1832 lines
60 KiB
C
1832 lines
60 KiB
C
/*
|
|
* QEMU e1000 emulation
|
|
*
|
|
* Software developer's manual:
|
|
* http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf
|
|
*
|
|
* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
|
|
* Copyright (c) 2008 Qumranet
|
|
* Based on work done by:
|
|
* Copyright (c) 2007 Dan Aloni
|
|
* Copyright (c) 2004 Antony T Curtis
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "hw/pci/pci.h"
|
|
#include "hw/qdev-properties.h"
|
|
#include "migration/vmstate.h"
|
|
#include "net/net.h"
|
|
#include "net/checksum.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/dma.h"
|
|
#include "qemu/iov.h"
|
|
#include "qemu/module.h"
|
|
#include "qemu/range.h"
|
|
|
|
#include "e1000x_common.h"
|
|
#include "trace.h"
|
|
|
|
static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
|
|
|
|
/* #define E1000_DEBUG */
|
|
|
|
#ifdef E1000_DEBUG
|
|
enum {
|
|
DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT,
|
|
DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM,
|
|
DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR,
|
|
DEBUG_RXFILTER, DEBUG_PHY, DEBUG_NOTYET,
|
|
};
|
|
#define DBGBIT(x) (1<<DEBUG_##x)
|
|
static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL);
|
|
|
|
#define DBGOUT(what, fmt, ...) do { \
|
|
if (debugflags & DBGBIT(what)) \
|
|
fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \
|
|
} while (0)
|
|
#else
|
|
#define DBGOUT(what, fmt, ...) do {} while (0)
|
|
#endif
|
|
|
|
#define IOPORT_SIZE 0x40
|
|
#define PNPMMIO_SIZE 0x20000
|
|
#define MIN_BUF_SIZE 60 /* Min. octets in an ethernet frame sans FCS */
|
|
|
|
#define MAXIMUM_ETHERNET_HDR_LEN (14+4)
|
|
|
|
/*
|
|
* HW models:
|
|
* E1000_DEV_ID_82540EM works with Windows, Linux, and OS X <= 10.8
|
|
* E1000_DEV_ID_82544GC_COPPER appears to work; not well tested
|
|
* E1000_DEV_ID_82545EM_COPPER works with Linux and OS X >= 10.6
|
|
* Others never tested
|
|
*/
|
|
|
|
typedef struct E1000State_st {
|
|
/*< private >*/
|
|
PCIDevice parent_obj;
|
|
/*< public >*/
|
|
|
|
NICState *nic;
|
|
NICConf conf;
|
|
MemoryRegion mmio;
|
|
MemoryRegion io;
|
|
|
|
uint32_t mac_reg[0x8000];
|
|
uint16_t phy_reg[0x20];
|
|
uint16_t eeprom_data[64];
|
|
|
|
uint32_t rxbuf_size;
|
|
uint32_t rxbuf_min_shift;
|
|
struct e1000_tx {
|
|
unsigned char header[256];
|
|
unsigned char vlan_header[4];
|
|
/* Fields vlan and data must not be reordered or separated. */
|
|
unsigned char vlan[4];
|
|
unsigned char data[0x10000];
|
|
uint16_t size;
|
|
unsigned char vlan_needed;
|
|
unsigned char sum_needed;
|
|
bool cptse;
|
|
e1000x_txd_props props;
|
|
e1000x_txd_props tso_props;
|
|
uint16_t tso_frames;
|
|
} tx;
|
|
|
|
struct {
|
|
uint32_t val_in; /* shifted in from guest driver */
|
|
uint16_t bitnum_in;
|
|
uint16_t bitnum_out;
|
|
uint16_t reading;
|
|
uint32_t old_eecd;
|
|
} eecd_state;
|
|
|
|
QEMUTimer *autoneg_timer;
|
|
|
|
QEMUTimer *mit_timer; /* Mitigation timer. */
|
|
bool mit_timer_on; /* Mitigation timer is running. */
|
|
bool mit_irq_level; /* Tracks interrupt pin level. */
|
|
uint32_t mit_ide; /* Tracks E1000_TXD_CMD_IDE bit. */
|
|
|
|
QEMUTimer *flush_queue_timer;
|
|
|
|
/* Compatibility flags for migration to/from qemu 1.3.0 and older */
|
|
#define E1000_FLAG_AUTONEG_BIT 0
|
|
#define E1000_FLAG_MIT_BIT 1
|
|
#define E1000_FLAG_MAC_BIT 2
|
|
#define E1000_FLAG_TSO_BIT 3
|
|
#define E1000_FLAG_AUTONEG (1 << E1000_FLAG_AUTONEG_BIT)
|
|
#define E1000_FLAG_MIT (1 << E1000_FLAG_MIT_BIT)
|
|
#define E1000_FLAG_MAC (1 << E1000_FLAG_MAC_BIT)
|
|
#define E1000_FLAG_TSO (1 << E1000_FLAG_TSO_BIT)
|
|
uint32_t compat_flags;
|
|
bool received_tx_tso;
|
|
bool use_tso_for_migration;
|
|
e1000x_txd_props mig_props;
|
|
} E1000State;
|
|
|
|
#define chkflag(x) (s->compat_flags & E1000_FLAG_##x)
|
|
|
|
typedef struct E1000BaseClass {
|
|
PCIDeviceClass parent_class;
|
|
uint16_t phy_id2;
|
|
} E1000BaseClass;
|
|
|
|
#define TYPE_E1000_BASE "e1000-base"
|
|
|
|
#define E1000(obj) \
|
|
OBJECT_CHECK(E1000State, (obj), TYPE_E1000_BASE)
|
|
|
|
#define E1000_DEVICE_CLASS(klass) \
|
|
OBJECT_CLASS_CHECK(E1000BaseClass, (klass), TYPE_E1000_BASE)
|
|
#define E1000_DEVICE_GET_CLASS(obj) \
|
|
OBJECT_GET_CLASS(E1000BaseClass, (obj), TYPE_E1000_BASE)
|
|
|
|
static void
|
|
e1000_link_up(E1000State *s)
|
|
{
|
|
e1000x_update_regs_on_link_up(s->mac_reg, s->phy_reg);
|
|
|
|
/* E1000_STATUS_LU is tested by e1000_can_receive() */
|
|
qemu_flush_queued_packets(qemu_get_queue(s->nic));
|
|
}
|
|
|
|
static void
|
|
e1000_autoneg_done(E1000State *s)
|
|
{
|
|
e1000x_update_regs_on_autoneg_done(s->mac_reg, s->phy_reg);
|
|
|
|
/* E1000_STATUS_LU is tested by e1000_can_receive() */
|
|
qemu_flush_queued_packets(qemu_get_queue(s->nic));
|
|
}
|
|
|
|
static bool
|
|
have_autoneg(E1000State *s)
|
|
{
|
|
return chkflag(AUTONEG) && (s->phy_reg[PHY_CTRL] & MII_CR_AUTO_NEG_EN);
|
|
}
|
|
|
|
static void
|
|
set_phy_ctrl(E1000State *s, int index, uint16_t val)
|
|
{
|
|
/* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
|
|
s->phy_reg[PHY_CTRL] = val & ~(0x3f |
|
|
MII_CR_RESET |
|
|
MII_CR_RESTART_AUTO_NEG);
|
|
|
|
/*
|
|
* QEMU 1.3 does not support link auto-negotiation emulation, so if we
|
|
* migrate during auto negotiation, after migration the link will be
|
|
* down.
