2784 lines
94 KiB
C
2784 lines
94 KiB
C
/*
|
|
* ARM Nested Vectored Interrupt Controller
|
|
*
|
|
* Copyright (c) 2006-2007 CodeSourcery.
|
|
* Written by Paul Brook
|
|
*
|
|
* This code is licensed under the GPL.
|
|
*
|
|
* The ARMv7M System controller is fairly tightly tied in with the
|
|
* NVIC. Much of that is also implemented here.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qapi/error.h"
|
|
#include "cpu.h"
|
|
#include "hw/sysbus.h"
|
|
#include "migration/vmstate.h"
|
|
#include "qemu/timer.h"
|
|
#include "hw/intc/armv7m_nvic.h"
|
|
#include "hw/irq.h"
|
|
#include "hw/qdev-properties.h"
|
|
#include "sysemu/runstate.h"
|
|
#include "target/arm/cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/memop.h"
|
|
#include "qemu/log.h"
|
|
#include "qemu/module.h"
|
|
#include "trace.h"
|
|
|
|
/* IRQ number counting:
|
|
*
|
|
* the num-irq property counts the number of external IRQ lines
|
|
*
|
|
* NVICState::num_irq counts the total number of exceptions
|
|
* (external IRQs, the 15 internal exceptions including reset,
|
|
* and one for the unused exception number 0).
|
|
*
|
|
* NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
|
|
*
|
|
* NVIC_MAX_VECTORS is the highest permitted number of exceptions.
|
|
*
|
|
* Iterating through all exceptions should typically be done with
|
|
* for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
|
|
*
|
|
* The external qemu_irq lines are the NVIC's external IRQ lines,
|
|
* so line 0 is exception 16.
|
|
*
|
|
* In the terminology of the architecture manual, "interrupts" are
|
|
* a subcategory of exception referring to the external interrupts
|
|
* (which are exception numbers NVIC_FIRST_IRQ and upward).
|
|
* For historical reasons QEMU tends to use "interrupt" and
|
|
* "exception" more or less interchangeably.
|
|
*/
|
|
#define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
|
|
#define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
|
|
|
|
/* Effective running priority of the CPU when no exception is active
|
|
* (higher than the highest possible priority value)
|
|
*/
|
|
#define NVIC_NOEXC_PRIO 0x100
|
|
/* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
|
|
#define NVIC_NS_PRIO_LIMIT 0x80
|
|
|
|
static const uint8_t nvic_id[] = {
|
|
0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
|
|
};
|
|
|
|
static void signal_sysresetreq(NVICState *s)
|
|
{
|
|
if (qemu_irq_is_connected(s->sysresetreq)) {
|
|
qemu_irq_pulse(s->sysresetreq);
|
|
} else {
|
|
/*
|
|
* Default behaviour if the SoC doesn't need to wire up
|
|
* SYSRESETREQ (eg to a system reset controller of some kind):
|
|
* perform a system reset via the usual QEMU API.
|
|
*/
|
|
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
|
|
}
|
|
}
|
|
|
|
static int nvic_pending_prio(NVICState *s)
|
|
{
|
|
/* return the group priority of the current pending interrupt,
|
|
* or NVIC_NOEXC_PRIO if no interrupt is pending
|
|
*/
|
|
return s->vectpending_prio;
|
|
}
|
|
|
|
/* Return the value of the ISCR RETTOBASE bit:
|
|
* 1 if there is exactly one active exception
|
|
* 0 if there is more than one active exception
|
|
* UNKNOWN if there are no active exceptions (we choose 1,
|
|
* which matches the choice Cortex-M3 is documented as making).
|
|
*
|
|
* NB: some versions of the documentation talk about this
|
|
* counting "active exceptions other than the one shown by IPSR";
|
|
* this is only different in the obscure corner case where guest
|
|
* code has manually deactivated an exception and is about
|
|
* to fail an exception-return integrity check. The definition
|
|
* above is the one from the v8M ARM ARM and is also in line
|
|
* with the behaviour documented for the Cortex-M3.
|
|
*/
|
|
static bool nvic_rettobase(NVICState *s)
|
|
{
|
|
int irq, nhand = 0;
|
|
bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
|
|
|
|
for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
|
|
if (s->vectors[irq].active ||
|
|
(check_sec && irq < NVIC_INTERNAL_VECTORS &&
|
|
s->sec_vectors[irq].active)) {
|
|
nhand++;
|
|
if (nhand == 2) {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Return the value of the ISCR ISRPENDING bit:
|
|
* 1 if an external interrupt is pending
|
|
* 0 if no external interrupt is pending
|
|
*/
|
|
static bool nvic_isrpending(NVICState *s)
|
|
{
|
|
int irq;
|
|
|
|
/* We can shortcut if the highest priority pending interrupt
|
|
* happens to be external or if there is nothing pending.
|
|
*/
|
|
if (s->vectpending > NVIC_FIRST_IRQ) {
|
|
return true;
|
|
}
|
|
if (s->vectpending == 0) {
|
|
return false;
|
|
}
|
|
|
|
for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
|
|
if (s->vectors[irq].pending) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool exc_is_banked(int exc)
|
|
{
|
|
/* Return true if this is one of the limited set of exceptions which
|
|
* are banked (and thus have state in sec_vectors[])
|
|
*/
|
|
return exc == ARMV7M_EXCP_HARD ||
|
|
exc == ARMV7M_EXCP_MEM ||
|
|
exc == ARMV7M_EXCP_USAGE ||
|
|
exc == ARMV7M_EXCP_SVC ||
|
|
exc == ARMV7M_EXCP_PENDSV ||
|
|
exc == ARMV7M_EXCP_SYSTICK;
|
|
}
|
|
|
|
/* Return a mask word which clears the subpriority bits from
|
|
* a priority value for an M-profile exception, leaving only
|
|
* the group priority.
|
|
*/
|
|
static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
|
|
{
|
|
return ~0U << (s->prigroup[secure] + 1);
|
|
}
|
|
|
|
static bool exc_targets_secure(NVICState *s, int exc)
|
|
{
|
|
/* Return true if this non-banked exception targets Secure state. */
|
|
if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
|
|
return false;
|
|
}
|
|
|
|
if (exc >= NVIC_FIRST_IRQ) {
|
|
return !s->itns[exc];
|
|
}
|
|
|
|
/* Function shouldn't be called for banked exceptions. */
|
|
assert(!exc_is_banked(exc));
|
|
|
|
switch (exc) {
|
|
case ARMV7M_EXCP_NMI:
|
|
case ARMV7M_EXCP_BUS:
|
|
return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
|
|
case ARMV7M_EXCP_SECURE:
|
|
return true;
|
|
case ARMV7M_EXCP_DEBUG:
|
|
/* TODO: controlled by DEMCR.SDME, which we don't yet implement */
|
|
return false;
|
|
default:
|
|
/* reset, and reserved (unused) low exception numbers.
|
|
* We'll get called by code that loops through all the exception
|
|
* numbers, but it doesn't matter what we return here as these
|
|
* non-existent exceptions will never be pended or active.
|
|
*/
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
|
|
{
|
|
/* Return the group priority for this exception, given its raw
|
|
* (group-and-subgroup) priority value and whether it is targeting
|
|
* secure state or not.
|
|
*/
|
|
if (rawprio < 0) {
|
|
return rawprio;
|
|
}
|
|
rawprio &= nvic_gprio_mask(s, targets_secure);
|
|
/* AIRCR.PRIS causes us to squash all NS priorities into the
|
|
* lower half of the total range
|
|
*/
|
|
if (!targets_secure &&
|
|
(s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
|
|
rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
|
|
}
|
|
return rawprio;
|
|
}
|
|
|
|
/* Recompute vectpending and exception_prio for a CPU which implements
|
|
* the Security extension
|
|
*/
|
|
static void nvic_recompute_state_secure(NVICState *s)
|
|
{
|
|
int i, bank;
|
|
int pend_prio = NVIC_NOEXC_PRIO;
|
|
int active_prio = NVIC_NOEXC_PRIO;
|
|
int pend_irq = 0;
|
|
bool pending_is_s_banked = false;
|
|
int pend_subprio = 0;
|
|
|
|
/* R_CQRV: precedence is by:
|
|
* - lowest group priority; if both the same then
|
|
* - lowest subpriority; if both the same then
|
|
* - lowest exception number; if both the same (ie banked) then
|
|
* - secure exception takes precedence
|
|
* Compare pseudocode RawExecutionPriority.
|
|
* Annoyingly, now we have two prigroup values (for S and NS)
|
|
* we can't do the loop comparison on raw priority values.
|
|
*/
|
|
for (i = 1; i < s->num_irq; i++) {
|
|
for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
|
|
VecInfo *vec;
|
|
int prio, subprio;
|
|
bool targets_secure;
|
|
|
|
if (bank == M_REG_S) {
|
|
if (!exc_is_banked(i)) {
|
|
continue;
|
|
}
|
|
vec = &s->sec_vectors[i];
|
|
targets_secure = true;
|
|
} else {
|
|
vec = &s->vectors[i];
|
|
targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
|
|
}
|
|
|
|
prio = exc_group_prio(s, vec->prio, targets_secure);
|
|
subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
|
|
if (vec->enabled && vec->pending &&
|
|
((prio < pend_prio) ||
|
|
(prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
|
|
pend_prio = prio;
|
|
pend_subprio = subprio;
|
|
pend_irq = i;
|
|
pending_is_s_banked = (bank == M_REG_S);
|
|
}
|
|
if (vec->active && prio < active_prio) {
|
|
active_prio = prio;
|
|
}
|
|
}
|
|
}
|
|
|
|
s->vectpending_is_s_banked = pending_is_s_banked;
|
|
s->vectpending = pend_irq;
|
|
s->vectpending_prio = pend_prio;
|
|
s->exception_prio = active_prio;
|
|
|
|
trace_nvic_recompute_state_secure(s->vectpending,
|
|
s->vectpending_is_s_banked,
|
|
s->vectpending_prio,
|
|
s->exception_prio);
|
|
}
|
|
|
|
/* Recompute vectpending and exception_prio */
|
|
static void nvic_recompute_state(NVICState *s)
|
|
{
|
|
int i;
|
|
int pend_prio = NVIC_NOEXC_PRIO;
|
|
int active_prio = NVIC_NOEXC_PRIO;
|
|
int pend_irq = 0;
|
|
|
|
/* In theory we could write one function that handled both
|
|
* the "security extension present" and "not present"; however
|
|
* the security related changes significantly complicate the
|
|
* recomputation just by themselves and mixing both cases together
|
|
* would be even worse, so we retain a separate non-secure-only
|
|
* version for CPUs which don't implement the security extension.
