historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/disas/libvixl/vixl/a64/instructions-a64.cc
2024-01-16 11:20:27 -06:00

622 lines
17 KiB
C++

// Copyright 2015, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "vixl/a64/instructions-a64.h"
#include "vixl/a64/assembler-a64.h"
namespace vixl {
// Floating-point infinity values.
const float16 kFP16PositiveInfinity = 0x7c00;
const float16 kFP16NegativeInfinity = 0xfc00;
const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
const double kFP64PositiveInfinity =
rawbits_to_double(UINT64_C(0x7ff0000000000000));
const double kFP64NegativeInfinity =
rawbits_to_double(UINT64_C(0xfff0000000000000));
// The default NaN values (for FPCR.DN=1).
const double kFP64DefaultNaN = rawbits_to_double(UINT64_C(0x7ff8000000000000));
const float kFP32DefaultNaN = rawbits_to_float(0x7fc00000);
const float16 kFP16DefaultNaN = 0x7e00;
static uint64_t RotateRight(uint64_t value,
unsigned int rotate,
unsigned int width) {
VIXL_ASSERT(width <= 64);
rotate &= 63;
return ((value & ((UINT64_C(1) << rotate) - 1)) <<
(width - rotate)) | (value >> rotate);
}
static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
uint64_t value,
unsigned width) {
VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
(width == 32));
VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
uint64_t result = value & ((UINT64_C(1) << width) - 1);
for (unsigned i = width; i < reg_size; i *= 2) {
result |= (result << i);
}
return result;
}
bool Instruction::IsLoad() const {
if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
return false;
}
if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
return Mask(LoadStorePairLBit) != 0;
} else {
LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
switch (op) {
case LDRB_w:
case LDRH_w:
case LDR_w:
case LDR_x:
case LDRSB_w:
case LDRSB_x:
case LDRSH_w:
case LDRSH_x:
case LDRSW_x:
case LDR_b:
case LDR_h:
case LDR_s:
case LDR_d:
case LDR_q: return true;
default: return false;
}
}
}
bool Instruction::IsStore() const {
if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
return false;
}
if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
return Mask(LoadStorePairLBit) == 0;
} else {
LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
switch (op) {
case STRB_w:
case STRH_w:
case STR_w:
case STR_x:
case STR_b:
case STR_h:
case STR_s:
case STR_d:
case STR_q: return true;
default: return false;
}
}
}
// Logical immediates can't encode zero, so a return value of zero is used to
// indicate a failure case. Specifically, where the constraints on imm_s are
// not met.
uint64_t Instruction::ImmLogical() const {
unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize;
int32_t n = BitN();
int32_t imm_s = ImmSetBits();
int32_t imm_r = ImmRotate();
// An integer is constructed from the n, imm_s and imm_r bits according to
// the following table:
//
// N imms immr size S R
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
// (s bits must not be all set)
//
// A pattern is constructed of size bits, where the least significant S+1
// bits are set. The pattern is rotated right by R, and repeated across a
// 32 or 64-bit value, depending on destination register width.