|
|
*/
|
|
if (have_autoneg(s) && (val & MII_CR_RESTART_AUTO_NEG)) {
|
|
e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer);
|
|
}
|
|
}
|
|
|
|
static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = {
|
|
[PHY_CTRL] = set_phy_ctrl,
|
|
};
|
|
|
|
enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) };
|
|
|
|
enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W };
|
|
static const char phy_regcap[0x20] = {
|
|
[PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW,
|
|
[PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW,
|
|
[PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW,
|
|
[PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R,
|
|
[PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R,
|
|
[PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R,
|
|
[PHY_AUTONEG_EXP] = PHY_R,
|
|
};
|
|
|
|
/* PHY_ID2 documented in 8254x_GBe_SDM.pdf, pp. 250 */
|
|
static const uint16_t phy_reg_init[] = {
|
|
[PHY_CTRL] = MII_CR_SPEED_SELECT_MSB |
|
|
MII_CR_FULL_DUPLEX |
|
|
MII_CR_AUTO_NEG_EN,
|
|
|
|
[PHY_STATUS] = MII_SR_EXTENDED_CAPS |
|
|
MII_SR_LINK_STATUS | /* link initially up */
|
|
MII_SR_AUTONEG_CAPS |
|
|
/* MII_SR_AUTONEG_COMPLETE: initially NOT completed */
|
|
MII_SR_PREAMBLE_SUPPRESS |
|
|
MII_SR_EXTENDED_STATUS |
|
|
MII_SR_10T_HD_CAPS |
|
|
MII_SR_10T_FD_CAPS |
|
|
MII_SR_100X_HD_CAPS |
|
|
MII_SR_100X_FD_CAPS,
|
|
|
|
[PHY_ID1] = 0x141,
|
|
/* [PHY_ID2] configured per DevId, from e1000_reset() */
|
|
[PHY_AUTONEG_ADV] = 0xde1,
|
|
[PHY_LP_ABILITY] = 0x1e0,
|
|
[PHY_1000T_CTRL] = 0x0e00,
|
|
[PHY_1000T_STATUS] = 0x3c00,
|
|
[M88E1000_PHY_SPEC_CTRL] = 0x360,
|
|
[M88E1000_PHY_SPEC_STATUS] = 0xac00,
|
|
[M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60,
|
|
};
|
|
|
|
static const uint32_t mac_reg_init[] = {
|
|
[PBA] = 0x00100030,
|
|
[LEDCTL] = 0x602,
|
|
[CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
|
|
E1000_CTRL_SPD_1000 | E1000_CTRL_SLU,
|
|
[STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE |
|
|
E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK |
|
|
E1000_STATUS_SPEED_1000 | E1000_STATUS_FD |
|
|
E1000_STATUS_LU,
|
|
[MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN |
|
|
E1000_MANC_ARP_EN | E1000_MANC_0298_EN |
|
|
E1000_MANC_RMCP_EN,
|
|
};
|
|
|
|
/* Helper function, *curr == 0 means the value is not set */
|
|
static inline void
|
|
mit_update_delay(uint32_t *curr, uint32_t value)
|
|
{
|
|
if (value && (*curr == 0 || value < *curr)) {
|
|
*curr = value;
|
|
}
|
|
}
|
|
|
|
static void
|
|
set_interrupt_cause(E1000State *s, int index, uint32_t val)
|
|
{
|
|
PCIDevice *d = PCI_DEVICE(s);
|
|
uint32_t pending_ints;
|
|
uint32_t mit_delay;
|
|
|
|
s->mac_reg[ICR] = val;
|
|
|
|
/*
|
|
* Make sure ICR and ICS registers have the same value.
|
|
* The spec says that the ICS register is write-only. However in practice,
|
|
* on real hardware ICS is readable, and for reads it has the same value as
|
|
* ICR (except that ICS does not have the clear on read behaviour of ICR).
|
|
*
|
|
* The VxWorks PRO/1000 driver uses this behaviour.
|
|
*/
|
|
s->mac_reg[ICS] = val;
|
|
|
|
pending_ints = (s->mac_reg[IMS] & s->mac_reg[ICR]);
|
|
if (!s->mit_irq_level && pending_ints) {
|
|
/*
|
|
* Here we detect a potential raising edge. We postpone raising the
|
|
* interrupt line if we are inside the mitigation delay window
|
|
* (s->mit_timer_on == 1).
|
|
* We provide a partial implementation of interrupt mitigation,
|
|
* emulating only RADV, TADV and ITR (lower 16 bits, 1024ns units for
|
|
* RADV and TADV, 256ns units for ITR). RDTR is only used to enable
|
|
* RADV; relative timers based on TIDV and RDTR are not implemented.
|
|
*/
|
|
if (s->mit_timer_on) {
|
|
return;
|
|
}
|
|
if (chkflag(MIT)) {
|
|
/* Compute the next mitigation delay according to pending
|
|
* interrupts and the current values of RADV (provided
|
|
* RDTR!=0), TADV and ITR.
|
|
* Then rearm the timer.
|
|
*/
|
|
mit_delay = 0;
|
|
if (s->mit_ide &&
|
|
(pending_ints & (E1000_ICR_TXQE | E1000_ICR_TXDW))) {
|
|
mit_update_delay(&mit_delay, s->mac_reg[TADV] * 4);
|
|
}
|
|
if (s->mac_reg[RDTR] && (pending_ints & E1000_ICS_RXT0)) {
|
|
mit_update_delay(&mit_delay, s->mac_reg[RADV] * 4);
|
|
}
|
|
mit_update_delay(&mit_delay, s->mac_reg[ITR]);
|
|
|
|
/*
|
|
* According to e1000 SPEC, the Ethernet controller guarantees
|
|
* a maximum observable interrupt rate of 7813 interrupts/sec.
|
|
* Thus if mit_delay < 500 then the delay should be set to the
|
|
* minimum delay possible which is 500.
