + 64)) || (q > 1) )
|
|
{
|
|
/* This code gives the effect of having p/2 to better than
|
|
128 bits precision. */
|
|
significand(&tmp) = q;
|
|
tmp.exp = EXP_BIAS + 63;
|
|
tmp.tag = TW_Valid;
|
|
normalize(&tmp);
|
|
reg_mul(&CONST_PI2extra, &tmp, &tmp, FULL_PRECISION);
|
|
reg_sub(X, &tmp, X, FULL_PRECISION);
|
|
if ( (X->exp == CONST_PI2.exp) &&
|
|
((X->sigh > CONST_PI2.sigh)
|
|
|| ((X->sigh == CONST_PI2.sigh)
|
|
&& (X->sigl > CONST_PI2.sigl))) )
|
|
{
|
|
/* CONST_PI2extra is negative, so the result of the
|
|
subtraction can be larger than pi/2. This means
|
|
that the argument is actually in a different quadrant.
|
|
The correction is always < pi/2, so it can't overflow
|
|
into yet another quadrant. */
|
|
reg_sub(&CONST_PI, X, X, FULL_PRECISION);
|
|
q++;
|
|
}
|
|
}
|
|
}
|
|
#endif BETTER_THAN_486
|
|
|
|
control_word = old_cw;
|
|
partial_status = saved_status & ~SW_C2; /* Reduction complete. */
|
|
|
|
return (q & 3) | even;
|
|
}
|
|
|
|
|
|
/* Convert a long to register */
|
|
void convert_l2reg(long const *arg, FPU_REG *dest)
|
|
{
|
|
long num = *arg;
|
|
|
|
if (num == 0)
|
|
{ reg_move(&CONST_Z, dest); return; }
|
|
|
|
if (num > 0)
|
|
dest->sign = SIGN_POS;
|
|
else
|
|
{ num = -num; dest->sign = SIGN_NEG; }
|
|
|
|
dest->sigh = num;
|
|
dest->sigl = 0;
|
|
dest->exp = EXP_BIAS + 31;
|
|
dest->tag = TW_Valid;
|
|
normalize(dest);
|
|
}
|
|
|
|
|
|
static void single_arg_error(void)
|
|
{
|
|
switch ( FPU_st0_tag )
|
|
{
|
|
case TW_NaN:
|
|
if ( !(FPU_st0_ptr->sigh & 0x40000000) ) /* Signaling ? */
|
|
{
|
|
EXCEPTION(EX_Invalid);
|
|
if ( control_word & CW_Invalid )
|
|
FPU_st0_ptr->sigh |= 0x40000000; /* Convert to a QNaN */
|
|
}
|
|
break; /* return with a NaN in st(0) */
|
|
case TW_Empty:
|
|
stack_underflow(); /* Puts a QNaN in st(0) */
|
|
break;
|
|
#ifdef PARANOID
|
|
default:
|
|
EXCEPTION(EX_INTERNAL|0x0112);
|
|
#endif PARANOID
|
|
}
|
|
}
|
|
|
|
|
|
static void single_arg_2_error(void)
|
|
{
|
|
FPU_REG *st_new_ptr;
|
|
|
|
switch ( FPU_st0_tag )
|
|
{
|
|
case TW_NaN:
|
|
if ( !(FPU_st0_ptr->sigh & 0x40000000) ) /* Signaling ? */
|
|
{
|
|
EXCEPTION(EX_Invalid);
|
|
if ( control_word & CW_Invalid )
|
|
{
|
|
/* The masked response */
|
|
/* Convert to a QNaN */
|
|
FPU_st0_ptr->sigh |= 0x40000000;
|
|
st_new_ptr = &st(-1);
|
|
push();
|
|
reg_move(&st(1), FPU_st0_ptr);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* A QNaN */
|
|
st_new_ptr = &st(-1);
|
|
push();
|
|
reg_move(&st(1), FPU_st0_ptr);
|
|
}
|
|
break; /* return with a NaN in st(0) */
|
|
#ifdef PARANOID
|
|
default:
|
|
EXCEPTION(EX_INTERNAL|0x0112);
|
|
#endif PARANOID
|
|
}
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
static void f2xm1(void)
|
|
{
|
|
clear_C1();
|
|
switch ( FPU_st0_tag )
|
|
{
|
|
case TW_Valid:
|
|
{
|
|
FPU_REG rv, tmp;
|
|
|
|
if ( FPU_st0_ptr->exp >= 0 )
|
|
{
|
|
/* For an 80486 FPU, the result is undefined. */
|
|
}
|
|
else if ( FPU_st0_ptr->exp >= -64 )
|
|
{
|
|
if ( FPU_st0_ptr->sign == SIGN_POS )
|
|
{
|
|
/* poly_2xm1(x) requires 0 < x < 1. */
|
|
poly_2xm1(FPU_st0_ptr, &rv);
|
|
reg_mul(&rv, FPU_st0_ptr, FPU_st0_ptr, FULL_PRECISION);
|
|
}
|
|
else
|
|
{
|
|
/* poly_2xm1(x) doesn't handle negative numbers yet. */
|
|
/* So we compute z=poly_2xm1(-x), and the answer is
|
|
then -z/(1+z) */
|
|
FPU_st0_ptr->sign = SIGN_POS;
|
|
poly_2xm1(FPU_st0_ptr, &rv);
|
|
reg_mul(&rv, FPU_st0_ptr, &rv, FULL_PRECISION);
|
|
reg_add(&rv, &CONST_1, &tmp, FULL_PRECISION);
|
|
reg_div(&rv, &tmp, FPU_st0_ptr, FULL_PRECISION);
|
|
FPU_st0_ptr->sign = SIGN_NEG;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#ifdef DENORM_OPERAND
|
|
if ( (FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
/* For very small arguments, this is accurate enough. */
|
|
reg_mul(&CONST_LN2, FPU_st0_ptr, FPU_st0_ptr, FULL_PRECISION);
|
|
}
|
|
set_precision_flag_up();
|
|
return;
|
|
}
|
|
case TW_Zero:
|
|
return;
|
|
case TW_Infinity:
|
|
if ( FPU_st0_ptr->sign == SIGN_NEG )
|
|
{
|
|
/* -infinity gives -1 (p16-10) */
|
|
reg_move(&CONST_1, FPU_st0_ptr);
|
|
FPU_st0_ptr->sign = SIGN_NEG;
|
|
}
|
|
return;
|
|
default:
|
|
single_arg_error();
|
|
}
|
|
}
|
|
|
|
|
|
static void fptan(void)
|
|
{
|
|
FPU_REG *st_new_ptr;
|
|
int q;
|
|
char arg_sign = FPU_st0_ptr->sign;
|
|
|
|
/* Stack underflow has higher priority */
|
|
if ( FPU_st0_tag == TW_Empty )
|
|
{
|
|
stack_underflow(); /* Puts a QNaN in st(0) */
|
|
if ( control_word & CW_Invalid )
|
|
{
|
|
st_new_ptr = &st(-1);
|
|
push();
|
|
stack_underflow(); /* Puts a QNaN in the new st(0) */
|
|
}
|
|
return;
|
|
}
|
|
|
|
if ( STACK_OVERFLOW )
|
|
{ stack_overflow(); return; }
|
|
|
|
switch ( FPU_st0_tag )
|
|
{
|
|
case TW_Valid:
|
|
|
|
if ( FPU_st0_ptr->exp > EXP_BIAS - 40 )
|
|
{
|
|
FPU_st0_ptr->sign = SIGN_POS;
|
|
if ( (q = trig_arg(FPU_st0_ptr, FPTAN)) != -1 )
|
|
{
|
|
reg_div(FPU_st0_ptr, &CONST_PI2, FPU_st0_ptr,
|
|
FULL_PRECISION);
|
|
poly_tan(FPU_st0_ptr, FPU_st0_ptr, q & FCOS);
|
|
FPU_st0_ptr->sign = (q & 1) ^ arg_sign;
|
|
}
|
|
else
|
|
{
|
|
/* Operand is out of range */
|
|
FPU_st0_ptr->sign = arg_sign; /* restore st(0) */
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* For a small arg, the result == the argument */
|
|
/* Underflow may happen */
|
|
|
|
if ( FPU_st0_ptr->exp <= EXP_UNDER )
|
|
{
|
|
#ifdef DENORM_OPERAND
|
|
if ( denormal_operand() )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
/* A denormal result has been produced.