|
|
*/
|
|
if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
|
|
nvic_recompute_state_secure(s);
|
|
return;
|
|
}
|
|
|
|
for (i = 1; i < s->num_irq; i++) {
|
|
VecInfo *vec = &s->vectors[i];
|
|
|
|
if (vec->enabled && vec->pending && vec->prio < pend_prio) {
|
|
pend_prio = vec->prio;
|
|
pend_irq = i;
|
|
}
|
|
if (vec->active && vec->prio < active_prio) {
|
|
active_prio = vec->prio;
|
|
}
|
|
}
|
|
|
|
if (active_prio > 0) {
|
|
active_prio &= nvic_gprio_mask(s, false);
|
|
}
|
|
|
|
if (pend_prio > 0) {
|
|
pend_prio &= nvic_gprio_mask(s, false);
|
|
}
|
|
|
|
s->vectpending = pend_irq;
|
|
s->vectpending_prio = pend_prio;
|
|
s->exception_prio = active_prio;
|
|
|
|
trace_nvic_recompute_state(s->vectpending,
|
|
s->vectpending_prio,
|
|
s->exception_prio);
|
|
}
|
|
|
|
/* Return the current execution priority of the CPU
|
|
* (equivalent to the pseudocode ExecutionPriority function).
|
|
* This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
|
|
*/
|
|
static inline int nvic_exec_prio(NVICState *s)
|
|
{
|
|
CPUARMState *env = &s->cpu->env;
|
|
int running = NVIC_NOEXC_PRIO;
|
|
|
|
if (env->v7m.basepri[M_REG_NS] > 0) {
|
|
running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
|
|
}
|
|
|
|
if (env->v7m.basepri[M_REG_S] > 0) {
|
|
int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
|
|
if (running > basepri) {
|
|
running = basepri;
|
|
}
|
|
}
|
|
|
|
if (env->v7m.primask[M_REG_NS]) {
|
|
if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
|
|
if (running > NVIC_NS_PRIO_LIMIT) {
|
|
running = NVIC_NS_PRIO_LIMIT;
|
|
}
|
|
} else {
|
|
running = 0;
|
|
}
|
|
}
|
|
|
|
if (env->v7m.primask[M_REG_S]) {
|
|
running = 0;
|
|
}
|
|
|
|
if (env->v7m.faultmask[M_REG_NS]) {
|
|
if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
|
|
running = -1;
|
|
} else {
|
|
if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
|
|
if (running > NVIC_NS_PRIO_LIMIT) {
|
|
running = NVIC_NS_PRIO_LIMIT;
|
|
}
|
|
} else {
|
|
running = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (env->v7m.faultmask[M_REG_S]) {
|
|
running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
|
|
}
|
|
|
|
/* consider priority of active handler */
|
|
return MIN(running, s->exception_prio);
|
|
}
|
|
|
|
bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
|
|
{
|
|
/* Return true if the requested execution priority is negative
|
|
* for the specified security state, ie that security state
|
|
* has an active NMI or HardFault or has set its FAULTMASK.
|
|
* Note that this is not the same as whether the execution
|
|
* priority is actually negative (for instance AIRCR.PRIS may
|
|
* mean we don't allow FAULTMASK_NS to actually make the execution
|
|
* priority negative). Compare pseudocode IsReqExcPriNeg().
|
|
*/
|
|
NVICState *s = opaque;
|
|
|
|
if (s->cpu->env.v7m.faultmask[secure]) {
|
|
return true;
|
|
}
|
|
|
|
if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
|
|
s->vectors[ARMV7M_EXCP_HARD].active) {
|
|
return true;
|
|
}
|
|
|
|
if (s->vectors[ARMV7M_EXCP_NMI].active &&
|
|
exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool armv7m_nvic_can_take_pending_exception(void *opaque)
|
|
{
|
|
NVICState *s = opaque;
|
|
|
|
return nvic_exec_prio(s) > nvic_pending_prio(s);
|
|
}
|
|
|
|
int armv7m_nvic_raw_execution_priority(void *opaque)
|
|
{
|
|
NVICState *s = opaque;
|
|
|
|
return s->exception_prio;
|
|
}
|
|
|
|
/* caller must call nvic_irq_update() after this.
|
|
* secure indicates the bank to use for banked exceptions (we assert if
|
|
* we are passed secure=true for a non-banked exception).
|
|
*/
|
|
static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
|
|
{
|
|
assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
|
|
assert(irq < s->num_irq);
|
|
|
|
prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
|
|
|
|
if (secure) {
|
|
assert(exc_is_banked(irq));
|
|
s->sec_vectors[irq].prio = prio;
|
|
} else {
|
|
s->vectors[irq].prio = prio;
|
|
}
|
|
|
|
trace_nvic_set_prio(irq, secure, prio);
|
|
}
|
|
|
|
/* Return the current raw priority register value.
|
|
* secure indicates the bank to use for banked exceptions (we assert if
|
|
* we are passed secure=true for a non-banked exception).
|
|
*/
|
|
static int get_prio(NVICState *s, unsigned irq, bool secure)
|
|
{
|
|
assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
|
|
assert(irq < s->num_irq);
|
|
|
|
if (secure) {
|
|
assert(exc_is_banked(irq));
|
|
return s->sec_vectors[irq].prio;
|
|
} else {
|
|
return s->vectors[irq].prio;
|
|
}
|
|
}
|
|
|
|
/* Recompute state and assert irq line accordingly.
|
|
* Must be called after changes to:
|
|
* vec->active, vec->enabled, vec->pending or vec->prio for any vector
|
|
* prigroup
|
|
*/
|
|
static void nvic_irq_update(NVICState *s)
|
|
{
|
|
int lvl;
|
|
int pend_prio;
|
|
|
|
nvic_recompute_state(s);
|
|
pend_prio = nvic_pending_prio(s);
|
|
|
|
/* Raise NVIC output if this IRQ would be taken, except that we
|
|
* ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
|
|
* will be checked for in arm_v7m_cpu_exec_interrupt()); changes
|
|
* to those CPU registers don't cause us to recalculate the NVIC
|
|
* pending info.
|
|
*/
|
|
lvl = (pend_prio < s->exception_prio);
|
|
trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
|
|
qemu_set_irq(s->excpout, lvl);
|
|
}
|
|
|
|
/**
|
|
* armv7m_nvic_clear_pending: mark the specified exception as not pending
|
|
* @opaque: the NVIC
|
|
* @irq: the exception number to mark as not pending
|
|
* @secure: false for non-banked exceptions or for the nonsecure
|
|
* version of a banked exception, true for the secure version of a banked
|
|
* exception.
|
|
*
|
|
* Marks the specified exception as not pending. Note that we will assert()
|
|
* if @secure is true and @irq does not specify one of the fixed set
|
|
* of architecturally banked exceptions.
|
|
*/
|
|
static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
|
|
{
|
|
NVICState *s = (NVICState *)opaque;
|
|
VecInfo *vec;
|
|
|
|
assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
|
|
|
|
if (secure) {
|
|
assert(exc_is_banked(irq));
|
|
vec = &s->sec_vectors[irq];
|
|
} else {
|
|
vec = &s->vectors[irq];
|
|
}
|
|
trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
|
|
if (vec->pending) {
|
|
vec->pending = 0;
|
|
nvic_irq_update(s);
|
|
}
|
|
}
|
|
|
|
static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
|
|
bool derived)
|
|
{
|
|
/* Pend an exception, including possibly escalating it to HardFault.
|
|
*
|
|
* This function handles both "normal" pending of interrupts and
|
|
* exceptions, and also derived exceptions (ones which occur as
|
|
* a result of trying to take some other exception).
|
|
*
|
|
* If derived == true, the caller guarantees that we are part way through
|
|
* trying to take an exception (but have not yet called
|
|
* armv7m_nvic_acknowledge_irq() to make it active), and so:
|
|
* - s->vectpending is the "original exception" we were trying to take
|
|
* - irq is the "derived exception"
|
|
* - nvic_exec_prio(s) gives the priority before exception entry
|
|
* Here we handle the prioritization logic which the pseudocode puts
|
|
* in the DerivedLateArrival() function.
|
|
*/
|
|
|
|
NVICState *s = (NVICState *)opaque;
|
|
bool banked = exc_is_banked(irq);
|
|
VecInfo *vec;
|
|
bool targets_secure;
|
|
|
|
assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
|
|
assert(!secure || banked);
|
|
|
|
vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
|
|
|
|
targets_secure = banked ? secure : exc_targets_secure(s, irq);
|
|
|
|
trace_nvic_set_pending(irq, secure, targets_secure,
|
|
derived, vec->enabled, vec->prio);
|
|
|
|
if (derived) {
|
|
/* Derived exceptions are always synchronous. */
|
|
assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
|
|
|
|
if (irq == ARMV7M_EXCP_DEBUG &&
|
|
exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
|
|
/* DebugMonitorFault, but its priority is lower than the
|
|
* preempted exception priority: just ignore it.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
|
|
/* If this is a terminal exception (one which means we cannot
|
|
* take the original exception, like a failure to read its
|
|
* vector table entry), then we must take the derived exception.
|
|
* If the derived exception can't take priority over the
|
|
* original exception, then we go into Lockup.
|
|
*
|
|
* For QEMU, we rely on the fact that a derived exception is
|
|
* terminal if and only if it's reported to us as HardFault,
|
|
* which saves having to have an extra argument is_terminal
|
|
* that we'd only use in one place.
|
|
*/
|
|
cpu_abort(&s->cpu->parent_obj,
|
|
"Lockup: can't take terminal derived exception "
|
|
"(original exception priority %d)\n",
|
|
s->vectpending_prio);
|
|
}
|
|
/* We now continue with the same code as for a normal pending
|
|
* exception, which will cause us to pend the derived exception.
|
|
* We'll then take either the original or the derived exception
|
|
* based on which is higher priority by the usual mechanism
|
|
* for selecting the highest priority pending interrupt.
|
|
*/
|
|
}
|
|
|
|
if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
|
|
/* If a synchronous exception is pending then it may be
|
|
* escalated to HardFault if:
|
|
* * it is equal or lower priority to current execution
|
|
* * it is disabled
|
|
* (ie we need to take it immediately but we can't do so).
|
|
* Asynchronous exceptions (and interrupts) simply remain pending.
|
|
*
|
|
* For QEMU, we don't have any imprecise (asynchronous) faults,
|
|
* so we can assume that PREFETCH_ABORT and DATA_ABORT are always
|
|
* synchronous.
|
|
* Debug exceptions are awkward because only Debug exceptions
|
|
* resulting from the BKPT instruction should be escalated,
|
|
* but we don't currently implement any Debug exceptions other
|
|
* than those that result from BKPT, so we treat all debug exceptions
|
|
* as needing escalation.
|
|
*
|
|
* This all means we can identify whether to escalate based only on
|
|
* the exception number and don't (yet) need the caller to explicitly
|
|
* tell us whether this exception is synchronous or not.
|
|
*/
|
|
int running = nvic_exec_prio(s);
|
|
bool escalate = false;
|
|
|
|
if (exc_group_prio(s, vec->prio, secure) >= running) {
|
|
trace_nvic_escalate_prio(irq, vec->prio, running);
|
|
escalate = true;
|
|
} else if (!vec->enabled) {
|
|
trace_nvic_escalate_disabled(irq);
|
|
escalate = true;
|
|
}
|
|
|
|
if (escalate) {
|
|
|
|
/* We need to escalate this exception to a synchronous HardFault.
|
|
* If BFHFNMINS is set then we escalate to the banked HF for
|
|
* the target security state of the original exception; otherwise
|
|
* we take a Secure HardFault.