|
|
*/
|
|
mit_delay = (mit_delay < 500) ? 500 : mit_delay;
|
|
|
|
s->mit_timer_on = 1;
|
|
timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
|
|
mit_delay * 256);
|
|
s->mit_ide = 0;
|
|
}
|
|
}
|
|
|
|
s->mit_irq_level = (pending_ints != 0);
|
|
pci_set_irq(d, s->mit_irq_level);
|
|
}
|
|
|
|
static void
|
|
e1000_mit_timer(void *opaque)
|
|
{
|
|
E1000State *s = opaque;
|
|
|
|
s->mit_timer_on = 0;
|
|
/* Call set_interrupt_cause to update the irq level (if necessary). */
|
|
set_interrupt_cause(s, 0, s->mac_reg[ICR]);
|
|
}
|
|
|
|
static void
|
|
set_ics(E1000State *s, int index, uint32_t val)
|
|
{
|
|
DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR],
|
|
s->mac_reg[IMS]);
|
|
set_interrupt_cause(s, 0, val | s->mac_reg[ICR]);
|
|
}
|
|
|
|
static void
|
|
e1000_autoneg_timer(void *opaque)
|
|
{
|
|
E1000State *s = opaque;
|
|
if (!qemu_get_queue(s->nic)->link_down) {
|
|
e1000_autoneg_done(s);
|
|
set_ics(s, 0, E1000_ICS_LSC); /* signal link status change to guest */
|
|
}
|
|
}
|
|
|
|
static void e1000_reset(void *opaque)
|
|
{
|
|
E1000State *d = opaque;
|
|
E1000BaseClass *edc = E1000_DEVICE_GET_CLASS(d);
|
|
uint8_t *macaddr = d->conf.macaddr.a;
|
|
|
|
timer_del(d->autoneg_timer);
|
|
timer_del(d->mit_timer);
|
|
timer_del(d->flush_queue_timer);
|
|
d->mit_timer_on = 0;
|
|
d->mit_irq_level = 0;
|
|
d->mit_ide = 0;
|
|
memset(d->phy_reg, 0, sizeof d->phy_reg);
|
|
memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init);
|
|
d->phy_reg[PHY_ID2] = edc->phy_id2;
|
|
memset(d->mac_reg, 0, sizeof d->mac_reg);
|
|
memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init);
|
|
d->rxbuf_min_shift = 1;
|
|
memset(&d->tx, 0, sizeof d->tx);
|
|
|
|
if (qemu_get_queue(d->nic)->link_down) {
|
|
e1000x_update_regs_on_link_down(d->mac_reg, d->phy_reg);
|
|
}
|
|
|
|
e1000x_reset_mac_addr(d->nic, d->mac_reg, macaddr);
|
|
}
|
|
|
|
static void
|
|
set_ctrl(E1000State *s, int index, uint32_t val)
|
|
{
|
|
/* RST is self clearing */
|
|
s->mac_reg[CTRL] = val & ~E1000_CTRL_RST;
|
|
}
|
|
|
|
static void
|
|
e1000_flush_queue_timer(void *opaque)
|
|
{
|
|
E1000State *s = opaque;
|
|
|
|
qemu_flush_queued_packets(qemu_get_queue(s->nic));
|
|
}
|
|
|
|
static void
|
|
set_rx_control(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[RCTL] = val;
|
|
s->rxbuf_size = e1000x_rxbufsize(val);
|
|
s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1;
|
|
DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT],
|
|
s->mac_reg[RCTL]);
|
|
timer_mod(s->flush_queue_timer,
|
|
qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 1000);
|
|
}
|
|
|
|
static void
|
|
set_mdic(E1000State *s, int index, uint32_t val)
|
|
{
|
|
uint32_t data = val & E1000_MDIC_DATA_MASK;
|
|
uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
|
|
|
|
if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy #
|
|
val = s->mac_reg[MDIC] | E1000_MDIC_ERROR;
|
|
else if (val & E1000_MDIC_OP_READ) {
|
|
DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr);
|
|
if (!(phy_regcap[addr] & PHY_R)) {
|
|
DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr);
|
|
val |= E1000_MDIC_ERROR;
|
|
} else
|
|
val = (val ^ data) | s->phy_reg[addr];
|
|
} else if (val & E1000_MDIC_OP_WRITE) {
|
|
DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data);
|
|
if (!(phy_regcap[addr] & PHY_W)) {
|
|
DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr);
|
|
val |= E1000_MDIC_ERROR;
|
|
} else {
|
|
if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) {
|
|
phyreg_writeops[addr](s, index, data);
|
|
} else {
|
|
s->phy_reg[addr] = data;
|
|
}
|
|
}
|
|
}
|
|
s->mac_reg[MDIC] = val | E1000_MDIC_READY;
|
|
|
|
if (val & E1000_MDIC_INT_EN) {
|
|
set_ics(s, 0, E1000_ICR_MDAC);
|
|
}
|
|
}
|
|
|
|
static uint32_t
|
|
get_eecd(E1000State *s, int index)
|
|
{
|
|
uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd;
|
|
|
|
DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n",
|
|
s->eecd_state.bitnum_out, s->eecd_state.reading);
|
|
if (!s->eecd_state.reading ||
|
|
((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >>
|
|
((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1)
|
|
ret |= E1000_EECD_DO;
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
set_eecd(E1000State *s, int index, uint32_t val)
|
|
{
|
|
uint32_t oldval = s->eecd_state.old_eecd;
|
|
|
|
s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS |
|
|
E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ);
|
|
if (!(E1000_EECD_CS & val)) { /* CS inactive; nothing to do */
|
|
return;
|
|
}
|
|
if (E1000_EECD_CS & (val ^ oldval)) { /* CS rise edge; reset state */
|
|
s->eecd_state.val_in = 0;
|
|
s->eecd_state.bitnum_in = 0;
|
|
s->eecd_state.bitnum_out = 0;
|
|
s->eecd_state.reading = 0;
|
|
}
|
|
if (!(E1000_EECD_SK & (val ^ oldval))) { /* no clock edge */
|
|
return;
|
|
}
|
|
if (!(E1000_EECD_SK & val)) { /* falling edge */
|
|
s->eecd_state.bitnum_out++;
|
|
return;
|
|
}
|
|
s->eecd_state.val_in <<= 1;
|
|
if (val & E1000_EECD_DI)
|
|
s->eecd_state.val_in |= 1;
|
|
if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) {
|
|
s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1;
|
|
s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) ==
|
|
EEPROM_READ_OPCODE_MICROWIRE);
|
|
}
|
|
DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n",
|
|
s->eecd_state.bitnum_in, s->eecd_state.bitnum_out,
|
|
s->eecd_state.reading);
|
|
}
|
|
|
|
static uint32_t
|
|
flash_eerd_read(E1000State *s, int x)
|
|
{
|
|
unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START;
|
|
|
|
if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0)
|
|
return (s->mac_reg[EERD]);
|
|
|
|
if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG)
|
|
return (E1000_EEPROM_RW_REG_DONE | r);
|
|
|
|
return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) |
|
|
E1000_EEPROM_RW_REG_DONE | r);
|
|
}
|
|
|
|
static void
|
|
putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse)
|
|
{
|
|
uint32_t sum;
|
|
|
|
if (cse && cse < n)
|
|
n = cse + 1;
|
|
if (sloc < n-1) {
|
|
sum = net_checksum_add(n-css, data+css);
|
|
stw_be_p(data + sloc, net_checksum_finish_nozero(sum));
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
inc_tx_bcast_or_mcast_count(E1000State *s, const unsigned char *arr)
|
|
{
|
|
if (!memcmp(arr, bcast, sizeof bcast)) {
|
|
e1000x_inc_reg_if_not_full(s->mac_reg, BPTC);
|
|
} else if (arr[0] & 1) {
|
|
e1000x_inc_reg_if_not_full(s->mac_reg, MPTC);
|
|
}
|
|
}
|
|
|
|
static void
|
|
e1000_send_packet(E1000State *s, const uint8_t *buf, int size)
|
|
{
|
|
static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
|
|
PTC1023, PTC1522 };
|
|
|
|
NetClientState *nc = qemu_get_queue(s->nic);
|
|
if (s->phy_reg[PHY_CTRL] & MII_CR_LOOPBACK) {