|
|
Precision must have been lost, this is always
|
|
an underflow. */
|
|
if ( arith_underflow(FPU_st0_ptr) )
|
|
return;
|
|
}
|
|
else
|
|
set_precision_flag_up(); /* Must be up. */
|
|
}
|
|
push();
|
|
reg_move(&CONST_1, FPU_st0_ptr);
|
|
return;
|
|
break;
|
|
case TW_Infinity:
|
|
/* The 80486 treats infinity as an invalid operand */
|
|
arith_invalid(FPU_st0_ptr);
|
|
if ( control_word & CW_Invalid )
|
|
{
|
|
st_new_ptr = &st(-1);
|
|
push();
|
|
arith_invalid(FPU_st0_ptr);
|
|
}
|
|
return;
|
|
case TW_Zero:
|
|
push();
|
|
reg_move(&CONST_1, FPU_st0_ptr);
|
|
setcc(0);
|
|
break;
|
|
default:
|
|
single_arg_2_error();
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
static void fxtract(void)
|
|
{
|
|
FPU_REG *st_new_ptr;
|
|
register FPU_REG *st1_ptr = FPU_st0_ptr; /* anticipate */
|
|
|
|
if ( STACK_OVERFLOW )
|
|
{ stack_overflow(); return; }
|
|
clear_C1();
|
|
if ( !(FPU_st0_tag ^ TW_Valid) )
|
|
{
|
|
long e;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ( (FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
|
|
push();
|
|
reg_move(st1_ptr, FPU_st0_ptr);
|
|
FPU_st0_ptr->exp = EXP_BIAS;
|
|
e = st1_ptr->exp - EXP_BIAS;
|
|
convert_l2reg(&e, st1_ptr);
|
|
return;
|
|
}
|
|
else if ( FPU_st0_tag == TW_Zero )
|
|
{
|
|
char sign = FPU_st0_ptr->sign;
|
|
if ( divide_by_zero(SIGN_NEG, FPU_st0_ptr) )
|
|
return;
|
|
push();
|
|
reg_move(&CONST_Z, FPU_st0_ptr);
|
|
FPU_st0_ptr->sign = sign;
|
|
return;
|
|
}
|
|
else if ( FPU_st0_tag == TW_Infinity )
|
|
{
|
|
char sign = FPU_st0_ptr->sign;
|
|
FPU_st0_ptr->sign = SIGN_POS;
|
|
push();
|
|
reg_move(&CONST_INF, FPU_st0_ptr);
|
|
FPU_st0_ptr->sign = sign;
|
|
return;
|
|
}
|
|
else if ( FPU_st0_tag == TW_NaN )
|
|
{
|
|
if ( real_2op_NaN(FPU_st0_ptr, FPU_st0_ptr, FPU_st0_ptr) )
|
|
return;
|
|
push();
|
|
reg_move(st1_ptr, FPU_st0_ptr);
|
|
return;
|
|
}
|
|
else if ( FPU_st0_tag == TW_Empty )
|
|
{
|
|
/* Is this the correct behaviour? */
|
|
if ( control_word & EX_Invalid )
|
|
{
|
|
stack_underflow();
|
|
push();
|
|
stack_underflow();
|
|
}
|
|
else
|
|
EXCEPTION(EX_StackUnder);
|
|
}
|
|
#ifdef PARANOID
|
|
else
|
|
EXCEPTION(EX_INTERNAL | 0x119);
|
|
#endif PARANOID
|
|
}
|
|
|
|
|
|
static void fdecstp(void)
|
|
{
|
|
clear_C1();
|
|
top--; /* FPU_st0_ptr will be fixed in math_emulate() before the next instr */
|
|
}
|
|
|
|
static void fincstp(void)
|
|
{
|
|
clear_C1();
|
|
top++; /* FPU_st0_ptr will be fixed in math_emulate() before the next instr */
|
|
}
|
|
|
|
|
|
static void fsqrt_(void)
|
|
{
|
|
clear_C1();
|
|
if ( !(FPU_st0_tag ^ TW_Valid) )
|
|
{
|
|
int expon;
|
|
|
|
if (FPU_st0_ptr->sign == SIGN_NEG)
|
|
{
|
|
arith_invalid(FPU_st0_ptr); /* sqrt(negative) is invalid */
|
|
return;
|
|
}
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ( (FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
|
|
expon = FPU_st0_ptr->exp - EXP_BIAS;
|
|
FPU_st0_ptr->exp = EXP_BIAS + (expon & 1); /* make st(0) in [1.0 .. 4.0) */
|
|
|
|
wm_sqrt(FPU_st0_ptr, control_word); /* Do the computation */
|
|
|
|
FPU_st0_ptr->exp += expon >> 1;
|
|
FPU_st0_ptr->sign = SIGN_POS;
|
|
}
|
|
else if ( FPU_st0_tag == TW_Zero )
|
|
return;
|
|
else if ( FPU_st0_tag == TW_Infinity )
|
|
{
|
|
if ( FPU_st0_ptr->sign == SIGN_NEG )
|
|
arith_invalid(FPU_st0_ptr); /* sqrt(-Infinity) is invalid */
|
|
return;
|
|
}
|
|
else
|
|
{ single_arg_error(); return; }
|
|
|
|
}
|
|
|
|
|
|
static void frndint_(void)
|
|
{
|
|
int flags;
|
|
|
|
if ( !(FPU_st0_tag ^ TW_Valid) )
|
|
{
|
|
if (FPU_st0_ptr->exp > EXP_BIAS+63)
|
|
return;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ( (FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
|
|
/* Fortunately, this can't overflow to 2^64 */
|
|
if ( (flags = round_to_int(FPU_st0_ptr)) )
|
|
set_precision_flag(flags);
|
|
|
|
FPU_st0_ptr->exp = EXP_BIAS + 63;
|
|
normalize(FPU_st0_ptr);
|
|
return;
|
|
}
|
|
else if ( (FPU_st0_tag == TW_Zero) || (FPU_st0_tag == TW_Infinity) )
|
|
return;
|
|
else
|
|
single_arg_error();
|
|
}
|
|
|
|
|
|
static void fsin(void)
|
|
{
|
|
char arg_sign = FPU_st0_ptr->sign;
|
|
|
|
if ( FPU_st0_tag == TW_Valid )
|
|
{
|
|
FPU_REG rv;
|
|
int q;
|
|
|
|
if ( FPU_st0_ptr->exp > EXP_BIAS - 40 )
|
|
{
|
|
FPU_st0_ptr->sign = SIGN_POS;
|
|
if ( (q = trig_arg(FPU_st0_ptr, 0)) != -1 )
|
|
{
|
|
reg_div(FPU_st0_ptr, &CONST_PI2, FPU_st0_ptr, FULL_PRECISION);
|
|
|
|
poly_sine(FPU_st0_ptr, &rv);
|
|
|
|
if (q & 2)
|
|
rv.sign ^= SIGN_POS ^ SIGN_NEG;
|
|
rv.sign ^= arg_sign;
|
|
reg_move(&rv, FPU_st0_ptr);
|
|
|
|
/* We do not really know if up or down */
|
|
set_precision_flag_up();
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
/* Operand is out of range */
|
|
FPU_st0_ptr->sign = arg_sign; /* restore st(0) */
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* For a small arg, the result == the argument */
|
|
/* Underflow may happen */
|
|
|
|
if ( FPU_st0_ptr->exp <= EXP_UNDER )
|
|
{
|
|
#ifdef DENORM_OPERAND
|
|
if ( denormal_operand() )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
/* A denormal result has been produced.