|
|
*/
|
|
irq = ARMV7M_EXCP_HARD;
|
|
if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
|
|
(targets_secure ||
|
|
!(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
|
|
vec = &s->sec_vectors[irq];
|
|
} else {
|
|
vec = &s->vectors[irq];
|
|
}
|
|
if (running <= vec->prio) {
|
|
/* We want to escalate to HardFault but we can't take the
|
|
* synchronous HardFault at this point either. This is a
|
|
* Lockup condition due to a guest bug. We don't model
|
|
* Lockup, so report via cpu_abort() instead.
|
|
*/
|
|
cpu_abort(&s->cpu->parent_obj,
|
|
"Lockup: can't escalate %d to HardFault "
|
|
"(current priority %d)\n", irq, running);
|
|
}
|
|
|
|
/* HF may be banked but there is only one shared HFSR */
|
|
s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
|
|
}
|
|
}
|
|
|
|
if (!vec->pending) {
|
|
vec->pending = 1;
|
|
nvic_irq_update(s);
|
|
}
|
|
}
|
|
|
|
void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
|
|
{
|
|
do_armv7m_nvic_set_pending(opaque, irq, secure, false);
|
|
}
|
|
|
|
void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
|
|
{
|
|
do_armv7m_nvic_set_pending(opaque, irq, secure, true);
|
|
}
|
|
|
|
void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure)
|
|
{
|
|
/*
|
|
* Pend an exception during lazy FP stacking. This differs
|
|
* from the usual exception pending because the logic for
|
|
* whether we should escalate depends on the saved context
|
|
* in the FPCCR register, not on the current state of the CPU/NVIC.
|
|
*/
|
|
NVICState *s = (NVICState *)opaque;
|
|
bool banked = exc_is_banked(irq);
|
|
VecInfo *vec;
|
|
bool targets_secure;
|
|
bool escalate = false;
|
|
/*
|
|
* We will only look at bits in fpccr if this is a banked exception
|
|
* (in which case 'secure' tells us whether it is the S or NS version).
|
|
* All the bits for the non-banked exceptions are in fpccr_s.
|
|
*/
|
|
uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
|
|
uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
|
|
|
|
assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
|
|
assert(!secure || banked);
|
|
|
|
vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
|
|
|
|
targets_secure = banked ? secure : exc_targets_secure(s, irq);
|
|
|
|
switch (irq) {
|
|
case ARMV7M_EXCP_DEBUG:
|
|
if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
|
|
/* Ignore DebugMonitor exception */
|
|
return;
|
|
}
|
|
break;
|
|
case ARMV7M_EXCP_MEM:
|
|
escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
|
|
break;
|
|
case ARMV7M_EXCP_USAGE:
|
|
escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
|
|
break;
|
|
case ARMV7M_EXCP_BUS:
|
|
escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
|
|
break;
|
|
case ARMV7M_EXCP_SECURE:
|
|
escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (escalate) {
|
|
/*
|
|
* Escalate to HardFault: faults that initially targeted Secure
|
|
* continue to do so, even if HF normally targets NonSecure.
|
|
*/
|
|
irq = ARMV7M_EXCP_HARD;
|
|
if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
|
|
(targets_secure ||
|
|
!(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
|
|
vec = &s->sec_vectors[irq];
|
|
} else {
|
|
vec = &s->vectors[irq];
|
|
}
|
|
}
|
|
|
|
if (!vec->enabled ||
|
|
nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
|
|
if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
|
|
/*
|
|
* We want to escalate to HardFault but the context the
|
|
* FP state belongs to prevents the exception pre-empting.
|
|
*/
|
|
cpu_abort(&s->cpu->parent_obj,
|
|
"Lockup: can't escalate to HardFault during "
|
|
"lazy FP register stacking\n");
|
|
}
|
|
}
|
|
|
|
if (escalate) {
|
|
s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
|
|
}
|
|
if (!vec->pending) {
|
|
vec->pending = 1;
|
|
/*
|
|
* We do not call nvic_irq_update(), because we know our caller
|
|
* is going to handle causing us to take the exception by
|
|
* raising EXCP_LAZYFP, so raising the IRQ line would be
|
|
* pointless extra work. We just need to recompute the
|
|
* priorities so that armv7m_nvic_can_take_pending_exception()
|
|
* returns the right answer.
|
|
*/
|
|
nvic_recompute_state(s);
|
|
}
|
|
}
|
|
|
|
/* Make pending IRQ active. */
|
|
void armv7m_nvic_acknowledge_irq(void *opaque)
|
|
{
|
|
NVICState *s = (NVICState *)opaque;
|
|
CPUARMState *env = &s->cpu->env;
|
|
const int pending = s->vectpending;
|
|
const int running = nvic_exec_prio(s);
|
|
VecInfo *vec;
|
|
|
|
assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
|
|
|
|
if (s->vectpending_is_s_banked) {
|
|
vec = &s->sec_vectors[pending];
|
|
} else {
|
|
vec = &s->vectors[pending];
|
|
}
|
|
|
|
assert(vec->enabled);
|
|
assert(vec->pending);
|
|
|
|
assert(s->vectpending_prio < running);
|
|
|
|
trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
|
|
|
|
vec->active = 1;
|
|
vec->pending = 0;
|
|
|
|
write_v7m_exception(env, s->vectpending);
|
|
|
|
nvic_irq_update(s);
|
|
}
|
|
|
|
void armv7m_nvic_get_pending_irq_info(void *opaque,
|
|
int *pirq, bool *ptargets_secure)
|
|
{
|
|
NVICState *s = (NVICState *)opaque;
|
|
const int pending = s->vectpending;
|
|
bool targets_secure;
|
|
|
|
assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
|
|
|
|
if (s->vectpending_is_s_banked) {
|
|
targets_secure = true;
|
|
} else {
|
|
targets_secure = !exc_is_banked(pending) &&
|
|
exc_targets_secure(s, pending);
|
|
}
|
|
|
|
trace_nvic_get_pending_irq_info(pending, targets_secure);
|
|
|
|
*ptargets_secure = targets_secure;
|
|
*pirq = pending;
|
|
}
|
|
|
|
int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
|
|
{
|
|
NVICState *s = (NVICState *)opaque;
|
|
VecInfo *vec = NULL;
|
|
int ret;
|
|
|
|
assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
|
|
|
|
/*
|
|
* For negative priorities, v8M will forcibly deactivate the appropriate
|
|
* NMI or HardFault regardless of what interrupt we're being asked to
|
|
* deactivate (compare the DeActivate() pseudocode). This is a guard
|
|
* against software returning from NMI or HardFault with a corrupted
|
|
* IPSR and leaving the CPU in a negative-priority state.
|
|
* v7M does not do this, but simply deactivates the requested interrupt.
|
|
*/
|
|
if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
|
|
switch (armv7m_nvic_raw_execution_priority(s)) {
|
|
case -1:
|
|
if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
|
|
vec = &s->vectors[ARMV7M_EXCP_HARD];
|
|
} else {
|
|
vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
|
|
}
|
|
break;
|
|
case -2:
|
|
vec = &s->vectors[ARMV7M_EXCP_NMI];
|
|
break;
|
|
case -3:
|
|
vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!vec) {
|
|
if (secure && exc_is_banked(irq)) {
|
|
vec = &s->sec_vectors[irq];
|
|
} else {
|
|
vec = &s->vectors[irq];
|
|
}
|
|
}
|
|
|
|
trace_nvic_complete_irq(irq, secure);
|
|
|
|
if (!vec->active) {
|
|
/* Tell the caller this was an illegal exception return */
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* If this is a configurable exception and it is currently
|
|
* targeting the opposite security state from the one we're trying
|
|
* to complete it for, this counts as an illegal exception return.
|
|
* We still need to deactivate whatever vector the logic above has
|
|
* selected, though, as it might not be the same as the one for the
|
|
* requested exception number.
|
|
*/
|
|
if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
|
|
ret = -1;
|
|
} else {
|
|
ret = nvic_rettobase(s);
|
|
}
|
|
|
|
vec->active = 0;
|
|
if (vec->level) {
|
|
/* Re-pend the exception if it's still held high; only
|
|
* happens for extenal IRQs
|
|
*/
|
|
assert(irq >= NVIC_FIRST_IRQ);
|
|
vec->pending = 1;
|
|
}
|
|
|
|
nvic_irq_update(s);
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
|
|
{
|
|
/*
|
|
* Return whether an exception is "ready", i.e. it is enabled and is
|
|
* configured at a priority which would allow it to interrupt the
|
|
* current execution priority.
|
|
*
|
|
* irq and secure have the same semantics as for armv7m_nvic_set_pending():
|
|
* for non-banked exceptions secure is always false; for banked exceptions
|
|
* it indicates which of the exceptions is required.
|
|
*/
|
|
NVICState *s = (NVICState *)opaque;
|
|
bool banked = exc_is_banked(irq);
|
|
VecInfo *vec;
|
|
int running = nvic_exec_prio(s);
|
|
|
|
assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
|
|
assert(!secure || banked);
|
|
|
|
/*
|
|
* HardFault is an odd special case: we always check against -1,
|
|
* even if we're secure and HardFault has priority -3; we never
|
|
* need to check for enabled state.
|
|
*/
|
|
if (irq == ARMV7M_EXCP_HARD) {
|
|
return running > -1;
|
|
}
|
|
|
|
vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
|
|
|
|
return vec->enabled &&
|
|
exc_group_prio(s, vec->prio, secure) < running;
|
|
}
|
|
|
|
/* callback when external interrupt line is changed */
|
|
static void set_irq_level(void *opaque, int n, int level)
|
|
{
|
|
NVICState *s = opaque;
|
|
VecInfo *vec;
|
|
|
|
n += NVIC_FIRST_IRQ;
|
|
|
|
assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
|
|
|
|
trace_nvic_set_irq_level(n, level);
|
|
|
|
/* The pending status of an external interrupt is
|
|
* latched on rising edge and exception handler return.
|
|
*
|
|
* Pulsing the IRQ will always run the handler
|
|
* once, and the handler will re-run until the
|
|
* level is low when the handler completes.
|
|
*/
|
|
vec = &s->vectors[n];
|
|
if (level != vec->level) {
|
|
vec->level = level;
|
|
if (level) {
|
|
armv7m_nvic_set_pending(s, n, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* callback when external NMI line is changed */
|
|
static void nvic_nmi_trigger(void *opaque, int n, int level)
|
|
{
|
|
NVICState *s = opaque;
|
|
|
|
trace_nvic_set_nmi_level(level);
|
|
|
|
/*
|
|
* The architecture doesn't specify whether NMI should share
|
|
* the normal-interrupt behaviour of being resampled on
|
|
* exception handler return. We choose not to, so just
|
|
* set NMI pending here and don't track the current level.
|
|
*/
|
|
if (level) {
|
|
armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
|
|
}
|
|
}
|
|
|
|
static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
|
|
{
|
|
ARMCPU *cpu = s->cpu;
|
|
uint32_t val;
|
|
|
|
switch (offset) {
|
|
case 4: /* Interrupt Control Type. */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
|
|
goto bad_offset;
|
|
}
|
|
return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
|
|
case 0xc: /* CPPWR */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
/* We make the IMPDEF choice that nothing can ever go into a
|
|
* non-retentive power state, which allows us to RAZ/WI this.