|
|
nc->info->receive(nc, buf, size);
|
|
} else {
|
|
qemu_send_packet(nc, buf, size);
|
|
}
|
|
inc_tx_bcast_or_mcast_count(s, buf);
|
|
e1000x_increase_size_stats(s->mac_reg, PTCregs, size);
|
|
}
|
|
|
|
static void
|
|
xmit_seg(E1000State *s)
|
|
{
|
|
uint16_t len;
|
|
unsigned int frames = s->tx.tso_frames, css, sofar;
|
|
struct e1000_tx *tp = &s->tx;
|
|
struct e1000x_txd_props *props = tp->cptse ? &tp->tso_props : &tp->props;
|
|
|
|
if (tp->cptse) {
|
|
css = props->ipcss;
|
|
DBGOUT(TXSUM, "frames %d size %d ipcss %d\n",
|
|
frames, tp->size, css);
|
|
if (props->ip) { /* IPv4 */
|
|
stw_be_p(tp->data+css+2, tp->size - css);
|
|
stw_be_p(tp->data+css+4,
|
|
lduw_be_p(tp->data + css + 4) + frames);
|
|
} else { /* IPv6 */
|
|
stw_be_p(tp->data+css+4, tp->size - css);
|
|
}
|
|
css = props->tucss;
|
|
len = tp->size - css;
|
|
DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", props->tcp, css, len);
|
|
if (props->tcp) {
|
|
sofar = frames * props->mss;
|
|
stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar); /* seq */
|
|
if (props->paylen - sofar > props->mss) {
|
|
tp->data[css + 13] &= ~9; /* PSH, FIN */
|
|
} else if (frames) {
|
|
e1000x_inc_reg_if_not_full(s->mac_reg, TSCTC);
|
|
}
|
|
} else { /* UDP */
|
|
stw_be_p(tp->data+css+4, len);
|
|
}
|
|
if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
|
|
unsigned int phsum;
|
|
// add pseudo-header length before checksum calculation
|
|
void *sp = tp->data + props->tucso;
|
|
|
|
phsum = lduw_be_p(sp) + len;
|
|
phsum = (phsum >> 16) + (phsum & 0xffff);
|
|
stw_be_p(sp, phsum);
|
|
}
|
|
tp->tso_frames++;
|
|
}
|
|
|
|
if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
|
|
putsum(tp->data, tp->size, props->tucso, props->tucss, props->tucse);
|
|
}
|
|
if (tp->sum_needed & E1000_TXD_POPTS_IXSM) {
|
|
putsum(tp->data, tp->size, props->ipcso, props->ipcss, props->ipcse);
|
|
}
|
|
if (tp->vlan_needed) {
|
|
memmove(tp->vlan, tp->data, 4);
|
|
memmove(tp->data, tp->data + 4, 8);
|
|
memcpy(tp->data + 8, tp->vlan_header, 4);
|
|
e1000_send_packet(s, tp->vlan, tp->size + 4);
|
|
} else {
|
|
e1000_send_packet(s, tp->data, tp->size);
|
|
}
|
|
|
|
e1000x_inc_reg_if_not_full(s->mac_reg, TPT);
|
|
e1000x_grow_8reg_if_not_full(s->mac_reg, TOTL, s->tx.size);
|
|
s->mac_reg[GPTC] = s->mac_reg[TPT];
|
|
s->mac_reg[GOTCL] = s->mac_reg[TOTL];
|
|
s->mac_reg[GOTCH] = s->mac_reg[TOTH];
|
|
}
|
|
|
|
static void
|
|
process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
|
|
{
|
|
PCIDevice *d = PCI_DEVICE(s);
|
|
uint32_t txd_lower = le32_to_cpu(dp->lower.data);
|
|
uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
|
|
unsigned int split_size = txd_lower & 0xffff, bytes, sz;
|
|
unsigned int msh = 0xfffff;
|
|
uint64_t addr;
|
|
struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
|
|
struct e1000_tx *tp = &s->tx;
|
|
|
|
s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE);
|
|
if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
|
|
if (le32_to_cpu(xp->cmd_and_length) & E1000_TXD_CMD_TSE) {
|
|
e1000x_read_tx_ctx_descr(xp, &tp->tso_props);
|
|
s->use_tso_for_migration = 1;
|
|
tp->tso_frames = 0;
|
|
} else {
|
|
e1000x_read_tx_ctx_descr(xp, &tp->props);
|
|
s->use_tso_for_migration = 0;
|
|
}
|
|
return;
|
|
} else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
|
|
// data descriptor
|
|
if (tp->size == 0) {
|
|
tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
|
|
}
|
|
tp->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
|
|
} else {
|
|
// legacy descriptor
|
|
tp->cptse = 0;
|
|
}
|
|
|
|
if (e1000x_vlan_enabled(s->mac_reg) &&
|
|
e1000x_is_vlan_txd(txd_lower) &&
|
|
(tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) {
|
|
tp->vlan_needed = 1;
|
|
stw_be_p(tp->vlan_header,
|
|
le16_to_cpu(s->mac_reg[VET]));
|
|
stw_be_p(tp->vlan_header + 2,
|
|
le16_to_cpu(dp->upper.fields.special));
|
|
}
|
|
|
|
addr = le64_to_cpu(dp->buffer_addr);
|
|
if (tp->cptse) {
|
|
msh = tp->tso_props.hdr_len + tp->tso_props.mss;
|
|
do {
|
|
bytes = split_size;
|
|
if (tp->size + bytes > msh)
|
|
bytes = msh - tp->size;
|
|
|
|
bytes = MIN(sizeof(tp->data) - tp->size, bytes);
|
|
pci_dma_read(d, addr, tp->data + tp->size, bytes);
|
|
sz = tp->size + bytes;
|
|
if (sz >= tp->tso_props.hdr_len
|
|
&& tp->size < tp->tso_props.hdr_len) {
|
|
memmove(tp->header, tp->data, tp->tso_props.hdr_len);
|
|
}
|
|
tp->size = sz;
|
|
addr += bytes;
|
|
if (sz == msh) {
|
|
xmit_seg(s);
|
|
memmove(tp->data, tp->header, tp->tso_props.hdr_len);
|
|
tp->size = tp->tso_props.hdr_len;
|
|
}
|
|
split_size -= bytes;
|
|
} while (bytes && split_size);
|
|
} else {
|
|
split_size = MIN(sizeof(tp->data) - tp->size, split_size);
|
|
pci_dma_read(d, addr, tp->data + tp->size, split_size);
|
|
tp->size += split_size;
|
|
}
|
|
|
|
if (!(txd_lower & E1000_TXD_CMD_EOP))
|
|
return;
|
|
if (!(tp->cptse && tp->size < tp->tso_props.hdr_len)) {
|
|
xmit_seg(s);
|
|
}
|
|
tp->tso_frames = 0;
|
|
tp->sum_needed = 0;
|
|
tp->vlan_needed = 0;
|
|
tp->size = 0;
|
|
tp->cptse = 0;
|
|
}
|
|
|
|
static uint32_t
|
|
txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp)
|
|
{
|
|
PCIDevice *d = PCI_DEVICE(s);
|
|
uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
|
|
|
|
if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS)))
|
|
return 0;
|
|
txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) &
|
|
~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU);
|
|
dp->upper.data = cpu_to_le32(txd_upper);
|
|
pci_dma_write(d, base + ((char *)&dp->upper - (char *)dp),
|
|
&dp->upper, sizeof(dp->upper));
|
|
return E1000_ICR_TXDW;
|
|
}
|
|
|
|
static uint64_t tx_desc_base(E1000State *s)
|
|
{
|
|
uint64_t bah = s->mac_reg[TDBAH];
|
|
uint64_t bal = s->mac_reg[TDBAL] & ~0xf;
|
|
|
|
return (bah << 32) + bal;
|
|
}
|
|
|
|
static void
|
|
start_xmit(E1000State *s)
|
|
{
|
|
PCIDevice *d = PCI_DEVICE(s);
|
|
dma_addr_t base;
|
|
struct e1000_tx_desc desc;
|
|
uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE;
|
|
|
|
if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) {
|
|
DBGOUT(TX, "tx disabled\n");
|
|
return;
|
|
}
|
|
|
|
while (s->mac_reg[TDH] != s->mac_reg[TDT]) {
|
|
base = tx_desc_base(s) +
|
|
sizeof(struct e1000_tx_desc) * s->mac_reg[TDH];
|
|
pci_dma_read(d, base, &desc, sizeof(desc));
|
|
|
|
DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH],
|
|
(void *)(intptr_t)desc.buffer_addr, desc.lower.data,
|
|
desc.upper.data);
|
|
|
|
process_tx_desc(s, &desc);
|
|
cause |= txdesc_writeback(s, base, &desc);
|
|
|
|
if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN])
|
|
s->mac_reg[TDH] = 0;
|
|
/*
|
|
* the following could happen only if guest sw assigns
|
|
* bogus values to TDT/TDLEN.
