204 lines
5.9 KiB
C
204 lines
5.9 KiB
C
/*---------------------------------------------------------------------------+
|
|
| p_atan.c |
|
|
| |
|
|
| Compute the tan of a FPU_REG, using a polynomial approximation. |
|
|
| |
|
|
| Copyright (C) 1992,1993 |
|
|
| W. Metzenthen, 22 Parker St, Ormond, Vic 3163, |
|
|
| Australia. E-mail billm@vaxc.cc.monash.edu.au |
|
|
| |
|
|
| |
|
|
+---------------------------------------------------------------------------*/
|
|
|
|
#include "exception.h"
|
|
#include "reg_constant.h"
|
|
#include "fpu_emu.h"
|
|
#include "control_w.h"
|
|
|
|
|
|
#define HIPOWERon 6 /* odd poly, negative terms */
|
|
static unsigned const oddnegterms[HIPOWERon][2] =
|
|
{
|
|
{ 0x00000000, 0x00000000 }, /* for + 1.0 */
|
|
{ 0x763b6f3d, 0x1adc4428 },
|
|
{ 0x20f0630b, 0x0502909d },
|
|
{ 0x4e825578, 0x0198ce38 },
|
|
{ 0x22b7cb87, 0x008da6e3 },
|
|
{ 0x9b30ca03, 0x00239c79 }
|
|
} ;
|
|
|
|
#define HIPOWERop 6 /* odd poly, positive terms */
|
|
static unsigned const oddplterms[HIPOWERop][2] =
|
|
{
|
|
{ 0xa6f67cb8, 0x94d910bd },
|
|
{ 0xa02ffab4, 0x0a43cb45 },
|
|
{ 0x04265e6b, 0x02bf5655 },
|
|
{ 0x0a728914, 0x00f280f7 },
|
|
{ 0x6d640e01, 0x004d6556 },
|
|
{ 0xf1dd2dbf, 0x000a530a }
|
|
};
|
|
|
|
static unsigned long long const denomterm = 0xea2e6612fc4bd208LL;
|
|
|
|
|
|
/*--- poly_atan() -----------------------------------------------------------+
|
|
| |
|
|
+---------------------------------------------------------------------------*/
|
|
void poly_atan(FPU_REG *arg)
|
|
{
|
|
char recursions = 0;
|
|
short exponent;
|
|
FPU_REG odd_poly, even_poly, pos_poly, neg_poly, ratio;
|
|
FPU_REG argSq;
|
|
unsigned long long arg_signif, argSqSq;
|
|
|
|
|
|
#ifdef PARANOID
|
|
if ( arg->sign != 0 ) /* Can't hack a number < 0.0 */
|
|
{ arith_invalid(arg); return; } /* Need a positive number */
|
|
#endif PARANOID
|
|
|
|
exponent = arg->exp - EXP_BIAS;
|
|
|
|
if ( arg->tag == TW_Zero )
|
|
{
|
|
/* Return 0.0 */
|
|
reg_move(&CONST_Z, arg);
|
|
return;
|
|
}
|
|
|
|
if ( exponent >= -2 )
|
|
{
|
|
/* argument is in the range [0.25 .. 1.0] */
|
|
if ( exponent >= 0 )
|
|
{
|
|
#ifdef PARANOID
|
|
if ( (exponent == 0) &&
|
|
(arg->sigl == 0) && (arg->sigh == 0x80000000) )
|
|
#endif PARANOID
|
|
{
|
|
reg_move(&CONST_PI4, arg);
|
|
return;
|
|
}
|
|
#ifdef PARANOID
|
|
EXCEPTION(EX_INTERNAL|0x104); /* There must be a logic error */
|
|
return;
|
|
#endif PARANOID
|
|
}
|
|
|
|
/* If the argument is greater than sqrt(2)-1 (=0.414213562...) */
|
|
/* convert the argument by an identity for atan */
|
|
if ( (exponent >= -1) || (arg->sigh > 0xd413ccd0) )
|
|
{
|
|
FPU_REG numerator, denom;
|
|
|
|
recursions++;
|
|
|
|
arg_signif = significand(arg);
|
|
if ( exponent < -1 )
|
|
{
|
|
if ( shrx(&arg_signif, -1-exponent) >= 0x80000000U )
|
|
arg_signif++; /* round up */
|
|
}
|
|
significand(&numerator) = -arg_signif;
|
|
numerator.exp = EXP_BIAS - 1;
|
|