|
|
*/
|
|
return 0;
|
|
case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
|
|
{
|
|
int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
|
|
int i;
|
|
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
if (!attrs.secure) {
|
|
return 0;
|
|
}
|
|
val = 0;
|
|
for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
|
|
if (s->itns[startvec + i]) {
|
|
val |= (1 << i);
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
case 0xd00: /* CPUID Base. */
|
|
return cpu->midr;
|
|
case 0xd04: /* Interrupt Control State (ICSR) */
|
|
/* VECTACTIVE */
|
|
val = cpu->env.v7m.exception;
|
|
/* VECTPENDING */
|
|
val |= (s->vectpending & 0xff) << 12;
|
|
/* ISRPENDING - set if any external IRQ is pending */
|
|
if (nvic_isrpending(s)) {
|
|
val |= (1 << 22);
|
|
}
|
|
/* RETTOBASE - set if only one handler is active */
|
|
if (nvic_rettobase(s)) {
|
|
val |= (1 << 11);
|
|
}
|
|
if (attrs.secure) {
|
|
/* PENDSTSET */
|
|
if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
|
|
val |= (1 << 26);
|
|
}
|
|
/* PENDSVSET */
|
|
if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
|
|
val |= (1 << 28);
|
|
}
|
|
} else {
|
|
/* PENDSTSET */
|
|
if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
|
|
val |= (1 << 26);
|
|
}
|
|
/* PENDSVSET */
|
|
if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
|
|
val |= (1 << 28);
|
|
}
|
|
}
|
|
/* NMIPENDSET */
|
|
if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
|
|
&& s->vectors[ARMV7M_EXCP_NMI].pending) {
|
|
val |= (1 << 31);
|
|
}
|
|
/* ISRPREEMPT: RES0 when halting debug not implemented */
|
|
/* STTNS: RES0 for the Main Extension */
|
|
return val;
|
|
case 0xd08: /* Vector Table Offset. */
|
|
return cpu->env.v7m.vecbase[attrs.secure];
|
|
case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
|
|
val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
|
|
if (attrs.secure) {
|
|
/* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
|
|
val |= cpu->env.v7m.aircr;
|
|
} else {
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
/* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
|
|
* security isn't supported then BFHFNMINS is RAO (and
|
|
* the bit in env.v7m.aircr is always set).
|
|
*/
|
|
val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
|
|
}
|
|
}
|
|
return val;
|
|
case 0xd10: /* System Control. */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
|
|
goto bad_offset;
|
|
}
|
|
return cpu->env.v7m.scr[attrs.secure];
|
|
case 0xd14: /* Configuration Control. */
|
|
/* The BFHFNMIGN bit is the only non-banked bit; we
|
|
* keep it in the non-secure copy of the register.
|
|
*/
|
|
val = cpu->env.v7m.ccr[attrs.secure];
|
|
val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
|
|
return val;
|
|
case 0xd24: /* System Handler Control and State (SHCSR) */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
|
|
goto bad_offset;
|
|
}
|
|
val = 0;
|
|
if (attrs.secure) {
|
|
if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
|
|
val |= (1 << 0);
|
|
}
|
|
if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
|
|
val |= (1 << 2);
|
|
}
|
|
if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
|
|
val |= (1 << 3);
|
|
}
|
|
if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
|
|
val |= (1 << 7);
|
|
}
|
|
if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
|
|
val |= (1 << 10);
|
|
}
|
|
if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
|
|
val |= (1 << 11);
|
|
}
|
|
if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
|
|
val |= (1 << 12);
|
|
}
|
|
if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
|
|
val |= (1 << 13);
|
|
}
|
|
if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
|
|
val |= (1 << 15);
|
|
}
|
|
if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
|
|
val |= (1 << 16);
|
|
}
|
|
if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
|
|
val |= (1 << 18);
|
|
}
|
|
if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
|
|
val |= (1 << 21);
|
|
}
|
|
/* SecureFault is not banked but is always RAZ/WI to NS */
|
|
if (s->vectors[ARMV7M_EXCP_SECURE].active) {
|
|
val |= (1 << 4);
|
|
}
|
|
if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
|
|
val |= (1 << 19);
|
|
}
|
|
if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
|
|
val |= (1 << 20);
|
|
}
|
|
} else {
|
|
if (s->vectors[ARMV7M_EXCP_MEM].active) {
|
|
val |= (1 << 0);
|
|
}
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
/* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
|
|
if (s->vectors[ARMV7M_EXCP_HARD].active) {
|
|
val |= (1 << 2);
|
|
}
|
|
if (s->vectors[ARMV7M_EXCP_HARD].pending) {
|
|
val |= (1 << 21);
|
|
}
|
|
}
|
|
if (s->vectors[ARMV7M_EXCP_USAGE].active) {
|
|
val |= (1 << 3);
|
|
}
|
|
if (s->vectors[ARMV7M_EXCP_SVC].active) {
|
|
val |= (1 << 7);
|
|
}
|
|
if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
|
|
val |= (1 << 10);
|
|
}
|
|
if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
|
|
val |= (1 << 11);
|
|
}
|
|
if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
|
|
val |= (1 << 12);
|
|
}
|
|
if (s->vectors[ARMV7M_EXCP_MEM].pending) {
|
|
val |= (1 << 13);
|
|
}
|
|
if (s->vectors[ARMV7M_EXCP_SVC].pending) {
|
|
val |= (1 << 15);
|
|
}
|
|
if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
|
|
val |= (1 << 16);
|
|
}
|
|
if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
|
|
val |= (1 << 18);
|
|
}
|
|
}
|
|
if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
|
|
if (s->vectors[ARMV7M_EXCP_BUS].active) {
|
|
val |= (1 << 1);
|
|
}
|
|
if (s->vectors[ARMV7M_EXCP_BUS].pending) {
|
|
val |= (1 << 14);
|
|
}
|
|
if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
|
|
val |= (1 << 17);
|
|
}
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
|
|
s->vectors[ARMV7M_EXCP_NMI].active) {
|
|
/* NMIACT is not present in v7M */
|
|
val |= (1 << 5);
|
|
}
|
|
}
|
|
|
|
/* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
|
|
if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
|
|
val |= (1 << 8);
|
|
}
|
|
return val;
|
|
case 0xd2c: /* Hard Fault Status. */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
|
|
goto bad_offset;
|
|
}
|
|
return cpu->env.v7m.hfsr;
|
|
case 0xd30: /* Debug Fault Status. */
|
|
return cpu->env.v7m.dfsr;
|
|
case 0xd34: /* MMFAR MemManage Fault Address */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
|
|
goto bad_offset;
|
|
}
|
|
return cpu->env.v7m.mmfar[attrs.secure];
|
|
case 0xd38: /* Bus Fault Address. */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
|
|
goto bad_offset;
|
|
}
|
|
if (!attrs.secure &&
|
|
!(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
|
|
return 0;
|
|
}
|
|
return cpu->env.v7m.bfar;
|
|
case 0xd3c: /* Aux Fault Status. */
|
|
/* TODO: Implement fault status registers. */
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"Aux Fault status registers unimplemented\n");
|
|
return 0;
|
|
case 0xd40: /* PFR0. */
|
|
return cpu->id_pfr0;
|
|
case 0xd44: /* PFR1. */
|
|
return cpu->id_pfr1;
|
|
case 0xd48: /* DFR0. */
|
|
return cpu->isar.id_dfr0;
|
|
case 0xd4c: /* AFR0. */
|
|
return cpu->id_afr0;
|
|
case 0xd50: /* MMFR0. */
|
|
return cpu->isar.id_mmfr0;
|
|
case 0xd54: /* MMFR1. */
|
|
return cpu->isar.id_mmfr1;
|
|
case 0xd58: /* MMFR2. */
|
|
return cpu->isar.id_mmfr2;
|
|
case 0xd5c: /* MMFR3. */
|
|
return cpu->isar.id_mmfr3;
|
|
case 0xd60: /* ISAR0. */
|
|
return cpu->isar.id_isar0;
|
|
case 0xd64: /* ISAR1. */
|
|
return cpu->isar.id_isar1;
|
|
case 0xd68: /* ISAR2. */
|
|
return cpu->isar.id_isar2;
|
|
case 0xd6c: /* ISAR3. */
|
|
return cpu->isar.id_isar3;
|
|
case 0xd70: /* ISAR4. */
|
|
return cpu->isar.id_isar4;
|
|
case 0xd74: /* ISAR5. */
|
|
return cpu->isar.id_isar5;
|
|
case 0xd78: /* CLIDR */
|
|
return cpu->clidr;
|
|
case 0xd7c: /* CTR */
|
|
return cpu->ctr;
|
|
case 0xd80: /* CSSIDR */
|
|
{
|
|
int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
|
|
return cpu->ccsidr[idx];
|
|
}
|
|
case 0xd84: /* CSSELR */
|
|
return cpu->env.v7m.csselr[attrs.secure];
|
|
case 0xd88: /* CPACR */
|
|
if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
|
|
return 0;
|
|
}
|
|
return cpu->env.v7m.cpacr[attrs.secure];
|
|
case 0xd8c: /* NSACR */
|
|
if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) {
|
|
return 0;
|
|
}
|
|
return cpu->env.v7m.nsacr;
|
|
/* TODO: Implement debug registers. */
|
|
case 0xd90: /* MPU_TYPE */
|
|
/* Unified MPU; if the MPU is not present this value is zero */
|
|
return cpu->pmsav7_dregion << 8;
|
|
break;
|
|
case 0xd94: /* MPU_CTRL */
|
|
return cpu->env.v7m.mpu_ctrl[attrs.secure];
|
|
case 0xd98: /* MPU_RNR */
|
|
return cpu->env.pmsav7.rnr[attrs.secure];
|
|
case 0xd9c: /* MPU_RBAR */
|
|
case 0xda4: /* MPU_RBAR_A1 */
|
|
case 0xdac: /* MPU_RBAR_A2 */
|
|
case 0xdb4: /* MPU_RBAR_A3 */
|
|
{
|
|
int region = cpu->env.pmsav7.rnr[attrs.secure];
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
/* PMSAv8M handling of the aliases is different from v7M:
|
|
* aliases A1, A2, A3 override the low two bits of the region
|
|
* number in MPU_RNR, and there is no 'region' field in the
|
|
* RBAR register.
|
|
*/
|
|
int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
|
|
if (aliasno) {
|
|
region = deposit32(region, 0, 2, aliasno);
|
|
}
|
|
if (region >= cpu->pmsav7_dregion) {
|
|
return 0;
|
|
}
|
|
return cpu->env.pmsav8.rbar[attrs.secure][region];
|
|
}
|
|
|
|
if (region >= cpu->pmsav7_dregion) {
|
|
return 0;
|
|
}
|
|
return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
|
|
}
|
|
case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
|
|
case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
|
|
case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
|
|
case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
|
|
{
|
|
int region = cpu->env.pmsav7.rnr[attrs.secure];
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
/* PMSAv8M handling of the aliases is different from v7M:
|
|
* aliases A1, A2, A3 override the low two bits of the region
|
|
* number in MPU_RNR.