|
|
* there's nothing too intelligent we could do about this.
|
|
*/
|
|
if (s->mac_reg[TDH] == tdh_start ||
|
|
tdh_start >= s->mac_reg[TDLEN] / sizeof(desc)) {
|
|
DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
|
|
tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]);
|
|
break;
|
|
}
|
|
}
|
|
set_ics(s, 0, cause);
|
|
}
|
|
|
|
static int
|
|
receive_filter(E1000State *s, const uint8_t *buf, int size)
|
|
{
|
|
uint32_t rctl = s->mac_reg[RCTL];
|
|
int isbcast = !memcmp(buf, bcast, sizeof bcast), ismcast = (buf[0] & 1);
|
|
|
|
if (e1000x_is_vlan_packet(buf, le16_to_cpu(s->mac_reg[VET])) &&
|
|
e1000x_vlan_rx_filter_enabled(s->mac_reg)) {
|
|
uint16_t vid = lduw_be_p(buf + 14);
|
|
uint32_t vfta = ldl_le_p((uint32_t*)(s->mac_reg + VFTA) +
|
|
((vid >> 5) & 0x7f));
|
|
if ((vfta & (1 << (vid & 0x1f))) == 0)
|
|
return 0;
|
|
}
|
|
|
|
if (!isbcast && !ismcast && (rctl & E1000_RCTL_UPE)) { /* promiscuous ucast */
|
|
return 1;
|
|
}
|
|
|
|
if (ismcast && (rctl & E1000_RCTL_MPE)) { /* promiscuous mcast */
|
|
e1000x_inc_reg_if_not_full(s->mac_reg, MPRC);
|
|
return 1;
|
|
}
|
|
|
|
if (isbcast && (rctl & E1000_RCTL_BAM)) { /* broadcast enabled */
|
|
e1000x_inc_reg_if_not_full(s->mac_reg, BPRC);
|
|
return 1;
|
|
}
|
|
|
|
return e1000x_rx_group_filter(s->mac_reg, buf);
|
|
}
|
|
|
|
static void
|
|
e1000_set_link_status(NetClientState *nc)
|
|
{
|
|
E1000State *s = qemu_get_nic_opaque(nc);
|
|
uint32_t old_status = s->mac_reg[STATUS];
|
|
|
|
if (nc->link_down) {
|
|
e1000x_update_regs_on_link_down(s->mac_reg, s->phy_reg);
|
|
} else {
|
|
if (have_autoneg(s) &&
|
|
!(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
|
|
e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer);
|
|
} else {
|
|
e1000_link_up(s);
|
|
}
|
|
}
|
|
|
|
if (s->mac_reg[STATUS] != old_status)
|
|
set_ics(s, 0, E1000_ICR_LSC);
|
|
}
|
|
|
|
static bool e1000_has_rxbufs(E1000State *s, size_t total_size)
|
|
{
|
|
int bufs;
|
|
/* Fast-path short packets */
|
|
if (total_size <= s->rxbuf_size) {
|
|
return s->mac_reg[RDH] != s->mac_reg[RDT];
|
|
}
|
|
if (s->mac_reg[RDH] < s->mac_reg[RDT]) {
|
|
bufs = s->mac_reg[RDT] - s->mac_reg[RDH];
|
|
} else if (s->mac_reg[RDH] > s->mac_reg[RDT]) {
|
|
bufs = s->mac_reg[RDLEN] / sizeof(struct e1000_rx_desc) +
|
|
s->mac_reg[RDT] - s->mac_reg[RDH];
|
|
} else {
|
|
return false;
|
|
}
|
|
return total_size <= bufs * s->rxbuf_size;
|
|
}
|
|
|
|
static bool
|
|
e1000_can_receive(NetClientState *nc)
|
|
{
|
|
E1000State *s = qemu_get_nic_opaque(nc);
|
|
|
|
return e1000x_rx_ready(&s->parent_obj, s->mac_reg) &&
|
|
e1000_has_rxbufs(s, 1) && !timer_pending(s->flush_queue_timer);
|
|
}
|
|
|
|
static uint64_t rx_desc_base(E1000State *s)
|
|
{
|
|
uint64_t bah = s->mac_reg[RDBAH];
|
|
uint64_t bal = s->mac_reg[RDBAL] & ~0xf;
|
|
|
|
return (bah << 32) + bal;
|
|
}
|
|
|
|
static void
|
|
e1000_receiver_overrun(E1000State *s, size_t size)
|
|
{
|
|
trace_e1000_receiver_overrun(size, s->mac_reg[RDH], s->mac_reg[RDT]);
|
|
e1000x_inc_reg_if_not_full(s->mac_reg, RNBC);
|
|
e1000x_inc_reg_if_not_full(s->mac_reg, MPC);
|
|
set_ics(s, 0, E1000_ICS_RXO);
|
|
}
|
|
|
|
static ssize_t
|
|
e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
|
|
{
|
|
E1000State *s = qemu_get_nic_opaque(nc);
|
|
PCIDevice *d = PCI_DEVICE(s);
|
|
struct e1000_rx_desc desc;
|
|
dma_addr_t base;
|
|
unsigned int n, rdt;
|
|
uint32_t rdh_start;
|
|
uint16_t vlan_special = 0;
|
|
uint8_t vlan_status = 0;
|
|
uint8_t min_buf[MIN_BUF_SIZE];
|
|
struct iovec min_iov;
|
|
uint8_t *filter_buf = iov->iov_base;
|
|
size_t size = iov_size(iov, iovcnt);
|
|
size_t iov_ofs = 0;
|
|
size_t desc_offset;
|
|
size_t desc_size;
|
|
size_t total_size;
|
|
|
|
if (!e1000x_hw_rx_enabled(s->mac_reg)) {
|
|
return -1;
|
|
}
|
|
|
|
if (timer_pending(s->flush_queue_timer)) {
|
|
return 0;
|
|
}
|
|
|
|
/* Pad to minimum Ethernet frame length */
|
|
if (size < sizeof(min_buf)) {
|
|
iov_to_buf(iov, iovcnt, 0, min_buf, size);
|
|
memset(&min_buf[size], 0, sizeof(min_buf) - size);
|
|
min_iov.iov_base = filter_buf = min_buf;
|
|
min_iov.iov_len = size = sizeof(min_buf);
|
|
iovcnt = 1;
|
|
iov = &min_iov;
|
|
} else if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) {
|
|
/* This is very unlikely, but may happen. */
|
|
iov_to_buf(iov, iovcnt, 0, min_buf, MAXIMUM_ETHERNET_HDR_LEN);
|
|
filter_buf = min_buf;
|
|
}
|
|
|
|
/* Discard oversized packets if !LPE and !SBP. */
|
|
if (e1000x_is_oversized(s->mac_reg, size)) {
|
|
return size;
|
|
}
|
|
|
|
if (!receive_filter(s, filter_buf, size)) {
|
|
return size;
|
|
}
|
|
|
|
if (e1000x_vlan_enabled(s->mac_reg) &&
|
|
e1000x_is_vlan_packet(filter_buf, le16_to_cpu(s->mac_reg[VET]))) {
|
|
vlan_special = cpu_to_le16(lduw_be_p(filter_buf + 14));
|
|
iov_ofs = 4;
|
|
if (filter_buf == iov->iov_base) {
|
|
memmove(filter_buf + 4, filter_buf, 12);
|
|
} else {
|
|
iov_from_buf(iov, iovcnt, 4, filter_buf, 12);
|
|
while (iov->iov_len <= iov_ofs) {
|
|
iov_ofs -= iov->iov_len;
|
|
iov++;
|
|
}
|
|
}
|
|
vlan_status = E1000_RXD_STAT_VP;
|
|
size -= 4;
|
|
}
|
|
|
|
rdh_start = s->mac_reg[RDH];
|
|
desc_offset = 0;
|
|
total_size = size + e1000x_fcs_len(s->mac_reg);
|
|
if (!e1000_has_rxbufs(s, total_size)) {
|
|
e1000_receiver_overrun(s, total_size);
|
|
return -1;
|
|
}
|
|
do {
|
|
desc_size = total_size - desc_offset;
|
|
if (desc_size > s->rxbuf_size) {
|
|
desc_size = s->rxbuf_size;
|
|
}
|
|
base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH];
|
|
pci_dma_read(d, base, &desc, sizeof(desc));
|
|
desc.special = vlan_special;
|
|