normalize(&numerator); /* 1 - arg */
|
|
|
|
arg_signif = significand(arg);
|
|
if ( shrx(&arg_signif, -exponent) >= 0x80000000U )
|
|
arg_signif++; /* round up */
|
|
significand(&denom) = arg_signif;
|
|
denom.sigh |= 0x80000000; /* 1 + arg */
|
|
|
|
arg->exp = numerator.exp;
|
|
reg_u_div(&numerator, &denom, arg, FULL_PRECISION);
|
|
|
|
exponent = arg->exp - EXP_BIAS;
|
|
}
|
|
}
|
|
|
|
arg_signif = significand(arg);
|
|
|
|
#ifdef PARANOID
|
|
/* This must always be true */
|
|
if ( exponent >= -1 )
|
|
{
|
|
EXCEPTION(EX_INTERNAL|0x120); /* There must be a logic error */
|
|
}
|
|
#endif PARANOID
|
|
|
|
/* shift the argument right by the required places */
|
|
if ( shrx(&arg_signif, -1-exponent) >= 0x80000000U )
|
|
arg_signif++; /* round up */
|
|
|
|
/* Now have arg_signif with binary point at the left
|
|
.1xxxxxxxx */
|
|
mul64(&arg_signif, &arg_signif, &significand(&argSq));
|
|
mul64(&significand(&argSq), &significand(&argSq), &argSqSq);
|
|
|
|
/* will be a valid positive nr with expon = 0 */
|
|
*(short *)&(pos_poly.sign) = 0;
|
|
pos_poly.exp = EXP_BIAS;
|
|
|
|
/* Do the basic fixed point polynomial evaluation */
|
|
polynomial(&pos_poly.sigl, (unsigned *)&argSqSq,
|
|
(unsigned short (*)[4])oddplterms, HIPOWERop-1);
|
|
mul64(&significand(&argSq), &significand(&pos_poly),
|
|
&significand(&pos_poly));
|
|
|
|
/* will be a valid positive nr with expon = 0 */
|
|
*(short *)&(neg_poly.sign) = 0;
|
|
neg_poly.exp = EXP_BIAS;
|
|
|
|
/* Do the basic fixed point polynomial evaluation */
|
|
polynomial(&neg_poly.sigl, (unsigned *)&argSqSq,
|
|
(unsigned short (*)[4])oddnegterms, HIPOWERon-1);
|
|
|
|
/* Subtract the mantissas */
|
|
significand(&pos_poly) -= significand(&neg_poly);
|
|
|
|
reg_move(&pos_poly, &odd_poly);
|
|
poly_add_1(&odd_poly);
|
|
|
|
/* will be a valid positive nr with expon = 0 */
|
|
*(short *)&(even_poly.sign) = 0;
|
|
|
|
mul64(&significand(&argSq), &denomterm, &significand(&even_poly));
|
|
|
|
poly_add_1(&even_poly);
|
|
|
|
reg_div(&odd_poly, &even_poly, &ratio, FULL_PRECISION);
|
|
|
|
reg_u_mul(&ratio, arg, arg, FULL_PRECISION);
|
|
|
|
if ( recursions )
|
|
reg_sub(&CONST_PI4, arg, arg, FULL_PRECISION);
|
|
|
|
}
|
|
|
|
|
|
/* The argument to this function must be polynomial() compatible,
|
|
i.e. have an exponent (not checked) of EXP_BIAS-1 but need not
|
|
be normalized.
|
|
This function adds 1.0 to the (assumed positive) argument. */
|
|
void poly_add_1(FPU_REG *src)
|
|
{
|
|
/* Rounding in a consistent direction produces better results
|
|
for the use of this function in poly_atan. Simple truncation
|
|
is used here instead of round-to-nearest. */
|
|
|
|
#ifdef OBSOLETE
|
|
char round = (src->sigl & 3) == 3;
|
|
#endif OBSOLETE
|
|
|
|
shrx(&src->sigl, 1);
|
|
|
|
#ifdef OBSOLETE
|
|
if ( round ) significand(src)++; /* Round to even */
|
|
#endif OBSOLETE
|
|
|
|
src->sigh |= 0x80000000;
|
|
|
|
src->exp = EXP_BIAS;
|
|
|
|
}
|