|
|
*/
|
|
int aliasno = (offset - 0xda0) / 8; /* 0..3 */
|
|
if (aliasno) {
|
|
region = deposit32(region, 0, 2, aliasno);
|
|
}
|
|
if (region >= cpu->pmsav7_dregion) {
|
|
return 0;
|
|
}
|
|
return cpu->env.pmsav8.rlar[attrs.secure][region];
|
|
}
|
|
|
|
if (region >= cpu->pmsav7_dregion) {
|
|
return 0;
|
|
}
|
|
return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
|
|
(cpu->env.pmsav7.drsr[region] & 0xffff);
|
|
}
|
|
case 0xdc0: /* MPU_MAIR0 */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
return cpu->env.pmsav8.mair0[attrs.secure];
|
|
case 0xdc4: /* MPU_MAIR1 */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
return cpu->env.pmsav8.mair1[attrs.secure];
|
|
case 0xdd0: /* SAU_CTRL */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
if (!attrs.secure) {
|
|
return 0;
|
|
}
|
|
return cpu->env.sau.ctrl;
|
|
case 0xdd4: /* SAU_TYPE */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
if (!attrs.secure) {
|
|
return 0;
|
|
}
|
|
return cpu->sau_sregion;
|
|
case 0xdd8: /* SAU_RNR */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
if (!attrs.secure) {
|
|
return 0;
|
|
}
|
|
return cpu->env.sau.rnr;
|
|
case 0xddc: /* SAU_RBAR */
|
|
{
|
|
int region = cpu->env.sau.rnr;
|
|
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
if (!attrs.secure) {
|
|
return 0;
|
|
}
|
|
if (region >= cpu->sau_sregion) {
|
|
return 0;
|
|
}
|
|
return cpu->env.sau.rbar[region];
|
|
}
|
|
case 0xde0: /* SAU_RLAR */
|
|
{
|
|
int region = cpu->env.sau.rnr;
|
|
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
if (!attrs.secure) {
|
|
return 0;
|
|
}
|
|
if (region >= cpu->sau_sregion) {
|
|
return 0;
|
|
}
|
|
return cpu->env.sau.rlar[region];
|
|
}
|
|
case 0xde4: /* SFSR */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
if (!attrs.secure) {
|
|
return 0;
|
|
}
|
|
return cpu->env.v7m.sfsr;
|
|
case 0xde8: /* SFAR */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
if (!attrs.secure) {
|
|
return 0;
|
|
}
|
|
return cpu->env.v7m.sfar;
|
|
case 0xf34: /* FPCCR */
|
|
if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
|
|
return 0;
|
|
}
|
|
if (attrs.secure) {
|
|
return cpu->env.v7m.fpccr[M_REG_S];
|
|
} else {
|
|
/*
|
|
* NS can read LSPEN, CLRONRET and MONRDY. It can read
|
|
* BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
|
|
* other non-banked bits RAZ.
|
|
* TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
|
|
*/
|
|
uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
|
|
uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
|
|
R_V7M_FPCCR_CLRONRET_MASK |
|
|
R_V7M_FPCCR_MONRDY_MASK;
|
|
|
|
if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
|
|
mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
|
|
}
|
|
|
|
value &= mask;
|
|
|
|
value |= cpu->env.v7m.fpccr[M_REG_NS];
|
|
return value;
|
|
}
|
|
case 0xf38: /* FPCAR */
|
|
if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
|
|
return 0;
|
|
}
|
|
return cpu->env.v7m.fpcar[attrs.secure];
|
|
case 0xf3c: /* FPDSCR */
|
|
if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
|
|
return 0;
|
|
}
|
|
return cpu->env.v7m.fpdscr[attrs.secure];
|
|
case 0xf40: /* MVFR0 */
|
|
return cpu->isar.mvfr0;
|
|
case 0xf44: /* MVFR1 */
|
|
return cpu->isar.mvfr1;
|
|
case 0xf48: /* MVFR2 */
|
|
return cpu->isar.mvfr2;
|
|
default:
|
|
bad_offset:
|
|
qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
|
|
MemTxAttrs attrs)
|
|
{
|
|
ARMCPU *cpu = s->cpu;
|
|
|
|
switch (offset) {
|
|
case 0xc: /* CPPWR */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
/* Make the IMPDEF choice to RAZ/WI this. */
|
|
break;
|
|
case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
|
|
{
|
|
int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
|
|
int i;
|
|
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
if (!attrs.secure) {
|
|
break;
|
|
}
|
|
for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
|
|
s->itns[startvec + i] = (value >> i) & 1;
|
|
}
|
|
nvic_irq_update(s);
|
|
break;
|
|
}
|
|
case 0xd04: /* Interrupt Control State (ICSR) */
|
|
if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
|
|
if (value & (1 << 31)) {
|
|
armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
|
|
} else if (value & (1 << 30) &&
|
|
arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
/* PENDNMICLR didn't exist in v7M */
|
|
armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
|
|
}
|
|
}
|
|
if (value & (1 << 28)) {
|
|
armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
|
|
} else if (value & (1 << 27)) {
|
|
armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
|
|
}
|
|
if (value & (1 << 26)) {
|
|
armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
|
|
} else if (value & (1 << 25)) {
|
|
armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
|
|
}
|
|
break;
|
|
case 0xd08: /* Vector Table Offset. */
|
|
cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
|
|
break;
|
|
case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
|
|
if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
|
|
if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
|
|
if (attrs.secure ||
|
|
!(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
|
|
signal_sysresetreq(s);
|
|
}
|
|
}
|
|
if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"Setting VECTCLRACTIVE when not in DEBUG mode "
|
|
"is UNPREDICTABLE\n");
|
|
}
|
|
if (value & R_V7M_AIRCR_VECTRESET_MASK) {
|
|
/* NB: this bit is RES0 in v8M */
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"Setting VECTRESET when not in DEBUG mode "
|
|
"is UNPREDICTABLE\n");
|
|
}
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
|
|
s->prigroup[attrs.secure] =
|
|
extract32(value,
|
|
R_V7M_AIRCR_PRIGROUP_SHIFT,
|
|
R_V7M_AIRCR_PRIGROUP_LENGTH);
|
|
}
|
|
if (attrs.secure) {
|
|
/* These bits are only writable by secure */
|
|
cpu->env.v7m.aircr = value &
|
|
(R_V7M_AIRCR_SYSRESETREQS_MASK |
|
|
R_V7M_AIRCR_BFHFNMINS_MASK |
|
|
R_V7M_AIRCR_PRIS_MASK);
|
|
/* BFHFNMINS changes the priority of Secure HardFault, and
|
|
* allows a pending Non-secure HardFault to preempt (which
|
|
* we implement by marking it enabled).
|
|
*/
|
|
if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
|
|
s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
|
|
s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
|
|
} else {
|
|
s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
|
|
s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
|
|
}
|
|
}
|
|
nvic_irq_update(s);
|
|
}
|
|
break;
|
|
case 0xd10: /* System Control. */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
|
|
goto bad_offset;
|
|
}
|
|
/* We don't implement deep-sleep so these bits are RAZ/WI.
|
|
* The other bits in the register are banked.
|
|
* QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
|
|
* is architecturally permitted.
|
|
*/
|
|
value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
|
|
cpu->env.v7m.scr[attrs.secure] = value;
|
|
break;
|
|
case 0xd14: /* Configuration Control. */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
|
|
goto bad_offset;
|
|
}
|
|
|
|
/* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
|
|
value &= (R_V7M_CCR_STKALIGN_MASK |
|
|
R_V7M_CCR_BFHFNMIGN_MASK |
|
|
R_V7M_CCR_DIV_0_TRP_MASK |
|
|
R_V7M_CCR_UNALIGN_TRP_MASK |
|
|
R_V7M_CCR_USERSETMPEND_MASK |
|
|
R_V7M_CCR_NONBASETHRDENA_MASK);
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
/* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
|
|
value |= R_V7M_CCR_NONBASETHRDENA_MASK
|
|
| R_V7M_CCR_STKALIGN_MASK;
|
|
}
|
|
if (attrs.secure) {
|
|
/* the BFHFNMIGN bit is not banked; keep that in the NS copy */
|
|
cpu->env.v7m.ccr[M_REG_NS] =
|
|
(cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
|
|
| (value & R_V7M_CCR_BFHFNMIGN_MASK);
|
|
value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
|
|
}
|
|
|
|
cpu->env.v7m.ccr[attrs.secure] = value;
|
|
break;
|
|
case 0xd24: /* System Handler Control and State (SHCSR) */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
|
|
goto bad_offset;
|
|
}
|
|
if (attrs.secure) {
|
|
s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
|
|
/* Secure HardFault active bit cannot be written */
|
|
s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
|
|
s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
|
|
s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
|
|
(value & (1 << 10)) != 0;
|
|
s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
|
|
(value & (1 << 11)) != 0;
|
|
s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
|
|
(value & (1 << 12)) != 0;
|
|
s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
|
|
s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
|
|
s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
|
|
s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
|
|
s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
|
|
(value & (1 << 18)) != 0;
|
|
s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
|
|
/* SecureFault not banked, but RAZ/WI to NS */
|
|
s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
|
|
s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
|
|
s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
|
|
} else {
|
|
s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
/* HARDFAULTPENDED is not present in v7M */
|
|
s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
|
|
}
|
|
s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
|
|
s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
|
|
s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
|
|
s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
|
|
s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
|
|
s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
|
|
s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
|
|
s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
|
|
s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
|
|
}
|
|
if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
|
|
s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
|
|
s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
|
|
s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
|
|
}
|
|
/* NMIACT can only be written if the write is of a zero, with
|
|
* BFHFNMINS 1, and by the CPU in secure state via the NS alias.
|
|
*/
|
|
if (!attrs.secure && cpu->env.v7m.secure &&
|
|
(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
|
|
(value & (1 << 5)) == 0) {
|
|
s->vectors[ARMV7M_EXCP_NMI].active = 0;
|
|
}
|
|
/* HARDFAULTACT can only be written if the write is of a zero
|
|
* to the non-secure HardFault state by the CPU in secure state.
|
|
* The only case where we can be targeting the non-secure HF state
|
|
* when in secure state is if this is a write via the NS alias
|
|
* and BFHFNMINS is 1.