|
|
Precision must have been lost, this is always
|
|
an underflow. */
|
|
arith_underflow(FPU_st0_ptr);
|
|
return;
|
|
}
|
|
|
|
set_precision_flag_up(); /* Must be up. */
|
|
}
|
|
}
|
|
else if ( FPU_st0_tag == TW_Zero )
|
|
{
|
|
setcc(0);
|
|
return;
|
|
}
|
|
else if ( FPU_st0_tag == TW_Infinity )
|
|
{
|
|
/* The 80486 treats infinity as an invalid operand */
|
|
arith_invalid(FPU_st0_ptr);
|
|
return;
|
|
}
|
|
else
|
|
single_arg_error();
|
|
}
|
|
|
|
|
|
static int f_cos(FPU_REG *arg)
|
|
{
|
|
char arg_sign = arg->sign;
|
|
|
|
if ( arg->tag == TW_Valid )
|
|
{
|
|
FPU_REG rv;
|
|
int q;
|
|
|
|
if ( arg->exp > EXP_BIAS - 40 )
|
|
{
|
|
arg->sign = SIGN_POS;
|
|
if ( (q = trig_arg(arg, FCOS)) != -1 )
|
|
{
|
|
reg_div(arg, &CONST_PI2, arg, FULL_PRECISION);
|
|
|
|
poly_sine(arg, &rv);
|
|
|
|
if ((q+1) & 2)
|
|
rv.sign ^= SIGN_POS ^ SIGN_NEG;
|
|
reg_move(&rv, arg);
|
|
|
|
/* We do not really know if up or down */
|
|
set_precision_flag_down();
|
|
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
/* Operand is out of range */
|
|
arg->sign = arg_sign; /* restore st(0) */
|
|
return 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#ifdef DENORM_OPERAND
|
|
if ( (arg->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return 1;
|
|
#endif DENORM_OPERAND
|
|
|
|
setcc(0);
|
|
reg_move(&CONST_1, arg);
|
|
#ifdef PECULIAR_486
|
|
set_precision_flag_down(); /* 80486 appears to do this. */
|
|
#else
|
|
set_precision_flag_up(); /* Must be up. */
|
|
#endif PECULIAR_486
|
|
return 0;
|
|
}
|
|
}
|
|
else if ( arg->tag == TW_Zero )
|
|
{
|
|
reg_move(&CONST_1, arg);
|
|
setcc(0);
|
|
return 0;
|
|
}
|
|
else if ( FPU_st0_tag == TW_Infinity )
|
|
{
|
|
/* The 80486 treats infinity as an invalid operand */
|
|
arith_invalid(FPU_st0_ptr);
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
single_arg_error(); /* requires arg == &st(0) */
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
|
|
static void fcos(void)
|
|
{
|
|
f_cos(FPU_st0_ptr);
|
|
}
|
|
|
|
|
|
static void fsincos(void)
|
|
{
|
|
FPU_REG *st_new_ptr;
|
|
FPU_REG arg;
|
|
|
|
/* Stack underflow has higher priority */
|
|
if ( FPU_st0_tag == TW_Empty )
|
|
{
|
|
stack_underflow(); /* Puts a QNaN in st(0) */
|
|
if ( control_word & CW_Invalid )
|
|
{
|
|
st_new_ptr = &st(-1);
|
|
push();
|
|
stack_underflow(); /* Puts a QNaN in the new st(0) */
|
|
}
|
|
return;
|
|
}
|
|
|
|
if ( STACK_OVERFLOW )
|
|
{ stack_overflow(); return; }
|
|
|
|
if ( FPU_st0_tag == TW_NaN )
|
|
{
|
|
single_arg_2_error();
|
|
return;
|
|
}
|
|
else if ( FPU_st0_tag == TW_Infinity )
|
|
{
|
|
/* The 80486 treats infinity as an invalid operand */
|
|
if ( !arith_invalid(FPU_st0_ptr) )
|
|
{
|
|
/* unmasked response */
|
|
push();
|
|
arith_invalid(FPU_st0_ptr);
|
|
}
|
|
return;
|
|
}
|
|
|
|
reg_move(FPU_st0_ptr,&arg);
|
|
if ( !f_cos(&arg) )
|
|
{
|
|
fsin();
|
|
push();
|
|
reg_move(&arg,FPU_st0_ptr);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/* The following all require two arguments: st(0) and st(1) */
|
|
|
|
/* A lean, mean kernel for the fprem instructions. This relies upon
|
|
the division and rounding to an integer in do_fprem giving an
|
|
exact result. Because of this, rem_kernel() needs to deal only with
|
|
the least significant 64 bits, the more significant bits of the
|
|
result must be zero.