//
if (n == 1) {
if (imm_s == 0x3f) {
return 0;
}
uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
return RotateRight(bits, imm_r, 64);
} else {
if ((imm_s >> 1) == 0x1f) {
return 0;
}
for (int width = 0x20; width >= 0x2; width >>= 1) {
if ((imm_s & width) == 0) {
int mask = width - 1;
if ((imm_s & mask) == mask) {
return 0;
}
uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
return RepeatBitsAcrossReg(reg_size,
RotateRight(bits, imm_r & mask, width),
width);
}
}
}
VIXL_UNREACHABLE();
return 0;
}
uint32_t Instruction::ImmNEONabcdefgh() const {
return ImmNEONabc() << 5 | ImmNEONdefgh();
}
float Instruction::Imm8ToFP32(uint32_t imm8) {
// Imm8: abcdefgh (8 bits)
// Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
// where B is b ^ 1
uint32_t bits = imm8;
uint32_t bit7 = (bits >> 7) & 0x1;
uint32_t bit6 = (bits >> 6) & 0x1;
uint32_t bit5_to_0 = bits & 0x3f;
uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
return rawbits_to_float(result);
}
float Instruction::ImmFP32() const {
return Imm8ToFP32(ImmFP());
}
double Instruction::Imm8ToFP64(uint32_t imm8) {
// Imm8: abcdefgh (8 bits)
// Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
// 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
// where B is b ^ 1
uint32_t bits = imm8;
uint64_t bit7 = (bits >> 7) & 0x1;
uint64_t bit6 = (bits >> 6) & 0x1;
uint64_t bit5_to_0 = bits & 0x3f;
uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
return rawbits_to_double(result);
}
double Instruction::ImmFP64() const {
return Imm8ToFP64(ImmFP());
}
float Instruction::ImmNEONFP32() const {
return Imm8ToFP32(ImmNEONabcdefgh());
}
double Instruction::ImmNEONFP64() const {
return Imm8ToFP64(ImmNEONabcdefgh());
}
unsigned CalcLSDataSize(LoadStoreOp op) {
VIXL_ASSERT((LSSize_offset + LSSize_width) == (kInstructionSize * 8));
unsigned size = static_cast<Instr>(op) >> LSSize_offset;
if ((op & LSVector_mask) != 0) {
// Vector register memory operations encode the access size in the "size"
// and "opc" fields.
if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) {
size = kQRegSizeInBytesLog2;
}
}
return size;
}
unsigned CalcLSPairDataSize(LoadStorePairOp op) {
VIXL_STATIC_ASSERT(kXRegSizeInBytes == kDRegSizeInBytes);
VIXL_STATIC_ASSERT(kWRegSizeInBytes == kSRegSizeInBytes);
switch (op) {
case STP_q:
case LDP_q: return kQRegSizeInBytesLog2;
case STP_x:
case LDP_x:
case STP_d:
case LDP_d: return kXRegSizeInBytesLog2;
default: return kWRegSizeInBytesLog2;
}
}
int Instruction::ImmBranchRangeBitwidth(ImmBranchType branch_type) {
switch (branch_type) {
case UncondBranchType:
return ImmUncondBranch_width;
case CondBranchType:
return ImmCondBranch_width;
case CompareBranchType:
return ImmCmpBranch_width;
case TestBranchType:
return ImmTestBranch_width;
default:
VIXL_UNREACHABLE();
return 0;
}
}
int32_t Instruction::ImmBranchForwardRange(ImmBranchType branch_type) {
int32_t encoded_max = 1 << (ImmBranchRangeBitwidth(branch_type) - 1);
return encoded_max * kInstructionSize;
}
bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
int64_t offset) {
return is_intn(ImmBranchRangeBitwidth(branch_type), offset);
}
const Instruction* Instruction::ImmPCOffsetTarget() const {
const Instruction * base = this;
ptrdiff_t offset;
if (IsPCRelAddressing()) {
// ADR and ADRP.
offset = ImmPCRel();
if (Mask(PCRelAddressingMask) == ADRP) {
base = AlignDown(base, kPageSize);
offset *= kPageSize;
} else {
VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
}
} else {
// All PC-relative branches.
VIXL_ASSERT(BranchType() != UnknownBranchType);
// Relative branch offsets are instruction-size-aligned.