|
|
*/
|
|
if (!attrs.secure && cpu->env.v7m.secure &&
|
|
(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
|
|
(value & (1 << 2)) == 0) {
|
|
s->vectors[ARMV7M_EXCP_HARD].active = 0;
|
|
}
|
|
|
|
/* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
|
|
s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
|
|
nvic_irq_update(s);
|
|
break;
|
|
case 0xd2c: /* Hard Fault Status. */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
|
|
goto bad_offset;
|
|
}
|
|
cpu->env.v7m.hfsr &= ~value; /* W1C */
|
|
break;
|
|
case 0xd30: /* Debug Fault Status. */
|
|
cpu->env.v7m.dfsr &= ~value; /* W1C */
|
|
break;
|
|
case 0xd34: /* Mem Manage Address. */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
|
|
goto bad_offset;
|
|
}
|
|
cpu->env.v7m.mmfar[attrs.secure] = value;
|
|
return;
|
|
case 0xd38: /* Bus Fault Address. */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
|
|
goto bad_offset;
|
|
}
|
|
if (!attrs.secure &&
|
|
!(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
|
|
return;
|
|
}
|
|
cpu->env.v7m.bfar = value;
|
|
return;
|
|
case 0xd3c: /* Aux Fault Status. */
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"NVIC: Aux fault status registers unimplemented\n");
|
|
break;
|
|
case 0xd84: /* CSSELR */
|
|
if (!arm_v7m_csselr_razwi(cpu)) {
|
|
cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
|
|
}
|
|
break;
|
|
case 0xd88: /* CPACR */
|
|
if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
|
|
/* We implement only the Floating Point extension's CP10/CP11 */
|
|
cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
|
|
}
|
|
break;
|
|
case 0xd8c: /* NSACR */
|
|
if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) {
|
|
/* We implement only the Floating Point extension's CP10/CP11 */
|
|
cpu->env.v7m.nsacr = value & (3 << 10);
|
|
}
|
|
break;
|
|
case 0xd90: /* MPU_TYPE */
|
|
return; /* RO */
|
|
case 0xd94: /* MPU_CTRL */
|
|
if ((value &
|
|
(R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
|
|
== R_V7M_MPU_CTRL_HFNMIENA_MASK) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
|
|
"UNPREDICTABLE\n");
|
|
}
|
|
cpu->env.v7m.mpu_ctrl[attrs.secure]
|
|
= value & (R_V7M_MPU_CTRL_ENABLE_MASK |
|
|
R_V7M_MPU_CTRL_HFNMIENA_MASK |
|
|
R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
|
|
tlb_flush(CPU(cpu));
|
|
break;
|
|
case 0xd98: /* MPU_RNR */
|
|
if (value >= cpu->pmsav7_dregion) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
|
|
PRIu32 "/%" PRIu32 "\n",
|
|
value, cpu->pmsav7_dregion);
|
|
} else {
|
|
cpu->env.pmsav7.rnr[attrs.secure] = value;
|
|
}
|
|
break;
|
|
case 0xd9c: /* MPU_RBAR */
|
|
case 0xda4: /* MPU_RBAR_A1 */
|
|
case 0xdac: /* MPU_RBAR_A2 */
|
|
case 0xdb4: /* MPU_RBAR_A3 */
|
|
{
|
|
int region;
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
/* PMSAv8M handling of the aliases is different from v7M:
|
|
* aliases A1, A2, A3 override the low two bits of the region
|
|
* number in MPU_RNR, and there is no 'region' field in the
|
|
* RBAR register.
|
|
*/
|
|
int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
|
|
|
|
region = cpu->env.pmsav7.rnr[attrs.secure];
|
|
if (aliasno) {
|
|
region = deposit32(region, 0, 2, aliasno);
|
|
}
|
|
if (region >= cpu->pmsav7_dregion) {
|
|
return;
|
|
}
|
|
cpu->env.pmsav8.rbar[attrs.secure][region] = value;
|
|
tlb_flush(CPU(cpu));
|
|
return;
|
|
}
|
|
|
|
if (value & (1 << 4)) {
|
|
/* VALID bit means use the region number specified in this
|
|
* value and also update MPU_RNR.REGION with that value.
|
|
*/
|
|
region = extract32(value, 0, 4);
|
|
if (region >= cpu->pmsav7_dregion) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"MPU region out of range %u/%" PRIu32 "\n",
|
|
region, cpu->pmsav7_dregion);
|
|
return;
|
|
}
|
|
cpu->env.pmsav7.rnr[attrs.secure] = region;
|
|
} else {
|
|
region = cpu->env.pmsav7.rnr[attrs.secure];
|
|
}
|
|
|
|
if (region >= cpu->pmsav7_dregion) {
|
|
return;
|
|
}
|
|
|
|
cpu->env.pmsav7.drbar[region] = value & ~0x1f;
|
|
tlb_flush(CPU(cpu));
|
|
break;
|
|
}
|
|
case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
|
|
case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
|
|
case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
|
|
case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
|
|
{
|
|
int region = cpu->env.pmsav7.rnr[attrs.secure];
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
/* PMSAv8M handling of the aliases is different from v7M:
|
|
* aliases A1, A2, A3 override the low two bits of the region
|
|
* number in MPU_RNR.
|
|
*/
|
|
int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
|
|
|
|
region = cpu->env.pmsav7.rnr[attrs.secure];
|
|
if (aliasno) {
|
|
region = deposit32(region, 0, 2, aliasno);
|
|
}
|
|
if (region >= cpu->pmsav7_dregion) {
|
|
return;
|
|
}
|
|
cpu->env.pmsav8.rlar[attrs.secure][region] = value;
|
|
tlb_flush(CPU(cpu));
|
|
return;
|
|
}
|
|
|
|
if (region >= cpu->pmsav7_dregion) {
|
|
return;
|
|
}
|
|
|
|
cpu->env.pmsav7.drsr[region] = value & 0xff3f;
|
|
cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
|
|
tlb_flush(CPU(cpu));
|
|
break;
|
|
}
|
|
case 0xdc0: /* MPU_MAIR0 */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
if (cpu->pmsav7_dregion) {
|
|
/* Register is RES0 if no MPU regions are implemented */
|
|
cpu->env.pmsav8.mair0[attrs.secure] = value;
|
|
}
|
|
/* We don't need to do anything else because memory attributes
|
|
* only affect cacheability, and we don't implement caching.
|
|
*/
|
|
break;
|
|
case 0xdc4: /* MPU_MAIR1 */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
if (cpu->pmsav7_dregion) {
|
|
/* Register is RES0 if no MPU regions are implemented */
|
|
cpu->env.pmsav8.mair1[attrs.secure] = value;
|
|
}
|
|
/* We don't need to do anything else because memory attributes
|
|
* only affect cacheability, and we don't implement caching.
|
|
*/
|
|
break;
|
|
case 0xdd0: /* SAU_CTRL */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
if (!attrs.secure) {
|
|
return;
|
|
}
|
|
cpu->env.sau.ctrl = value & 3;
|
|
break;
|
|
case 0xdd4: /* SAU_TYPE */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
break;
|
|
case 0xdd8: /* SAU_RNR */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
if (!attrs.secure) {
|
|
return;
|
|
}
|
|
if (value >= cpu->sau_sregion) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
|
|
PRIu32 "/%" PRIu32 "\n",
|
|
value, cpu->sau_sregion);
|
|
} else {
|
|
cpu->env.sau.rnr = value;
|
|
}
|
|
break;
|
|
case 0xddc: /* SAU_RBAR */
|
|
{
|
|
int region = cpu->env.sau.rnr;
|
|
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
if (!attrs.secure) {
|
|
return;
|
|
}
|
|
if (region >= cpu->sau_sregion) {
|
|
return;
|
|
}
|
|
cpu->env.sau.rbar[region] = value & ~0x1f;
|
|
tlb_flush(CPU(cpu));
|
|
break;
|
|
}
|
|
case 0xde0: /* SAU_RLAR */
|
|
{
|
|
int region = cpu->env.sau.rnr;
|
|
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
if (!attrs.secure) {
|
|
return;
|
|
}
|
|
if (region >= cpu->sau_sregion) {
|
|
return;
|
|
}
|
|
cpu->env.sau.rlar[region] = value & ~0x1c;
|
|
tlb_flush(CPU(cpu));
|
|
break;
|
|
}
|
|
case 0xde4: /* SFSR */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
if (!attrs.secure) {
|
|
return;
|
|
}
|
|
cpu->env.v7m.sfsr &= ~value; /* W1C */
|
|
break;
|
|
case 0xde8: /* SFAR */
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
goto bad_offset;
|
|
}
|
|
if (!attrs.secure) {
|
|
return;
|
|
}
|
|
cpu->env.v7m.sfsr = value;
|
|
break;
|
|
case 0xf00: /* Software Triggered Interrupt Register */
|
|
{
|
|
int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
|
|
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
|
|
goto bad_offset;
|
|
}
|
|
|
|
if (excnum < s->num_irq) {
|
|
armv7m_nvic_set_pending(s, excnum, false);
|
|
}
|
|
break;
|
|
}
|
|
case 0xf34: /* FPCCR */
|
|
if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
|
|
/* Not all bits here are banked. */
|
|
uint32_t fpccr_s;
|
|
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
|
|
/* Don't allow setting of bits not present in v7M */
|
|
value &= (R_V7M_FPCCR_LSPACT_MASK |
|
|
R_V7M_FPCCR_USER_MASK |
|
|
R_V7M_FPCCR_THREAD_MASK |
|
|
R_V7M_FPCCR_HFRDY_MASK |
|
|
R_V7M_FPCCR_MMRDY_MASK |
|
|
R_V7M_FPCCR_BFRDY_MASK |
|
|
R_V7M_FPCCR_MONRDY_MASK |
|
|
R_V7M_FPCCR_LSPEN_MASK |
|
|
R_V7M_FPCCR_ASPEN_MASK);
|
|
}
|
|
value &= ~R_V7M_FPCCR_RES0_MASK;
|
|
|
|
if (!attrs.secure) {
|
|
/* Some non-banked bits are configurably writable by NS */
|
|
fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
|
|
if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
|
|
uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
|
|
fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
|
|
}
|
|
if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
|
|
uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
|
|
fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
|
|
}
|
|
if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
|
|
uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
|
|
uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
|
|
fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
|
|
fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
|
|
}
|
|
/* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
|
|
{
|
|
uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
|
|
fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
|
|
}
|
|
|
|
/*
|
|
* All other non-banked bits are RAZ/WI from NS; write
|
|
* just the banked bits to fpccr[M_REG_NS].
|
|
*/
|
|
value &= R_V7M_FPCCR_BANKED_MASK;
|
|
cpu->env.v7m.fpccr[M_REG_NS] = value;
|
|
} else {
|
|
fpccr_s = value;
|
|
}
|
|
cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
|
|
}
|
|
break;
|
|
case 0xf38: /* FPCAR */
|
|
if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
|
|
value &= ~7;
|
|
cpu->env.v7m.fpcar[attrs.secure] = value;
|
|
}
|
|
break;
|
|
case 0xf3c: /* FPDSCR */
|
|
if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
|
|
value &= 0x07c00000;
|
|
cpu->env.v7m.fpdscr[attrs.secure] = value;
|
|
}
|
|
break;
|
|
case 0xf50: /* ICIALLU */
|
|
case 0xf58: /* ICIMVAU */
|
|
case 0xf5c: /* DCIMVAC */
|
|
case 0xf60: /* DCISW */
|
|
case 0xf64: /* DCCMVAU */
|
|
case 0xf68: /* DCCMVAC */
|
|
case 0xf6c: /* DCCSW */
|
|
case 0xf70: /* DCCIMVAC */
|
|
case 0xf74: /* DCCISW */
|
|
case 0xf78: /* BPIALL */
|
|
/* Cache and branch predictor maintenance: for QEMU these always NOP */
|
|
break;
|
|
default:
|
|
bad_offset:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"NVIC: Bad write offset 0x%x\n", offset);
|
|
}
|
|
}
|
|
|
|
static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
|
|
{
|
|
/* Return true if unprivileged access to this register is permitted. */
|
|
switch (offset) {
|
|
case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
|
|
/* For access via STIR_NS it is the NS CCR.USERSETMPEND that
|
|
* controls access even though the CPU is in Secure state (I_QDKX).
|
|
*/
|
|
return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
|
|
default:
|
|
/* All other user accesses cause a BusFault unconditionally */
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
|
|
{
|
|
/* Behaviour for the SHPR register field for this exception:
|
|
* return M_REG_NS to use the nonsecure vector (including for
|
|
* non-banked exceptions), M_REG_S for the secure version of
|
|
* a banked exception, and -1 if this field should RAZ/WI.