|
|
*/
|
|
static void rem_kernel(unsigned long long st0, unsigned long long *y,
|
|
unsigned long long st1,
|
|
unsigned long long q, int n)
|
|
{
|
|
unsigned long long x;
|
|
|
|
x = st0 << n;
|
|
|
|
/* Do the required multiplication and subtraction in the one operation */
|
|
asm volatile ("movl %2,%%eax; mull %4; subl %%eax,%0; sbbl %%edx,%1;
|
|
movl %3,%%eax; mull %4; subl %%eax,%1;
|
|
movl %2,%%eax; mull %5; subl %%eax,%1;"
|
|
:"=m" (x), "=m" (((unsigned *)&x)[1])
|
|
:"m" (st1),"m" (((unsigned *)&st1)[1]),
|
|
"m" (q),"m" (((unsigned *)&q)[1])
|
|
:"%ax","%dx");
|
|
|
|
*y = x;
|
|
}
|
|
|
|
|
|
/* Remainder of st(0) / st(1) */
|
|
/* This routine produces exact results, i.e. there is never any
|
|
rounding or truncation, etc of the result. */
|
|
static void do_fprem(int round)
|
|
{
|
|
FPU_REG *st1_ptr = &st(1);
|
|
char st1_tag = st1_ptr->tag;
|
|
char sign = FPU_st0_ptr->sign;
|
|
|
|
if ( !((FPU_st0_tag ^ TW_Valid) | (st1_tag ^ TW_Valid)) )
|
|
{
|
|
FPU_REG tmp;
|
|
int old_cw = control_word;
|
|
int expdif = FPU_st0_ptr->exp - st1_ptr->exp;
|
|
long long q;
|
|
unsigned short saved_status;
|
|
int cc = 0;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ( ((FPU_st0_ptr->exp <= EXP_UNDER) ||
|
|
(st1_ptr->exp <= EXP_UNDER)) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
|
|
/* We want the status following the denorm tests, but don't want
|
|
the status changed by the arithmetic operations. */
|
|
saved_status = partial_status;
|
|
control_word &= ~CW_RC;
|
|
control_word |= RC_CHOP;
|
|
|
|
if (expdif < 64)
|
|
{
|
|
/* This should be the most common case */
|
|
|
|
if ( expdif > -2 )
|
|
{
|
|
reg_div(FPU_st0_ptr, st1_ptr, &tmp, PR_64_BITS | RC_CHOP | 0x3f);
|
|
|
|
if ( tmp.exp >= EXP_BIAS )
|
|
{
|
|
round_to_int(&tmp); /* Fortunately, this can't overflow
|
|
to 2^64 */
|
|
q = significand(&tmp);
|
|
|
|
rem_kernel(significand(FPU_st0_ptr),
|
|
&significand(&tmp),
|
|
significand(st1_ptr),
|
|
q, expdif);
|
|
|
|
tmp.exp = st1_ptr->exp;
|
|
}
|
|
else
|
|
{
|
|
reg_move(FPU_st0_ptr, &tmp);
|
|
q = 0;
|
|
}
|
|
tmp.sign = sign;
|
|
|
|
if ( (round == RC_RND) && (tmp.sigh & 0xc0000000) )
|
|
{
|
|
/* We may need to subtract st(1) once more,
|
|
to get a result <= 1/2 of st(1). */
|
|
unsigned long long x;
|
|
expdif = st1_ptr->exp - tmp.exp;
|
|
if ( expdif <= 1 )
|
|
{
|
|
if ( expdif == 0 )
|
|
x = significand(st1_ptr) - significand(&tmp);
|
|
else /* expdif is 1 */
|
|
x = (significand(st1_ptr) << 1) - significand(&tmp);
|
|
if ( (x < significand(&tmp)) ||
|
|
/* or equi-distant (from 0 & st(1)) and q is odd */
|
|
((x == significand(&tmp)) && (q & 1) ) )
|
|
{
|
|
tmp.sign ^= (SIGN_POS^SIGN_NEG);
|
|
significand(&tmp) = x;
|
|
q++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (q & 4) cc |= SW_C0;
|
|
if (q & 2) cc |= SW_C3;
|
|
if (q & 1) cc |= SW_C1;
|
|
}
|
|
else
|
|
{
|
|
control_word = old_cw;
|
|
setcc(0);
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* There is a large exponent difference ( >= 64 ) */
|
|
/* To make much sense, the code in this section should
|
|
be done at high precision. */
|
|
int exp_1;
|
|
|
|
/* prevent overflow here */
|
|
/* N is 'a number between 32 and 63' (p26-113) */
|
|
reg_move(FPU_st0_ptr, &tmp);
|
|
tmp.exp = EXP_BIAS + 56;
|
|
exp_1 = st1_ptr->exp; st1_ptr->exp = EXP_BIAS;
|
|
expdif -= 56;
|
|
|
|
reg_div(&tmp, st1_ptr, &tmp, PR_64_BITS | RC_CHOP | 0x3f);
|
|
st1_ptr->exp = exp_1;
|
|
|
|
round_to_int(&tmp); /* Fortunately, this can't overflow to 2^64 */
|
|
|
|
rem_kernel(significand(FPU_st0_ptr),
|
|
&significand(&tmp),
|
|
significand(st1_ptr),
|
|
significand(&tmp),
|
|
tmp.exp - EXP_BIAS
|
|
);
|
|
tmp.exp = exp_1 + expdif;
|
|
tmp.sign = sign;
|
|
|
|
/* It is possible for the operation to be complete here.
|
|
What does the IEEE standard say? The Intel 80486 manual
|
|
implies that the operation will never be completed at this
|
|
point, and the behaviour of a real 80486 confirms this.