offset = ImmBranch() << kInstructionSizeLog2;
}
return base + offset;
}
int Instruction::ImmBranch() const {
switch (BranchType()) {
case CondBranchType: return ImmCondBranch();
case UncondBranchType: return ImmUncondBranch();
case CompareBranchType: return ImmCmpBranch();
case TestBranchType: return ImmTestBranch();
default: VIXL_UNREACHABLE();
}
return 0;
}
void Instruction::SetImmPCOffsetTarget(const Instruction* target) {
if (IsPCRelAddressing()) {
SetPCRelImmTarget(target);
} else {
SetBranchImmTarget(target);
}
}
void Instruction::SetPCRelImmTarget(const Instruction* target) {
ptrdiff_t imm21;
if ((Mask(PCRelAddressingMask) == ADR)) {
imm21 = target - this;
} else {
VIXL_ASSERT(Mask(PCRelAddressingMask) == ADRP);
uintptr_t this_page = reinterpret_cast<uintptr_t>(this) / kPageSize;
uintptr_t target_page = reinterpret_cast<uintptr_t>(target) / kPageSize;
imm21 = target_page - this_page;
}
Instr imm = Assembler::ImmPCRelAddress(static_cast<int32_t>(imm21));
SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
}
void Instruction::SetBranchImmTarget(const Instruction* target) {
VIXL_ASSERT(((target - this) & 3) == 0);
Instr branch_imm = 0;
uint32_t imm_mask = 0;
int offset = static_cast<int>((target - this) >> kInstructionSizeLog2);
switch (BranchType()) {
case CondBranchType: {
branch_imm = Assembler::ImmCondBranch(offset);
imm_mask = ImmCondBranch_mask;
break;
}
case UncondBranchType: {
branch_imm = Assembler::ImmUncondBranch(offset);
imm_mask = ImmUncondBranch_mask;
break;
}
case CompareBranchType: {
branch_imm = Assembler::ImmCmpBranch(offset);
imm_mask = ImmCmpBranch_mask;
break;
}
case TestBranchType: {
branch_imm = Assembler::ImmTestBranch(offset);
imm_mask = ImmTestBranch_mask;
break;
}
default: VIXL_UNREACHABLE();
}
SetInstructionBits(Mask(~imm_mask) | branch_imm);
}
void Instruction::SetImmLLiteral(const Instruction* source) {
VIXL_ASSERT(IsWordAligned(source));
ptrdiff_t offset = (source - this) >> kLiteralEntrySizeLog2;
Instr imm = Assembler::ImmLLiteral(static_cast<int>(offset));
Instr mask = ImmLLiteral_mask;
SetInstructionBits(Mask(~mask) | imm);
}
VectorFormat VectorFormatHalfWidth(const VectorFormat vform) {
VIXL_ASSERT(vform == kFormat8H || vform == kFormat4S || vform == kFormat2D ||
vform == kFormatH || vform == kFormatS || vform == kFormatD);
switch (vform) {
case kFormat8H: return kFormat8B;
case kFormat4S: return kFormat4H;
case kFormat2D: return kFormat2S;
case kFormatH: return kFormatB;
case kFormatS: return kFormatH;
case kFormatD: return kFormatS;
default: VIXL_UNREACHABLE(); return kFormatUndefined;
}
}
VectorFormat VectorFormatDoubleWidth(const VectorFormat vform) {
VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S ||
vform == kFormatB || vform == kFormatH || vform == kFormatS);
switch (vform) {
case kFormat8B: return kFormat8H;
case kFormat4H: return kFormat4S;
case kFormat2S: return kFormat2D;
case kFormatB: return kFormatH;
case kFormatH: return kFormatS;
case kFormatS: return kFormatD;
default: VIXL_UNREACHABLE(); return kFormatUndefined;
}
}
VectorFormat VectorFormatFillQ(const VectorFormat vform) {
switch (vform) {
case kFormatB:
case kFormat8B:
case kFormat16B: return kFormat16B;
case kFormatH:
case kFormat4H:
case kFormat8H: return kFormat8H;
case kFormatS:
case kFormat2S:
case kFormat4S: return kFormat4S;
case kFormatD:
case kFormat1D:
case kFormat2D: return kFormat2D;
default: VIXL_UNREACHABLE(); return kFormatUndefined;
}
}
VectorFormat VectorFormatHalfWidthDoubleLanes(const VectorFormat vform) {
switch (vform) {
case kFormat4H: return kFormat8B;
case kFormat8H: return kFormat16B;
case kFormat2S: return kFormat4H;
case kFormat4S: return kFormat8H;
case kFormat1D: return kFormat2S;