|
|
*/
|
|
switch (exc) {
|
|
case ARMV7M_EXCP_MEM:
|
|
case ARMV7M_EXCP_USAGE:
|
|
case ARMV7M_EXCP_SVC:
|
|
case ARMV7M_EXCP_PENDSV:
|
|
case ARMV7M_EXCP_SYSTICK:
|
|
/* Banked exceptions */
|
|
return attrs.secure;
|
|
case ARMV7M_EXCP_BUS:
|
|
/* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
|
|
if (!attrs.secure &&
|
|
!(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
|
|
return -1;
|
|
}
|
|
return M_REG_NS;
|
|
case ARMV7M_EXCP_SECURE:
|
|
/* Not banked, RAZ/WI from nonsecure */
|
|
if (!attrs.secure) {
|
|
return -1;
|
|
}
|
|
return M_REG_NS;
|
|
case ARMV7M_EXCP_DEBUG:
|
|
/* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
|
|
return M_REG_NS;
|
|
case 8 ... 10:
|
|
case 13:
|
|
/* RES0 */
|
|
return -1;
|
|
default:
|
|
/* Not reachable due to decode of SHPR register addresses */
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
|
|
uint64_t *data, unsigned size,
|
|
MemTxAttrs attrs)
|
|
{
|
|
NVICState *s = (NVICState *)opaque;
|
|
uint32_t offset = addr;
|
|
unsigned i, startvec, end;
|
|
uint32_t val;
|
|
|
|
if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
|
|
/* Generate BusFault for unprivileged accesses */
|
|
return MEMTX_ERROR;
|
|
}
|
|
|
|
switch (offset) {
|
|
/* reads of set and clear both return the status */
|
|
case 0x100 ... 0x13f: /* NVIC Set enable */
|
|
offset += 0x80;
|
|
/* fall through */
|
|
case 0x180 ... 0x1bf: /* NVIC Clear enable */
|
|
val = 0;
|
|
startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
|
|
|
|
for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
|
|
if (s->vectors[startvec + i].enabled &&
|
|
(attrs.secure || s->itns[startvec + i])) {
|
|
val |= (1 << i);
|
|
}
|
|
}
|
|
break;
|
|
case 0x200 ... 0x23f: /* NVIC Set pend */
|
|
offset += 0x80;
|
|
/* fall through */
|
|
case 0x280 ... 0x2bf: /* NVIC Clear pend */
|
|
val = 0;
|
|
startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
|
|
for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
|
|
if (s->vectors[startvec + i].pending &&
|
|
(attrs.secure || s->itns[startvec + i])) {
|
|
val |= (1 << i);
|
|
}
|
|
}
|
|
break;
|
|
case 0x300 ... 0x33f: /* NVIC Active */
|
|
val = 0;
|
|
|
|
if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
|
|
break;
|
|
}
|
|
|
|
startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
|
|
|
|
for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
|
|
if (s->vectors[startvec + i].active &&
|
|
(attrs.secure || s->itns[startvec + i])) {
|
|
val |= (1 << i);
|
|
}
|
|
}
|
|
break;
|
|
case 0x400 ... 0x5ef: /* NVIC Priority */
|
|
val = 0;
|
|
startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
|
|
|
|
for (i = 0; i < size && startvec + i < s->num_irq; i++) {
|
|
if (attrs.secure || s->itns[startvec + i]) {
|
|
val |= s->vectors[startvec + i].prio << (8 * i);
|
|
}
|
|
}
|
|
break;
|
|
case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
|
|
if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
|
|
val = 0;
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
|
|
val = 0;
|
|
for (i = 0; i < size; i++) {
|
|
unsigned hdlidx = (offset - 0xd14) + i;
|
|
int sbank = shpr_bank(s, hdlidx, attrs);
|
|
|
|
if (sbank < 0) {
|
|
continue;
|
|
}
|
|
val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
|
|
}
|
|
break;
|
|
case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
|
|
if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
|
|
val = 0;
|
|
break;
|
|
};
|
|
/*
|
|
* The BFSR bits [15:8] are shared between security states
|
|
* and we store them in the NS copy. They are RAZ/WI for
|
|
* NS code if AIRCR.BFHFNMINS is 0.
|
|
*/
|
|
val = s->cpu->env.v7m.cfsr[attrs.secure];
|
|
if (!attrs.secure &&
|
|
!(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
|
|
val &= ~R_V7M_CFSR_BFSR_MASK;
|
|
} else {
|
|
val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
|
|
}
|
|
val = extract32(val, (offset - 0xd28) * 8, size * 8);
|
|
break;
|
|
case 0xfe0 ... 0xfff: /* ID. */
|
|
if (offset & 3) {
|
|
val = 0;
|
|
} else {
|
|
val = nvic_id[(offset - 0xfe0) >> 2];
|
|
}
|
|
break;
|
|
default:
|
|
if (size == 4) {
|
|
val = nvic_readl(s, offset, attrs);
|
|
} else {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"NVIC: Bad read of size %d at offset 0x%x\n",
|
|
size, offset);
|
|
val = 0;
|
|
}
|
|
}
|
|
|
|
trace_nvic_sysreg_read(addr, val, size);
|
|
*data = val;
|
|
return MEMTX_OK;
|
|
}
|
|
|
|
static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
|
|
uint64_t value, unsigned size,
|
|
MemTxAttrs attrs)
|
|
{
|
|
NVICState *s = (NVICState *)opaque;
|
|
uint32_t offset = addr;
|
|
unsigned i, startvec, end;
|
|
unsigned setval = 0;
|
|
|
|
trace_nvic_sysreg_write(addr, value, size);
|
|
|
|
if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
|
|
/* Generate BusFault for unprivileged accesses */
|
|
return MEMTX_ERROR;
|
|
}
|
|
|
|
switch (offset) {
|
|
case 0x100 ... 0x13f: /* NVIC Set enable */
|
|
offset += 0x80;
|
|
setval = 1;
|
|
/* fall through */
|
|
case 0x180 ... 0x1bf: /* NVIC Clear enable */
|
|
startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
|
|
|
|
for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
|
|
if (value & (1 << i) &&
|
|
(attrs.secure || s->itns[startvec + i])) {
|
|
s->vectors[startvec + i].enabled = setval;
|
|
}
|
|
}
|
|
nvic_irq_update(s);
|
|
goto exit_ok;
|
|
case 0x200 ... 0x23f: /* NVIC Set pend */
|
|
/* the special logic in armv7m_nvic_set_pending()
|
|
* is not needed since IRQs are never escalated
|
|
*/
|
|
offset += 0x80;
|
|
setval = 1;
|
|
/* fall through */
|
|
case 0x280 ... 0x2bf: /* NVIC Clear pend */
|
|
startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
|
|
|
|
for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
|
|
if (value & (1 << i) &&
|
|
(attrs.secure || s->itns[startvec + i])) {
|
|
s->vectors[startvec + i].pending = setval;
|
|
}
|
|
}
|
|
nvic_irq_update(s);
|
|
goto exit_ok;
|
|
case 0x300 ... 0x33f: /* NVIC Active */
|
|
goto exit_ok; /* R/O */
|
|
case 0x400 ... 0x5ef: /* NVIC Priority */
|
|
startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
|
|
|
|
for (i = 0; i < size && startvec + i < s->num_irq; i++) {
|
|
if (attrs.secure || s->itns[startvec + i]) {
|
|
set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
|
|
}
|
|
}
|
|
nvic_irq_update(s);
|
|
goto exit_ok;
|
|
case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
|
|
if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
|
|
goto exit_ok;
|
|
}
|
|
/* fall through */
|
|
case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
|
|
for (i = 0; i < size; i++) {
|
|
unsigned hdlidx = (offset - 0xd14) + i;
|
|
int newprio = extract32(value, i * 8, 8);
|
|
int sbank = shpr_bank(s, hdlidx, attrs);
|
|
|
|
if (sbank < 0) {
|
|
continue;
|
|
}
|
|
set_prio(s, hdlidx, sbank, newprio);
|
|
}
|
|
nvic_irq_update(s);
|
|
goto exit_ok;
|
|
case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
|
|
if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
|
|
goto exit_ok;
|
|
}
|
|
/* All bits are W1C, so construct 32 bit value with 0s in
|
|
* the parts not written by the access size
|
|
*/
|
|
value <<= ((offset - 0xd28) * 8);
|
|
|
|
if (!attrs.secure &&
|
|
!(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
|
|
/* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
|
|
value &= ~R_V7M_CFSR_BFSR_MASK;
|
|
}
|
|
|
|
s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
|
|
if (attrs.secure) {
|
|
/* The BFSR bits [15:8] are shared between security states
|
|
* and we store them in the NS copy.
|
|
*/
|
|
s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
|
|
}
|
|
goto exit_ok;
|
|
}
|
|
if (size == 4) {
|
|
nvic_writel(s, offset, value, attrs);
|
|
goto exit_ok;
|
|
}
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
|
|
/* This is UNPREDICTABLE; treat as RAZ/WI */
|
|
|
|
exit_ok:
|
|
/* Ensure any changes made are reflected in the cached hflags. */
|
|
arm_rebuild_hflags(&s->cpu->env);
|
|
return MEMTX_OK;
|
|
}
|
|
|
|
static const MemoryRegionOps nvic_sysreg_ops = {
|
|
.read_with_attrs = nvic_sysreg_read,
|
|
.write_with_attrs = nvic_sysreg_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
|
|
uint64_t value, unsigned size,
|
|
MemTxAttrs attrs)
|
|
{
|
|
MemoryRegion *mr = opaque;
|
|
|
|
if (attrs.secure) {
|
|
/* S accesses to the alias act like NS accesses to the real region */
|
|
attrs.secure = 0;
|
|
return memory_region_dispatch_write(mr, addr, value,
|
|
size_memop(size) | MO_TE, attrs);
|
|
} else {
|
|
/* NS attrs are RAZ/WI for privileged, and BusFault for user */
|
|
if (attrs.user) {
|
|
return MEMTX_ERROR;
|
|
}
|
|
return MEMTX_OK;
|
|
}
|
|
}
|
|
|
|
static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
|
|
uint64_t *data, unsigned size,
|
|
MemTxAttrs attrs)
|
|
{
|
|
MemoryRegion *mr = opaque;
|
|
|
|
if (attrs.secure) {
|
|
/* S accesses to the alias act like NS accesses to the real region */
|
|
attrs.secure = 0;
|
|
return memory_region_dispatch_read(mr, addr, data,
|
|
size_memop(size) | MO_TE, attrs);
|
|
} else {
|
|
/* NS attrs are RAZ/WI for privileged, and BusFault for user */
|
|
if (attrs.user) {
|
|
return MEMTX_ERROR;
|
|
}
|
|
*data = 0;
|
|
return MEMTX_OK;
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps nvic_sysreg_ns_ops = {
|
|
.read_with_attrs = nvic_sysreg_ns_read,
|
|
.write_with_attrs = nvic_sysreg_ns_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
|
|
uint64_t value, unsigned size,
|
|
MemTxAttrs attrs)
|
|
{
|
|
NVICState *s = opaque;
|
|
MemoryRegion *mr;
|
|
|
|
/* Direct the access to the correct systick */
|
|
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
|
|
return memory_region_dispatch_write(mr, addr, value,
|
|
size_memop(size) | MO_TE, attrs);
|
|
}
|
|
|
|
static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
|
|
uint64_t *data, unsigned size,
|
|
MemTxAttrs attrs)
|
|
{
|
|
NVICState *s = opaque;
|
|
MemoryRegion *mr;
|
|
|
|
/* Direct the access to the correct systick */
|
|
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
|
|
return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
|
|
attrs);
|
|
}
|
|
|
|
static const MemoryRegionOps nvic_systick_ops = {
|
|
.read_with_attrs = nvic_systick_read,
|
|
.write_with_attrs = nvic_systick_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static int nvic_post_load(void *opaque, int version_id)
|
|
{
|
|
NVICState *s = opaque;
|
|
unsigned i;
|
|
int resetprio;
|
|
|
|
/* Check for out of range priority settings */
|
|
resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
|
|
|
|
if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
|
|
s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
|
|
s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
|
|
return 1;
|
|
}
|
|
for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
|
|
if (s->vectors[i].prio & ~0xff) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
nvic_recompute_state(s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_VecInfo = {
|
|
.name = "armv7m_nvic_info",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_INT16(prio, VecInfo),
|
|
VMSTATE_UINT8(enabled, VecInfo),
|
|
VMSTATE_UINT8(pending, VecInfo),
|
|
VMSTATE_UINT8(active, VecInfo),
|
|
VMSTATE_UINT8(level, VecInfo),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static bool nvic_security_needed(void *opaque)
|
|
{
|
|
NVICState *s = opaque;
|
|
|
|
return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
|
|
}
|
|
|
|
static int nvic_security_post_load(void *opaque, int version_id)
|
|
{
|
|
NVICState *s = opaque;
|
|
int i;
|
|
|
|
/* Check for out of range priority settings */
|
|
if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
|
|
&& s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
|
|
/* We can't cross-check against AIRCR.BFHFNMINS as we don't know
|
|
* if the CPU state has been migrated yet; a mismatch won't
|
|
* cause the emulation to blow up, though.