|
|
*/
|
|
if ( !(tmp.sigh | tmp.sigl) )
|
|
{
|
|
/* The result is zero */
|
|
control_word = old_cw;
|
|
partial_status = saved_status;
|
|
reg_move(&CONST_Z, FPU_st0_ptr);
|
|
FPU_st0_ptr->sign = sign;
|
|
#ifdef PECULIAR_486
|
|
setcc(SW_C2);
|
|
#else
|
|
setcc(0);
|
|
#endif PECULIAR_486
|
|
return;
|
|
}
|
|
cc = SW_C2;
|
|
}
|
|
|
|
control_word = old_cw;
|
|
partial_status = saved_status;
|
|
normalize_nuo(&tmp);
|
|
reg_move(&tmp, FPU_st0_ptr);
|
|
setcc(cc);
|
|
|
|
/* The only condition to be looked for is underflow,
|
|
and it can occur here only if underflow is unmasked. */
|
|
if ( (FPU_st0_ptr->exp <= EXP_UNDER) && (FPU_st0_ptr->tag != TW_Zero)
|
|
&& !(control_word & CW_Underflow) )
|
|
arith_underflow(FPU_st0_ptr);
|
|
|
|
return;
|
|
}
|
|
else if ( (FPU_st0_tag == TW_Empty) | (st1_tag == TW_Empty) )
|
|
{
|
|
stack_underflow();
|
|
return;
|
|
}
|
|
else if ( FPU_st0_tag == TW_Zero )
|
|
{
|
|
if ( st1_tag == TW_Valid )
|
|
{
|
|
#ifdef DENORM_OPERAND
|
|
if ( (st1_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
|
|
setcc(0); return;
|
|
}
|
|
else if ( st1_tag == TW_Zero )
|
|
{ arith_invalid(FPU_st0_ptr); return; } /* fprem(?,0) always invalid */
|
|
else if ( st1_tag == TW_Infinity )
|
|
{ setcc(0); return; }
|
|
}
|
|
else if ( FPU_st0_tag == TW_Valid )
|
|
{
|
|
if ( st1_tag == TW_Zero )
|
|
{
|
|
arith_invalid(FPU_st0_ptr); /* fprem(Valid,Zero) is invalid */
|
|
return;
|
|
}
|
|
else if ( st1_tag != TW_NaN )
|
|
{
|
|
#ifdef DENORM_OPERAND
|
|
if ( (FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
|
|
if ( st1_tag == TW_Infinity )
|
|
{
|
|
/* fprem(Valid,Infinity) is o.k. */
|
|
setcc(0); return;
|
|
}
|
|
}
|
|
}
|
|
else if ( FPU_st0_tag == TW_Infinity )
|
|
{
|
|
if ( st1_tag != TW_NaN )
|
|
{
|
|
arith_invalid(FPU_st0_ptr); /* fprem(Infinity,?) is invalid */
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* One of the registers must contain a NaN is we got here. */
|
|
|
|
#ifdef PARANOID
|
|
if ( (FPU_st0_tag != TW_NaN) && (st1_tag != TW_NaN) )
|
|
EXCEPTION(EX_INTERNAL | 0x118);
|
|
#endif PARANOID
|
|
|
|
real_2op_NaN(st1_ptr, FPU_st0_ptr, FPU_st0_ptr);
|
|
|
|
}
|
|
|
|
|
|
/* ST(1) <- ST(1) * log ST; pop ST */
|
|
static void fyl2x(void)
|
|
{
|
|
FPU_REG *st1_ptr = &st(1);
|
|
char st1_tag = st1_ptr->tag;
|
|
|
|
clear_C1();
|
|
if ( !((FPU_st0_tag ^ TW_Valid) | (st1_tag ^ TW_Valid)) )
|
|
{
|
|
if ( FPU_st0_ptr->sign == SIGN_POS )
|
|
{
|
|
int saved_control, saved_status;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ( ((FPU_st0_ptr->exp <= EXP_UNDER) ||
|
|
(st1_ptr->exp <= EXP_UNDER)) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
|
|
/* We use the general purpose arithmetic,
|
|
so we need to save these. */
|
|
saved_status = partial_status;
|
|
saved_control = control_word;
|
|
control_word = FULL_PRECISION;
|
|
|
|
poly_l2(FPU_st0_ptr, FPU_st0_ptr);
|
|
|
|
/* Enough of the basic arithmetic is done now */
|
|
control_word = saved_control;
|
|
partial_status = saved_status;
|
|
|
|
/* Let the multiply set the flags */
|
|
reg_mul(FPU_st0_ptr, st1_ptr, st1_ptr, FULL_PRECISION);
|
|
|
|
pop(); FPU_st0_ptr = &st(0);
|
|
}
|
|
else
|
|
{
|
|
/* negative */
|
|
if ( !arith_invalid(st1_ptr) )
|
|
pop();
|
|
return;
|
|
}
|
|
}
|
|
else if ( (FPU_st0_tag == TW_Empty) || (st1_tag == TW_Empty) )
|
|
{
|
|
stack_underflow_pop(1);
|
|
return;
|
|
}
|
|
else if ( (FPU_st0_tag == TW_NaN) || (st1_tag == TW_NaN) )
|
|
{
|
|
if ( !real_2op_NaN(FPU_st0_ptr, st1_ptr, st1_ptr) )
|
|
pop();
|
|
return;
|
|
}
|
|
else if ( (FPU_st0_tag <= TW_Zero) && (st1_tag <= TW_Zero) )
|
|
{
|
|
/* one of the args is zero, the other valid, or both zero */
|
|
if ( FPU_st0_tag == TW_Zero )
|
|
{
|
|
if ( st1_tag == TW_Zero )
|
|
{
|
|
/* Both args zero is invalid */
|
|
if ( !arith_invalid(st1_ptr) )
|
|
pop();
|
|
}
|
|
#ifdef PECULIAR_486
|
|
/* This case is not specifically covered in the manual,
|
|
but divide-by-zero would seem to be the best response.
|
|
However, a real 80486 does it this way... */
|
|
else if ( FPU_st0_ptr->tag == TW_Infinity )
|
|
{
|
|
reg_move(&CONST_INF, st1_ptr);
|
|
pop();
|
|
}
|
|
#endif PECULIAR_486
|
|
else
|
|
{
|
|
if ( !divide_by_zero(st1_ptr->sign^SIGN_NEG^SIGN_POS, st1_ptr) )
|
|
pop();
|
|
}
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
/* st(1) contains zero, st(0) valid <> 0 */
|
|
/* Zero is the valid answer */
|
|
char sign = st1_ptr->sign;
|
|
|
|
if ( FPU_st0_ptr->sign == SIGN_NEG )
|
|
{
|
|
/* log(negative) */
|
|
if ( !arith_invalid(st1_ptr) )
|
|
pop();
|
|
return;
|
|
}
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ( (FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
|
|
if ( FPU_st0_ptr->exp < EXP_BIAS ) sign ^= SIGN_NEG^SIGN_POS;
|
|
pop(); FPU_st0_ptr = &st(0);
|
|
reg_move(&CONST_Z, FPU_st0_ptr);
|
|
FPU_st0_ptr->sign = sign;
|
|
return;
|
|
}
|
|
}
|
|
/* One or both arg must be an infinity */
|
|
else if ( FPU_st0_tag == TW_Infinity )
|
|
{
|
|