desc.status |= (vlan_status | E1000_RXD_STAT_DD);
|
|
if (desc.buffer_addr) {
|
|
if (desc_offset < size) {
|
|
size_t iov_copy;
|
|
hwaddr ba = le64_to_cpu(desc.buffer_addr);
|
|
size_t copy_size = size - desc_offset;
|
|
if (copy_size > s->rxbuf_size) {
|
|
copy_size = s->rxbuf_size;
|
|
}
|
|
do {
|
|
iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
|
|
pci_dma_write(d, ba, iov->iov_base + iov_ofs, iov_copy);
|
|
copy_size -= iov_copy;
|
|
ba += iov_copy;
|
|
iov_ofs += iov_copy;
|
|
if (iov_ofs == iov->iov_len) {
|
|
iov++;
|
|
iov_ofs = 0;
|
|
}
|
|
} while (copy_size);
|
|
}
|
|
desc_offset += desc_size;
|
|
desc.length = cpu_to_le16(desc_size);
|
|
if (desc_offset >= total_size) {
|
|
desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM;
|
|
} else {
|
|
/* Guest zeroing out status is not a hardware requirement.
|
|
Clear EOP in case guest didn't do it. */
|
|
desc.status &= ~E1000_RXD_STAT_EOP;
|
|
}
|
|
} else { // as per intel docs; skip descriptors with null buf addr
|
|
DBGOUT(RX, "Null RX descriptor!!\n");
|
|
}
|
|
pci_dma_write(d, base, &desc, sizeof(desc));
|
|
|
|
if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN])
|
|
s->mac_reg[RDH] = 0;
|
|
/* see comment in start_xmit; same here */
|
|
if (s->mac_reg[RDH] == rdh_start ||
|
|
rdh_start >= s->mac_reg[RDLEN] / sizeof(desc)) {
|
|
DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
|
|
rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]);
|
|
e1000_receiver_overrun(s, total_size);
|
|
return -1;
|
|
}
|
|
} while (desc_offset < total_size);
|
|
|
|
e1000x_update_rx_total_stats(s->mac_reg, size, total_size);
|
|
|
|
n = E1000_ICS_RXT0;
|
|
if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH])
|
|
rdt += s->mac_reg[RDLEN] / sizeof(desc);
|
|
if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >>
|
|
s->rxbuf_min_shift)
|
|
n |= E1000_ICS_RXDMT0;
|
|
|
|
set_ics(s, 0, n);
|
|
|
|
return size;
|
|
}
|
|
|
|
static ssize_t
|
|
e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size)
|
|
{
|
|
const struct iovec iov = {
|
|
.iov_base = (uint8_t *)buf,
|
|
.iov_len = size
|
|
};
|
|
|
|
return e1000_receive_iov(nc, &iov, 1);
|
|
}
|
|
|
|
static uint32_t
|
|
mac_readreg(E1000State *s, int index)
|
|
{
|
|
return s->mac_reg[index];
|
|
}
|
|
|
|
static uint32_t
|
|
mac_low4_read(E1000State *s, int index)
|
|
{
|
|
return s->mac_reg[index] & 0xf;
|
|
}
|
|
|
|
static uint32_t
|
|
mac_low11_read(E1000State *s, int index)
|
|
{
|
|
return s->mac_reg[index] & 0x7ff;
|
|
}
|
|
|
|
static uint32_t
|
|
mac_low13_read(E1000State *s, int index)
|
|
{
|
|
return s->mac_reg[index] & 0x1fff;
|
|
}
|
|
|
|
static uint32_t
|
|
mac_low16_read(E1000State *s, int index)
|
|
{
|
|
return s->mac_reg[index] & 0xffff;
|
|
}
|
|
|
|
static uint32_t
|
|
mac_icr_read(E1000State *s, int index)
|
|
{
|
|
uint32_t ret = s->mac_reg[ICR];
|
|
|
|
DBGOUT(INTERRUPT, "ICR read: %x\n", ret);
|
|
set_interrupt_cause(s, 0, 0);
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t
|
|
mac_read_clr4(E1000State *s, int index)
|
|
{
|
|
uint32_t ret = s->mac_reg[index];
|
|
|
|
s->mac_reg[index] = 0;
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t
|
|
mac_read_clr8(E1000State *s, int index)
|
|
{
|
|
uint32_t ret = s->mac_reg[index];
|
|
|
|
s->mac_reg[index] = 0;
|
|
s->mac_reg[index-1] = 0;
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
mac_writereg(E1000State *s, int index, uint32_t val)
|
|
{
|
|
uint32_t macaddr[2];
|
|
|
|
s->mac_reg[index] = val;
|
|
|
|
if (index == RA + 1) {
|
|
macaddr[0] = cpu_to_le32(s->mac_reg[RA]);
|
|
macaddr[1] = cpu_to_le32(s->mac_reg[RA + 1]);
|
|
qemu_format_nic_info_str(qemu_get_queue(s->nic), (uint8_t *)macaddr);
|
|
}
|
|
}
|
|
|
|
static void
|
|
set_rdt(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[index] = val & 0xffff;
|
|
if (e1000_has_rxbufs(s, 1)) {
|
|
qemu_flush_queued_packets(qemu_get_queue(s->nic));
|
|
}
|
|
}
|
|
|
|
static void
|
|
set_16bit(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[index] = val & 0xffff;
|
|
}
|
|
|
|
static void
|
|
set_dlen(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[index] = val & 0xfff80;
|
|
}
|
|
|
|
static void
|
|
set_tctl(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[index] = val;
|
|
s->mac_reg[TDT] &= 0xffff;
|
|
start_xmit(s);
|
|
}
|
|
|
|
static void
|
|
set_icr(E1000State *s, int index, uint32_t val)
|
|
{
|
|
DBGOUT(INTERRUPT, "set_icr %x\n", val);
|
|
set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val);
|
|
}
|
|
|
|
static void
|
|
set_imc(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[IMS] &= ~val;
|
|
set_ics(s, 0, 0);
|
|
}
|
|
|
|
static void
|
|
set_ims(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[IMS] |= val;
|
|
set_ics(s, 0, 0);
|
|
}
|
|
|
|
#define getreg(x) [x] = mac_readreg
|
|
typedef uint32_t (*readops)(E1000State *, int);
|
|
static const readops macreg_readops[] = {
|
|
getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL),
|
|
getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL),
|
|
getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS),
|
|
getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL),
|
|
getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS),
|
|
getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL),
|
|
getreg(TDLEN), getreg(RDLEN), getreg(RDTR), getreg(RADV),
|
|
getreg(TADV), getreg(ITR), getreg(FCRUC), getreg(IPAV),
|
|
getreg(WUC), getreg(WUS), getreg(SCC), getreg(ECOL),
|
|
getreg(MCC), getreg(LATECOL), getreg(COLC), getreg(DC),
|
|
getreg(TNCRS), getreg(SEQEC), getreg(CEXTERR), getreg(RLEC),