|
|
*/
|
|
return 1;
|
|
}
|
|
for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
|
|
if (s->sec_vectors[i].prio & ~0xff) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_nvic_security = {
|
|
.name = "armv7m_nvic/m-security",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = nvic_security_needed,
|
|
.post_load = &nvic_security_post_load,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
|
|
vmstate_VecInfo, VecInfo),
|
|
VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
|
|
VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static const VMStateDescription vmstate_nvic = {
|
|
.name = "armv7m_nvic",
|
|
.version_id = 4,
|
|
.minimum_version_id = 4,
|
|
.post_load = &nvic_post_load,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
|
|
vmstate_VecInfo, VecInfo),
|
|
VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
.subsections = (const VMStateDescription*[]) {
|
|
&vmstate_nvic_security,
|
|
NULL
|
|
}
|
|
};
|
|
|
|
static Property props_nvic[] = {
|
|
/* Number of external IRQ lines (so excluding the 16 internal exceptions) */
|
|
DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
|
|
DEFINE_PROP_END_OF_LIST()
|
|
};
|
|
|
|
static void armv7m_nvic_reset(DeviceState *dev)
|
|
{
|
|
int resetprio;
|
|
NVICState *s = NVIC(dev);
|
|
|
|
memset(s->vectors, 0, sizeof(s->vectors));
|
|
memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
|
|
s->prigroup[M_REG_NS] = 0;
|
|
s->prigroup[M_REG_S] = 0;
|
|
|
|
s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
|
|
/* MEM, BUS, and USAGE are enabled through
|
|
* the System Handler Control register
|
|
*/
|
|
s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
|
|
s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
|
|
s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
|
|
|
|
/* DebugMonitor is enabled via DEMCR.MON_EN */
|
|
s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
|
|
|
|
resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
|
|
s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
|
|
s->vectors[ARMV7M_EXCP_NMI].prio = -2;
|
|
s->vectors[ARMV7M_EXCP_HARD].prio = -1;
|
|
|
|
if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
|
|
s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
|
|
s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
|
|
s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
|
|
s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
|
|
|
|
/* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
|
|
s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
|
|
/* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
|
|
s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
|
|
} else {
|
|
s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
|
|
}
|
|
|
|
/* Strictly speaking the reset handler should be enabled.
|
|
* However, we don't simulate soft resets through the NVIC,
|
|
* and the reset vector should never be pended.
|
|
* So we leave it disabled to catch logic errors.
|
|
*/
|
|
|
|
s->exception_prio = NVIC_NOEXC_PRIO;
|
|
s->vectpending = 0;
|
|
s->vectpending_is_s_banked = false;
|
|
s->vectpending_prio = NVIC_NOEXC_PRIO;
|
|
|
|
if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
|
|
memset(s->itns, 0, sizeof(s->itns));
|
|
} else {
|
|
/* This state is constant and not guest accessible in a non-security
|
|
* NVIC; we set the bits to true to avoid having to do a feature
|
|
* bit check in the NVIC enable/pend/etc register accessors.
|
|
*/
|
|
int i;
|
|
|
|
for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
|
|
s->itns[i] = true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We updated state that affects the CPU's MMUidx and thus its hflags;
|
|
* and we can't guarantee that we run before the CPU reset function.
|
|
*/
|
|
arm_rebuild_hflags(&s->cpu->env);
|
|
}
|
|
|
|
static void nvic_systick_trigger(void *opaque, int n, int level)
|
|
{
|
|
NVICState *s = opaque;
|
|
|
|
if (level) {
|
|
/* SysTick just asked us to pend its exception.
|
|
* (This is different from an external interrupt line's
|
|
* behaviour.)
|
|
* n == 0 : NonSecure systick
|
|
* n == 1 : Secure systick
|
|
*/
|
|
armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
|
|
}
|
|
}
|
|
|
|
static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
|
|
{
|
|
NVICState *s = NVIC(dev);
|
|
int regionlen;
|
|
|
|
/* The armv7m container object will have set our CPU pointer */
|
|
if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
|
|
error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
|
|
return;
|
|
}
|
|
|
|
if (s->num_irq > NVIC_MAX_IRQ) {
|
|
error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
|
|
return;
|
|
}
|
|
|
|
qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
|
|
|
|
/* include space for internal exception vectors */
|
|
s->num_irq += NVIC_FIRST_IRQ;
|
|
|
|
s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
|
|
|
|
if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
|
|
return;
|
|
}
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
|
|
qdev_get_gpio_in_named(dev, "systick-trigger",
|
|
M_REG_NS));
|
|
|
|
if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
|
|
/* We couldn't init the secure systick device in instance_init
|
|
* as we didn't know then if the CPU had the security extensions;
|
|
* so we have to do it here.
|
|
*/
|
|
object_initialize_child(OBJECT(dev), "systick-reg-s",
|
|
&s->systick[M_REG_S], TYPE_SYSTICK);
|
|
|
|
if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
|
|
return;
|
|
}
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
|
|
qdev_get_gpio_in_named(dev, "systick-trigger",
|
|
M_REG_S));
|
|
}
|
|
|
|
/* The NVIC and System Control Space (SCS) starts at 0xe000e000
|
|
* and looks like this:
|
|
* 0x004 - ICTR
|
|
* 0x010 - 0xff - systick
|
|
* 0x100..0x7ec - NVIC
|
|
* 0x7f0..0xcff - Reserved
|
|
* 0xd00..0xd3c - SCS registers
|
|
* 0xd40..0xeff - Reserved or Not implemented
|
|
* 0xf00 - STIR
|
|
*
|
|
* Some registers within this space are banked between security states.
|
|
* In v8M there is a second range 0xe002e000..0xe002efff which is the
|
|
* NonSecure alias SCS; secure accesses to this behave like NS accesses
|
|
* to the main SCS range, and non-secure accesses (including when
|
|
* the security extension is not implemented) are RAZ/WI.
|
|
* Note that both the main SCS range and the alias range are defined
|
|
* to be exempt from memory attribution (R_BLJT) and so the memory
|
|
* transaction attribute always matches the current CPU security
|
|
* state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
|
|
* wrappers we change attrs.secure to indicate the NS access; so
|
|
* generally code determining which banked register to use should
|
|
* use attrs.secure; code determining actual behaviour of the system
|
|
* should use env->v7m.secure.
|
|
*/
|
|
regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
|
|
memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
|
|
/* The system register region goes at the bottom of the priority
|
|
* stack as it covers the whole page.
|
|
*/
|
|
memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
|
|
"nvic_sysregs", 0x1000);
|
|
memory_region_add_subregion(&s->container, 0, &s->sysregmem);
|
|
|
|
memory_region_init_io(&s->systickmem, OBJECT(s),
|
|
&nvic_systick_ops, s,
|
|
"nvic_systick", 0xe0);
|
|
|
|
memory_region_add_subregion_overlap(&s->container, 0x10,
|
|
&s->systickmem, 1);
|
|
|
|
if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
|
|
memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
|
|
&nvic_sysreg_ns_ops, &s->sysregmem,
|
|
"nvic_sysregs_ns", 0x1000);
|
|
memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
|
|
memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
|
|
&nvic_sysreg_ns_ops, &s->systickmem,
|
|
"nvic_systick_ns", 0xe0);
|
|
memory_region_add_subregion_overlap(&s->container, 0x20010,
|
|
&s->systick_ns_mem, 1);
|
|
}
|
|
|
|
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
|
|
}
|
|
|
|
static void armv7m_nvic_instance_init(Object *obj)
|
|
{
|
|
/* We have a different default value for the num-irq property
|
|
* than our superclass. This function runs after qdev init
|
|
* has set the defaults from the Property array and before
|
|
* any user-specified property setting, so just modify the
|
|
* value in the GICState struct.
|
|
*/
|
|
DeviceState *dev = DEVICE(obj);
|
|
NVICState *nvic = NVIC(obj);
|
|
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
|
|
|
|
object_initialize_child(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
|
|
TYPE_SYSTICK);
|
|
/* We can't initialize the secure systick here, as we don't know
|
|
* yet if we need it.
|
|
*/
|
|
|
|
sysbus_init_irq(sbd, &nvic->excpout);
|
|
qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
|
|
qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
|
|
M_REG_NUM_BANKS);
|
|
qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
|
|
}
|
|
|
|
static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
|
|
dc->vmsd = &vmstate_nvic;
|
|
device_class_set_props(dc, props_nvic);
|
|
dc->reset = armv7m_nvic_reset;
|
|
dc->realize = armv7m_nvic_realize;
|
|
}
|
|
|
|
static const TypeInfo armv7m_nvic_info = {
|
|
.name = TYPE_NVIC,
|
|
.parent = TYPE_SYS_BUS_DEVICE,
|
|
.instance_init = armv7m_nvic_instance_init,
|
|
.instance_size = sizeof(NVICState),
|
|
.class_init = armv7m_nvic_class_init,
|
|
.class_size = sizeof(SysBusDeviceClass),
|
|
};
|
|
|
|
static void armv7m_nvic_register_types(void)
|
|
{
|
|
type_register_static(&armv7m_nvic_info);
|
|
}
|
|
|
|
type_init(armv7m_nvic_register_types)
|