if ( (FPU_st0_ptr->sign == SIGN_NEG) || (st1_tag == TW_Zero) )
|
|
{
|
|
/* log(-infinity) or 0*log(infinity) */
|
|
if ( !arith_invalid(st1_ptr) )
|
|
pop();
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
char sign = st1_ptr->sign;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ( (st1_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
|
|
pop(); FPU_st0_ptr = &st(0);
|
|
reg_move(&CONST_INF, FPU_st0_ptr);
|
|
FPU_st0_ptr->sign = sign;
|
|
return;
|
|
}
|
|
}
|
|
/* st(1) must be infinity here */
|
|
else if ( (FPU_st0_tag == TW_Valid) && (FPU_st0_ptr->sign == SIGN_POS) )
|
|
{
|
|
if ( FPU_st0_ptr->exp >= EXP_BIAS )
|
|
{
|
|
if ( (FPU_st0_ptr->exp == EXP_BIAS) &&
|
|
(FPU_st0_ptr->sigh == 0x80000000) &&
|
|
(FPU_st0_ptr->sigl == 0) )
|
|
{
|
|
/* st(0) holds 1.0 */
|
|
/* infinity*log(1) */
|
|
if ( !arith_invalid(st1_ptr) )
|
|
pop();
|
|
return;
|
|
}
|
|
/* st(0) is positive and > 1.0 */
|
|
pop();
|
|
}
|
|
else
|
|
{
|
|
/* st(0) is positive and < 1.0 */
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ( (FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
|
|
st1_ptr->sign ^= SIGN_NEG;
|
|
pop();
|
|
}
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
/* st(0) must be zero or negative */
|
|
if ( FPU_st0_ptr->tag == TW_Zero )
|
|
{
|
|
/* This should be invalid, but a real 80486 is happy with it. */
|
|
#ifndef PECULIAR_486
|
|
if ( !divide_by_zero(st1_ptr->sign, st1_ptr) )
|
|
#endif PECULIAR_486
|
|
{
|
|
st1_ptr->sign ^= SIGN_NEG^SIGN_POS;
|
|
pop();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* log(negative) */
|
|
if ( !arith_invalid(st1_ptr) )
|
|
pop();
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
static void fpatan(void)
|
|
{
|
|
FPU_REG *st1_ptr = &st(1);
|
|
char st1_tag = st1_ptr->tag;
|
|
char st1_sign = st1_ptr->sign, st0_sign = FPU_st0_ptr->sign;
|
|
|
|
clear_C1();
|
|
if ( !((FPU_st0_tag ^ TW_Valid) | (st1_tag ^ TW_Valid)) )
|
|
{
|
|
int saved_control, saved_status;
|
|
FPU_REG sum;
|
|
char inverted;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ( ((FPU_st0_ptr->exp <= EXP_UNDER) ||
|
|
(st1_ptr->exp <= EXP_UNDER)) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
|
|
/* We use the general purpose arithmetic so we need to save these. */
|
|
saved_status = partial_status;
|
|
saved_control = control_word;
|
|
control_word = FULL_PRECISION;
|
|
|
|
st1_ptr->sign = FPU_st0_ptr->sign = SIGN_POS;
|
|
if ( (compare(st1_ptr) & ~COMP_Denormal) == COMP_A_lt_B )
|
|
{
|
|
inverted = 1;
|
|
reg_div(FPU_st0_ptr, st1_ptr, &sum, FULL_PRECISION);
|
|
}
|
|
else
|
|
{
|
|
inverted = 0;
|
|
if ( (st0_sign == 0) &&
|
|
(st1_ptr->exp - FPU_st0_ptr->exp < -64) )
|
|
{
|
|
control_word = saved_control;
|
|
partial_status = saved_status;
|
|
reg_div(st1_ptr, FPU_st0_ptr, st1_ptr,
|
|
control_word | PR_64_BITS);
|
|
st1_ptr->sign = st1_sign;
|
|
pop();
|
|
set_precision_flag_down();
|
|
return;
|
|
}
|
|
reg_div(st1_ptr, FPU_st0_ptr, &sum, FULL_PRECISION);
|
|
}
|
|
|
|
poly_atan(&sum);
|
|
|
|
if ( inverted )
|
|
{
|
|
reg_sub(&CONST_PI2, &sum, &sum, FULL_PRECISION);
|
|
}
|
|
if ( st0_sign )
|
|
{
|
|
reg_sub(&CONST_PI, &sum, &sum, FULL_PRECISION);
|
|
}
|
|
sum.sign = st1_sign;
|
|
|
|
/* All of the basic arithmetic is done now */
|
|
control_word = saved_control;
|
|
partial_status = saved_status;
|
|
|
|
reg_move(&sum, st1_ptr);
|
|
}
|
|
else if ( (FPU_st0_tag == TW_Empty) || (st1_tag == TW_Empty) )
|
|
{
|
|
stack_underflow_pop(1);
|
|
return;
|
|
}
|
|
else if ( (FPU_st0_tag == TW_NaN) || (st1_tag == TW_NaN) )
|
|
{
|
|
if ( !real_2op_NaN(FPU_st0_ptr, st1_ptr, st1_ptr) )
|
|
pop();
|
|
return;
|
|
}
|
|
else if ( (FPU_st0_tag == TW_Infinity) || (st1_tag == TW_Infinity) )
|
|
{
|
|
char sign = st1_ptr->sign;
|
|
if ( FPU_st0_tag == TW_Infinity )
|
|
{
|
|
if ( st1_tag == TW_Infinity )
|
|
{
|
|
if ( FPU_st0_ptr->sign == SIGN_POS )
|
|
{ reg_move(&CONST_PI4, st1_ptr); }
|
|
else
|
|
reg_add(&CONST_PI4, &CONST_PI2, st1_ptr, FULL_PRECISION);
|
|
}
|
|
else
|
|
{
|
|
#ifdef DENORM_OPERAND
|
|
if ( st1_tag != TW_Zero )
|
|
{
|
|
if ( (st1_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
}
|
|
#endif DENORM_OPERAND
|
|
|
|
if ( FPU_st0_ptr->sign == SIGN_POS )
|
|
{
|
|
reg_move(&CONST_Z, st1_ptr);
|
|
st1_ptr->sign = sign; /* An 80486 preserves the sign */
|
|
pop();
|
|
return;
|
|
}
|
|
else
|
|
reg_move(&CONST_PI, st1_ptr);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* st(1) is infinity, st(0) not infinity */
|
|
#ifdef DENORM_OPERAND
|
|
if ( FPU_st0_tag != TW_Zero )
|
|
{
|
|
if ( (FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
}
|
|
#endif DENORM_OPERAND
|
|
|
|
reg_move(&CONST_PI2, st1_ptr);
|
|
}
|
|
st1_ptr->sign = sign;
|
|
}
|
|
else if ( st1_tag == TW_Zero )
|
|
{
|
|
/* st(0) must be valid or zero */
|
|
char sign = st1_ptr->sign;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ( FPU_st0_tag != TW_Zero )
|
|
{
|
|
if ( (FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
}
|
|
#endif DENORM_OPERAND
|
|