case kFormat2D: return kFormat4S;
default: VIXL_UNREACHABLE(); return kFormatUndefined;
}
}
VectorFormat VectorFormatDoubleLanes(const VectorFormat vform) {
VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S);
switch (vform) {
case kFormat8B: return kFormat16B;
case kFormat4H: return kFormat8H;
case kFormat2S: return kFormat4S;
default: VIXL_UNREACHABLE(); return kFormatUndefined;
}
}
VectorFormat VectorFormatHalfLanes(const VectorFormat vform) {
VIXL_ASSERT(vform == kFormat16B || vform == kFormat8H || vform == kFormat4S);
switch (vform) {
case kFormat16B: return kFormat8B;
case kFormat8H: return kFormat4H;
case kFormat4S: return kFormat2S;
default: VIXL_UNREACHABLE(); return kFormatUndefined;
}
}
VectorFormat ScalarFormatFromLaneSize(int laneSize) {
switch (laneSize) {
case 8: return kFormatB;
case 16: return kFormatH;
case 32: return kFormatS;
case 64: return kFormatD;
default: VIXL_UNREACHABLE(); return kFormatUndefined;
}
}
unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) {
VIXL_ASSERT(vform != kFormatUndefined);
switch (vform) {
case kFormatB: return kBRegSize;
case kFormatH: return kHRegSize;
case kFormatS: return kSRegSize;
case kFormatD: return kDRegSize;
case kFormat8B:
case kFormat4H:
case kFormat2S:
case kFormat1D: return kDRegSize;
default: return kQRegSize;
}
}
unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) {
return RegisterSizeInBitsFromFormat(vform) / 8;
}
unsigned LaneSizeInBitsFromFormat(VectorFormat vform) {
VIXL_ASSERT(vform != kFormatUndefined);
switch (vform) {
case kFormatB:
case kFormat8B:
case kFormat16B: return 8;
case kFormatH:
case kFormat4H:
case kFormat8H: return 16;
case kFormatS:
case kFormat2S:
case kFormat4S: return 32;
case kFormatD:
case kFormat1D:
case kFormat2D: return 64;
default: VIXL_UNREACHABLE(); return 0;
}
}
int LaneSizeInBytesFromFormat(VectorFormat vform) {
return LaneSizeInBitsFromFormat(vform) / 8;
}
int LaneSizeInBytesLog2FromFormat(VectorFormat vform) {
VIXL_ASSERT(vform != kFormatUndefined);
switch (vform) {
case kFormatB:
case kFormat8B:
case kFormat16B: return 0;
case kFormatH:
case kFormat4H:
case kFormat8H: return 1;
case kFormatS:
case kFormat2S:
case kFormat4S: return 2;
case kFormatD:
case kFormat1D:
case kFormat2D: return 3;
default: VIXL_UNREACHABLE(); return 0;
}
}
int LaneCountFromFormat(VectorFormat vform) {
VIXL_ASSERT(vform != kFormatUndefined);
switch (vform) {
case kFormat16B: return 16;
case kFormat8B:
case kFormat8H: return 8;
case kFormat4H:
case kFormat4S: return 4;
case kFormat2S:
case kFormat2D: return 2;
case kFormat1D:
case kFormatB:
case kFormatH:
case kFormatS:
case kFormatD: return 1;
default: VIXL_UNREACHABLE(); return 0;
}
}
int MaxLaneCountFromFormat(VectorFormat vform) {
VIXL_ASSERT(vform != kFormatUndefined);
switch (vform) {
case kFormatB:
case kFormat8B:
case kFormat16B: return 16;
case kFormatH:
case kFormat4H:
case kFormat8H: return 8;
case kFormatS:
case kFormat2S:
case kFormat4S: return 4;
case kFormatD:
case kFormat1D:
case kFormat2D: return 2;
default: VIXL_UNREACHABLE(); return 0;
}
}
// Does 'vform' indicate a vector format or a scalar format?
bool IsVectorFormat(VectorFormat vform) {
VIXL_ASSERT(vform != kFormatUndefined);
switch (vform) {
case kFormatB:
case kFormatH:
case kFormatS:
case kFormatD: return false;
default: return true;
}
}
int64_t MaxIntFromFormat(VectorFormat vform) {
return INT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
}
int64_t MinIntFromFormat(VectorFormat vform) {
return INT64_MIN >> (64 - LaneSizeInBitsFromFormat(vform));
}
uint64_t MaxUintFromFormat(VectorFormat vform) {
return UINT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
}
} // namespace vixl