|
|
if ( FPU_st0_ptr->sign == SIGN_POS )
|
|
{ /* An 80486 preserves the sign */ pop(); return; }
|
|
else
|
|
reg_move(&CONST_PI, st1_ptr);
|
|
st1_ptr->sign = sign;
|
|
}
|
|
else if ( FPU_st0_tag == TW_Zero )
|
|
{
|
|
/* st(1) must be TW_Valid here */
|
|
char sign = st1_ptr->sign;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ( (st1_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
|
|
reg_move(&CONST_PI2, st1_ptr);
|
|
st1_ptr->sign = sign;
|
|
}
|
|
#ifdef PARANOID
|
|
else
|
|
EXCEPTION(EX_INTERNAL | 0x125);
|
|
#endif PARANOID
|
|
|
|
pop();
|
|
set_precision_flag_up(); /* We do not really know if up or down */
|
|
}
|
|
|
|
|
|
static void fprem(void)
|
|
{
|
|
do_fprem(RC_CHOP);
|
|
}
|
|
|
|
|
|
static void fprem1(void)
|
|
{
|
|
do_fprem(RC_RND);
|
|
}
|
|
|
|
|
|
static void fyl2xp1(void)
|
|
{
|
|
FPU_REG *st1_ptr = &st(1);
|
|
char st1_tag = st1_ptr->tag;
|
|
|
|
clear_C1();
|
|
if ( !((FPU_st0_tag ^ TW_Valid) | (st1_tag ^ TW_Valid)) )
|
|
{
|
|
int saved_control, saved_status;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ( ((FPU_st0_ptr->exp <= EXP_UNDER) ||
|
|
(st1_ptr->exp <= EXP_UNDER)) && denormal_operand() )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
|
|
/* We use the general purpose arithmetic so we need to save these. */
|
|
saved_status = partial_status;
|
|
saved_control = control_word;
|
|
control_word = FULL_PRECISION;
|
|
|
|
if ( poly_l2p1(FPU_st0_ptr, FPU_st0_ptr) )
|
|
{
|
|
#ifdef PECULIAR_486 /* Stupid 80486 doesn't worry about log(negative). */
|
|
st1_ptr->sign ^= SIGN_POS^SIGN_NEG;
|
|
control_word = saved_control;
|
|
partial_status = saved_status;
|
|
set_precision_flag_down();
|
|
#else
|
|
if ( arith_invalid(st1_ptr) ) /* poly_l2p1() returned invalid */
|
|
return;
|
|
#endif PECULIAR_486
|
|
pop(); return;
|
|
}
|
|
|
|
/* Enough of the basic arithmetic is done now */
|
|
control_word = saved_control;
|
|
partial_status = saved_status;
|
|
|
|
/* Let the multiply set the flags */
|
|
reg_mul(FPU_st0_ptr, st1_ptr, st1_ptr, FULL_PRECISION);
|
|
|
|
pop();
|
|
}
|
|
else if ( (FPU_st0_tag == TW_Empty) | (st1_tag == TW_Empty) )
|
|
{
|
|
stack_underflow_pop(1);
|
|
return;
|
|
}
|
|
else if ( FPU_st0_tag == TW_Zero )
|
|
{
|
|
if ( st1_tag <= TW_Zero )
|
|
{
|
|
#ifdef DENORM_OPERAND
|
|
if ( (st1_tag == TW_Valid) && (st1_ptr->exp <= EXP_UNDER) &&
|
|
(denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
|
|
FPU_st0_ptr->sign ^= st1_ptr->sign;
|
|
reg_move(FPU_st0_ptr, st1_ptr);
|
|
}
|
|
else if ( st1_tag == TW_Infinity )
|
|
{
|
|
/* Infinity*log(1) */
|
|
if ( !arith_invalid(st1_ptr) )
|
|
pop();
|
|
return;
|
|
}
|
|
else if ( st1_tag == TW_NaN )
|
|
{
|
|
if ( !real_2op_NaN(FPU_st0_ptr, st1_ptr, st1_ptr) )
|
|
pop();
|
|
return;
|
|
}
|
|
#ifdef PARANOID
|
|
else
|
|
{
|
|
EXCEPTION(EX_INTERNAL | 0x116);
|
|
return;
|
|
}
|
|
#endif PARANOID
|
|
pop(); return;
|
|
}
|
|
else if ( FPU_st0_tag == TW_Valid )
|
|
{
|
|
if ( st1_tag == TW_Zero )
|
|
{
|
|
if ( FPU_st0_ptr->sign == SIGN_NEG )
|
|
{
|
|
if ( FPU_st0_ptr->exp >= EXP_BIAS )
|
|
{
|
|
/* st(0) holds <= -1.0 */
|
|
#ifdef PECULIAR_486 /* Stupid 80486 doesn't worry about log(negative). */
|
|
st1_ptr->sign ^= SIGN_POS^SIGN_NEG;
|
|
#else
|
|
if ( arith_invalid(st1_ptr) ) return;
|
|
#endif PECULIAR_486
|
|
pop(); return;
|
|
}
|
|
#ifdef DENORM_OPERAND
|
|
if ( (FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
st1_ptr->sign ^= SIGN_POS^SIGN_NEG;
|
|
pop(); return;
|
|
}
|
|
#ifdef DENORM_OPERAND
|
|
if ( (FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
pop(); return;
|
|
}
|
|
if ( st1_tag == TW_Infinity )
|
|
{
|
|
if ( FPU_st0_ptr->sign == SIGN_NEG )
|
|
{
|
|
if ( (FPU_st0_ptr->exp >= EXP_BIAS) &&
|
|
!((FPU_st0_ptr->sigh == 0x80000000) &&
|
|
(FPU_st0_ptr->sigl == 0)) )
|
|
{
|
|
/* st(0) holds < -1.0 */
|
|
#ifdef PECULIAR_486 /* Stupid 80486 doesn't worry about log(negative). */
|
|
st1_ptr->sign ^= SIGN_POS^SIGN_NEG;
|
|
#else
|
|
if ( arith_invalid(st1_ptr) ) return;
|
|
#endif PECULIAR_486
|
|
pop(); return;
|
|
}
|
|
#ifdef DENORM_OPERAND
|
|
if ( (FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
st1_ptr->sign ^= SIGN_POS^SIGN_NEG;
|
|
pop(); return;
|
|
}
|
|
#ifdef DENORM_OPERAND
|
|
if ( (FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
pop(); return;
|
|
}
|
|
if ( st1_tag == TW_NaN )
|
|
{
|
|
if ( !real_2op_NaN(FPU_st0_ptr, st1_ptr, st1_ptr) )
|
|
pop();
|
|
return;
|
|
}
|
|
}
|
|
else if ( FPU_st0_tag == TW_NaN )
|
|
{
|
|
if ( !real_2op_NaN(FPU_st0_ptr, st1_ptr, st1_ptr) )
|
|
pop();
|
|
return;
|
|
}
|
|
else if ( FPU_st0_tag == TW_Infinity )
|
|
{
|
|
if ( st1_tag == TW_NaN )
|
|
{
|
|
if ( !real_2op_NaN(FPU_st0_ptr, st1_ptr, st1_ptr) )
|
|
pop();
|
|
return;
|
|
}
|
|
else if ( FPU_st0_ptr->sign == SIGN_NEG )
|
|
{
|
|
int exponent = st1_ptr->exp;
|
|
#ifndef PECULIAR_486
|
|
/* This should have higher priority than denormals, but... */
|
|
if ( arith_invalid(st1_ptr) ) /* log(-infinity) */
|
|
return;
|
|
#endif PECULIAR_486
|
|
#ifdef DENORM_OPERAND
|
|
if ( st1_tag != TW_Zero )
|
|
{
|
|
if ( (exponent <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
}
|
|
#endif DENORM_OPERAND
|
|
#ifdef PECULIAR_486
|
|
/* Denormal operands actually get higher priority */
|
|
if ( arith_invalid(st1_ptr) ) /* log(-infinity) */
|
|
return;
|
|
#endif PECULIAR_486
|
|
pop();
|
|
return;
|
|
}
|
|
else if ( st1_tag == TW_Zero )
|
|
{
|
|
/* log(infinity) */
|
|
if ( !arith_invalid(st1_ptr) )
|
|
pop();
|
|
return;
|
|
}
|
|
|
|
/* st(1) must be valid here. */
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ( (st1_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
|
|
/* The Manual says that log(Infinity) is invalid, but a real
|
|
80486 sensibly says that it is o.k. */
|
|
{ char sign = st1_ptr->sign;
|
|
reg_move(&CONST_INF, st1_ptr);
|
|
st1_ptr->sign = sign;
|
|
}
|
|
pop();
|
|
return;
|
|
}
|
|
#ifdef PARANOID
|
|
else
|
|
{
|
|
EXCEPTION(EX_INTERNAL | 0x117);
|
|
}
|
|
#endif PARANOID
|
|
}
|
|
|
|
|
|
static void fscale(void)
|
|
{
|
|
FPU_REG *st1_ptr = &st(1);
|
|
char st1_tag = st1_ptr->tag;
|
|
int old_cw = control_word;
|
|
char sign = FPU_st0_ptr->sign;
|
|
|
|
clear_C1();
|
|
if ( !((FPU_st0_tag ^ TW_Valid) | (st1_tag ^ TW_Valid)) )
|
|
{
|
|
long scale;
|
|
FPU_REG tmp;
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ( ((FPU_st0_ptr->exp <= EXP_UNDER) ||
|
|
(st1_ptr->exp <= EXP_UNDER)) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
|
|
if ( st1_ptr->exp > EXP_BIAS + 30 )
|
|
{
|
|
/* 2^31 is far too large, would require 2^(2^30) or 2^(-2^30) */
|
|
char sign;
|
|
|
|
if ( st1_ptr->sign == SIGN_POS )
|
|
{
|
|
EXCEPTION(EX_Overflow);
|
|
sign = FPU_st0_ptr->sign;
|
|
reg_move(&CONST_INF, FPU_st0_ptr);
|
|
FPU_st0_ptr->sign = sign;
|
|
}
|
|
else
|
|
{
|
|
EXCEPTION(EX_Underflow);
|
|
sign = FPU_st0_ptr->sign;
|
|
reg_move(&CONST_Z, FPU_st0_ptr);
|
|
FPU_st0_ptr->sign = sign;
|
|
}
|
|
return;
|
|
}
|
|
|
|
control_word &= ~CW_RC;
|
|
control_word |= RC_CHOP;
|
|
reg_move(st1_ptr, &tmp);
|
|
round_to_int(&tmp); /* This can never overflow here */
|
|
control_word = old_cw;
|
|
scale = st1_ptr->sign ? -tmp.sigl : tmp.sigl;
|
|
scale += FPU_st0_ptr->exp;
|
|
FPU_st0_ptr->exp = scale;
|
|
|
|
/* Use round_reg() to properly detect under/overflow etc */
|
|
round_reg(FPU_st0_ptr, 0, control_word);
|
|
|
|
return;
|
|
}
|
|
else if ( FPU_st0_tag == TW_Valid )
|
|
{
|
|
if ( st1_tag == TW_Zero )
|
|
{
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ( (FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
|
|
return;
|
|
}
|
|
if ( st1_tag == TW_Infinity )
|
|
{
|
|
#ifdef DENORM_OPERAND
|
|
if ( (FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
|
|
if ( st1_ptr->sign == SIGN_POS )
|
|
{ reg_move(&CONST_INF, FPU_st0_ptr); }
|
|
else
|
|
reg_move(&CONST_Z, FPU_st0_ptr);
|
|
FPU_st0_ptr->sign = sign;
|
|
return;
|
|
}
|
|
if ( st1_tag == TW_NaN )
|
|
{ real_2op_NaN(FPU_st0_ptr, st1_ptr, FPU_st0_ptr); return; }
|
|
}
|
|
else if ( FPU_st0_tag == TW_Zero )
|
|
{
|
|
if ( st1_tag == TW_Valid )
|
|
{
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ( (st1_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
|
|
return;
|
|
}
|
|
else if ( st1_tag == TW_Zero ) { return; }
|
|
else if ( st1_tag == TW_Infinity )
|
|
{
|
|
if ( st1_ptr->sign == SIGN_NEG )
|
|
return;
|
|
else
|
|
{
|
|
arith_invalid(FPU_st0_ptr); /* Zero scaled by +Infinity */
|
|
return;
|
|
}
|
|
}
|
|
else if ( st1_tag == TW_NaN )
|
|
{ real_2op_NaN(FPU_st0_ptr, st1_ptr, FPU_st0_ptr); return; }
|
|
}
|
|
else if ( FPU_st0_tag == TW_Infinity )
|
|
{
|
|
if ( st1_tag == TW_Valid )
|
|
{
|
|
|
|
#ifdef DENORM_OPERAND
|
|
if ( (st1_ptr->exp <= EXP_UNDER) && (denormal_operand()) )
|
|
return;
|
|
#endif DENORM_OPERAND
|
|
|
|
return;
|
|
}
|
|
if ( ((st1_tag == TW_Infinity) && (st1_ptr->sign == SIGN_POS))
|
|
|| (st1_tag == TW_Zero) )
|
|
return;
|
|
else if ( st1_tag == TW_Infinity )
|
|
{
|
|
arith_invalid(FPU_st0_ptr); /* Infinity scaled by -Infinity */
|
|
return;
|
|
}
|
|
else if ( st1_tag == TW_NaN )
|
|
{ real_2op_NaN(FPU_st0_ptr, st1_ptr, FPU_st0_ptr); return; }
|
|
}
|
|
else if ( FPU_st0_tag == TW_NaN )
|
|
{
|
|
if ( st1_tag != TW_Empty )
|
|
{ real_2op_NaN(FPU_st0_ptr, st1_ptr, FPU_st0_ptr); return; }
|
|
}
|
|
|
|
#ifdef PARANOID
|
|
if ( !((FPU_st0_tag == TW_Empty) || (st1_tag == TW_Empty)) )
|
|
{
|
|
EXCEPTION(EX_INTERNAL | 0x115);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* At least one of st(0), st(1) must be empty */
|
|
stack_underflow();
|
|
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
static FUNC const trig_table_a[] = {
|
|
f2xm1, fyl2x, fptan, fpatan, fxtract, fprem1, fdecstp, fincstp
|
|
};
|
|
|
|
void trig_a(void)
|
|
{
|
|
(trig_table_a[FPU_rm])();
|
|
}
|
|
|
|
|
|
static FUNC const trig_table_b[] =
|
|
{
|
|
fprem, fyl2xp1, fsqrt_, fsincos, frndint_, fscale, fsin, fcos
|
|
};
|
|
|
|
void trig_b(void)
|
|
{
|
|
(trig_table_b[FPU_rm])();
|
|
}
|