|
|
getreg(XONRXC), getreg(XONTXC), getreg(XOFFRXC), getreg(XOFFTXC),
|
|
getreg(RFC), getreg(RJC), getreg(RNBC), getreg(TSCTFC),
|
|
getreg(MGTPRC), getreg(MGTPDC), getreg(MGTPTC), getreg(GORCL),
|
|
getreg(GOTCL),
|
|
|
|
[TOTH] = mac_read_clr8, [TORH] = mac_read_clr8,
|
|
[GOTCH] = mac_read_clr8, [GORCH] = mac_read_clr8,
|
|
[PRC64] = mac_read_clr4, [PRC127] = mac_read_clr4,
|
|
[PRC255] = mac_read_clr4, [PRC511] = mac_read_clr4,
|
|
[PRC1023] = mac_read_clr4, [PRC1522] = mac_read_clr4,
|
|
[PTC64] = mac_read_clr4, [PTC127] = mac_read_clr4,
|
|
[PTC255] = mac_read_clr4, [PTC511] = mac_read_clr4,
|
|
[PTC1023] = mac_read_clr4, [PTC1522] = mac_read_clr4,
|
|
[GPRC] = mac_read_clr4, [GPTC] = mac_read_clr4,
|
|
[TPT] = mac_read_clr4, [TPR] = mac_read_clr4,
|
|
[RUC] = mac_read_clr4, [ROC] = mac_read_clr4,
|
|
[BPRC] = mac_read_clr4, [MPRC] = mac_read_clr4,
|
|
[TSCTC] = mac_read_clr4, [BPTC] = mac_read_clr4,
|
|
[MPTC] = mac_read_clr4,
|
|
[ICR] = mac_icr_read, [EECD] = get_eecd,
|
|
[EERD] = flash_eerd_read,
|
|
[RDFH] = mac_low13_read, [RDFT] = mac_low13_read,
|
|
[RDFHS] = mac_low13_read, [RDFTS] = mac_low13_read,
|
|
[RDFPC] = mac_low13_read,
|
|
[TDFH] = mac_low11_read, [TDFT] = mac_low11_read,
|
|
[TDFHS] = mac_low13_read, [TDFTS] = mac_low13_read,
|
|
[TDFPC] = mac_low13_read,
|
|
[AIT] = mac_low16_read,
|
|
|
|
[CRCERRS ... MPC] = &mac_readreg,
|
|
[IP6AT ... IP6AT+3] = &mac_readreg, [IP4AT ... IP4AT+6] = &mac_readreg,
|
|
[FFLT ... FFLT+6] = &mac_low11_read,
|
|
[RA ... RA+31] = &mac_readreg,
|
|
[WUPM ... WUPM+31] = &mac_readreg,
|
|
[MTA ... MTA+127] = &mac_readreg,
|
|
[VFTA ... VFTA+127] = &mac_readreg,
|
|
[FFMT ... FFMT+254] = &mac_low4_read,
|
|
[FFVT ... FFVT+254] = &mac_readreg,
|
|
[PBM ... PBM+16383] = &mac_readreg,
|
|
};
|
|
enum { NREADOPS = ARRAY_SIZE(macreg_readops) };
|
|
|
|
#define putreg(x) [x] = mac_writereg
|
|
typedef void (*writeops)(E1000State *, int, uint32_t);
|
|
static const writeops macreg_writeops[] = {
|
|
putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC),
|
|
putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH),
|
|
putreg(RDBAL), putreg(LEDCTL), putreg(VET), putreg(FCRUC),
|
|
putreg(TDFH), putreg(TDFT), putreg(TDFHS), putreg(TDFTS),
|
|
putreg(TDFPC), putreg(RDFH), putreg(RDFT), putreg(RDFHS),
|
|
putreg(RDFTS), putreg(RDFPC), putreg(IPAV), putreg(WUC),
|
|
putreg(WUS), putreg(AIT),
|
|
|
|
[TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl,
|
|
[TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics,
|
|
[TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt,
|
|
[IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr,
|
|
[EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl,
|
|
[RDTR] = set_16bit, [RADV] = set_16bit, [TADV] = set_16bit,
|
|
[ITR] = set_16bit,
|
|
|
|
[IP6AT ... IP6AT+3] = &mac_writereg, [IP4AT ... IP4AT+6] = &mac_writereg,
|
|
[FFLT ... FFLT+6] = &mac_writereg,
|
|
[RA ... RA+31] = &mac_writereg,
|
|
[WUPM ... WUPM+31] = &mac_writereg,
|
|
[MTA ... MTA+127] = &mac_writereg,
|
|
[VFTA ... VFTA+127] = &mac_writereg,
|
|
[FFMT ... FFMT+254] = &mac_writereg, [FFVT ... FFVT+254] = &mac_writereg,
|
|
[PBM ... PBM+16383] = &mac_writereg,
|
|
};
|
|
|
|
enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) };
|
|
|
|
enum { MAC_ACCESS_PARTIAL = 1, MAC_ACCESS_FLAG_NEEDED = 2 };
|
|
|
|
#define markflag(x) ((E1000_FLAG_##x << 2) | MAC_ACCESS_FLAG_NEEDED)
|
|
/* In the array below the meaning of the bits is: [f|f|f|f|f|f|n|p]
|
|
* f - flag bits (up to 6 possible flags)
|
|
* n - flag needed
|
|
* p - partially implenented */
|
|
static const uint8_t mac_reg_access[0x8000] = {
|
|
[RDTR] = markflag(MIT), [TADV] = markflag(MIT),
|
|
[RADV] = markflag(MIT), [ITR] = markflag(MIT),
|
|
|
|
[IPAV] = markflag(MAC), [WUC] = markflag(MAC),
|
|
[IP6AT] = markflag(MAC), [IP4AT] = markflag(MAC),
|
|
[FFVT] = markflag(MAC), [WUPM] = markflag(MAC),
|
|
[ECOL] = markflag(MAC), [MCC] = markflag(MAC),
|
|
[DC] = markflag(MAC), [TNCRS] = markflag(MAC),
|
|
[RLEC] = markflag(MAC), [XONRXC] = markflag(MAC),
|
|
[XOFFTXC] = markflag(MAC), [RFC] = markflag(MAC),
|
|
[TSCTFC] = markflag(MAC), [MGTPRC] = markflag(MAC),
|
|
[WUS] = markflag(MAC), [AIT] = markflag(MAC),
|
|
[FFLT] = markflag(MAC), [FFMT] = markflag(MAC),
|
|
[SCC] = markflag(MAC), [FCRUC] = markflag(MAC),
|
|
[LATECOL] = markflag(MAC), [COLC] = markflag(MAC),
|
|
[SEQEC] = markflag(MAC), [CEXTERR] = markflag(MAC),
|
|
[XONTXC] = markflag(MAC), [XOFFRXC] = markflag(MAC),
|
|
[RJC] = markflag(MAC), [RNBC] = markflag(MAC),
|
|
[MGTPDC] = markflag(MAC), [MGTPTC] = markflag(MAC),
|
|
[RUC] = markflag(MAC), [ROC] = markflag(MAC),
|
|
[GORCL] = markflag(MAC), [GORCH] = markflag(MAC),
|
|
[GOTCL] = markflag(MAC), [GOTCH] = markflag(MAC),
|
|
[BPRC] = markflag(MAC), [MPRC] = markflag(MAC),
|
|
[TSCTC] = markflag(MAC), [PRC64] = markflag(MAC),
|
|
[PRC127] = markflag(MAC), [PRC255] = markflag(MAC),
|
|
[PRC511] = markflag(MAC), [PRC1023] = markflag(MAC),
|
|
[PRC1522] = markflag(MAC), [PTC64] = markflag(MAC),
|
|
[PTC127] = markflag(MAC), [PTC255] = markflag(MAC),
|
|
[PTC511] = markflag(MAC), [PTC1023] = markflag(MAC),
|
|
[PTC1522] = markflag(MAC), [MPTC] = markflag(MAC),
|
|
[BPTC] = markflag(MAC),
|
|
|
|
[TDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL,
|
|
[TDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL,
|
|
[TDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
|
|
[TDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
|
|
[TDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL,
|
|
[RDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL,
|
|
[RDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL,
|
|
[RDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
|
|
[RDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
|
|
[RDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL,
|
|
[PBM] = markflag(MAC) | MAC_ACCESS_PARTIAL,
|
|
};
|
|
|
|
static void
|
|
e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val,
|
|
unsigned size)
|
|
{
|
|
E1000State *s = opaque;
|
|
unsigned int index = (addr & 0x1ffff) >> 2;
|
|
|
|
if (index < NWRITEOPS && macreg_writeops[index]) {
|
|
if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED)
|
|
|| (s->compat_flags & (mac_reg_access[index] >> 2))) {
|
|
if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
|
|
DBGOUT(GENERAL, "Writing to register at offset: 0x%08x. "
|
|
"It is not fully implemented.\n", index<<2);
|
|
}
|
|
macreg_writeops[index](s, index, val);
|
|
} else { /* "flag needed" bit is set, but the flag is not active */
|
|
DBGOUT(MMIO, "MMIO write attempt to disabled reg. addr=0x%08x\n",
|
|
index<<2);
|
|
}
|
|
} else if (index < NREADOPS && macreg_readops[index]) {
|
|
DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n",
|
|
index<<2, val);
|
|
} else {
|
|
DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n",
|
|
index<<2, val);
|
|
}
|
|
}
|
|
|
|
static uint64_t
|
|
e1000_mmio_read(void *opaque, hwaddr addr, unsigned size)
|
|
{
|
|
E1000State *s = opaque;
|
|
unsigned int index = (addr & 0x1ffff) >> 2;
|
|
|
|
if (index < NREADOPS && macreg_readops[index]) {
|
|
if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED)
|
|
|| (s->compat_flags & (mac_reg_access[index] >> 2))) {
|
|
if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
|
|
DBGOUT(GENERAL, "Reading register at offset: 0x%08x. "
|
|
"It is not fully implemented.\n", index<<2);
|
|
}
|
|
return macreg_readops[index](s, index);
|
|
} else { /* "flag needed" bit is set, but the flag is not active */
|
|
DBGOUT(MMIO, "MMIO read attempt of disabled reg. addr=0x%08x\n",
|
|
index<<2);
|
|
}
|
|
} else {
|
|
DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const MemoryRegionOps e1000_mmio_ops = {
|
|
.read = e1000_mmio_read,
|
|
.write = e1000_mmio_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
.impl = {
|
|
.min_access_size = 4,
|
|
.max_access_size = 4,
|
|
},
|
|
};
|
|
|
|
static uint64_t e1000_io_read(void *opaque, hwaddr addr,
|
|
unsigned size)
|
|
{
|
|
E1000State *s = opaque;
|
|
|
|
(void)s;
|
|
return 0;
|
|
}
|
|
|
|
static void e1000_io_write(void *opaque, hwaddr addr,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
E1000State *s = opaque;
|
|
|
|
(void)s;
|
|
}
|
|
|
|
static const MemoryRegionOps e1000_io_ops = {
|
|
.read = e1000_io_read,
|
|
.write = e1000_io_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
};
|
|
|
|
static bool is_version_1(void *opaque, int version_id)
|
|
{
|
|
return version_id == 1;
|
|
}
|
|
|
|
static int e1000_pre_save(void *opaque)
|
|
{
|
|
E1000State *s = opaque;
|
|
NetClientState *nc = qemu_get_queue(s->nic);
|
|
|
|
/*
|
|
* If link is down and auto-negotiation is supported and ongoing,
|
|
* complete auto-negotiation immediately. This allows us to look
|
|
* at MII_SR_AUTONEG_COMPLETE to infer link status on load.
|
|
*/
|
|
if (nc->link_down && have_autoneg(s)) {
|
|
s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
|
|
}
|
|
|
|
/* Decide which set of props to migrate in the main structure */
|
|
if (chkflag(TSO) || !s->use_tso_for_migration) {
|
|
/* Either we're migrating with the extra subsection, in which
|
|
* case the mig_props is always 'props' OR
|
|
* we've not got the subsection, but 'props' was the last
|
|
* updated.
|
|
*/
|
|
s->mig_props = s->tx.props;
|
|
} else {
|
|
/* We're not using the subsection, and 'tso_props' was
|
|
* the last updated.
|
|
*/
|
|
s->mig_props = s->tx.tso_props;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int e1000_post_load(void *opaque, int version_id)
|
|
{
|
|
E1000State *s = opaque;
|
|
NetClientState *nc = qemu_get_queue(s->nic);
|
|
|
|
if (!chkflag(MIT)) {
|
|
s->mac_reg[ITR] = s->mac_reg[RDTR] = s->mac_reg[RADV] =
|
|
s->mac_reg[TADV] = 0;
|
|
s->mit_irq_level = false;
|
|
}
|
|
s->mit_ide = 0;
|
|
s->mit_timer_on = true;
|
|
timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1);
|
|
|
|
/* nc.link_down can't be migrated, so infer link_down according
|
|
* to link status bit in mac_reg[STATUS].
|
|
* Alternatively, restart link negotiation if it was in progress. */
|
|
nc->link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0;
|
|
|
|
if (have_autoneg(s) &&
|
|
!(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
|
|
nc->link_down = false;
|
|
timer_mod(s->autoneg_timer,
|
|
qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
|
|
}
|
|
|
|
s->tx.props = s->mig_props;
|
|
if (!s->received_tx_tso) {
|
|
/* We received only one set of offload data (tx.props)
|
|
* and haven't got tx.tso_props. The best we can do
|
|
* is dupe the data.
|
|
*/
|
|
s->tx.tso_props = s->mig_props;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int e1000_tx_tso_post_load(void *opaque, int version_id)
|
|
{
|
|
E1000State *s = opaque;
|
|
s->received_tx_tso = true;
|
|
return 0;
|
|
}
|
|
|
|
static bool e1000_mit_state_needed(void *opaque)
|
|
{
|
|
E1000State *s = opaque;
|
|
|
|
return chkflag(MIT);
|
|
}
|
|
|
|
static bool e1000_full_mac_needed(void *opaque)
|
|
{
|
|
E1000State *s = opaque;
|
|
|
|
return chkflag(MAC);
|
|
}
|
|
|
|
static bool e1000_tso_state_needed(void *opaque)
|
|
{
|
|
E1000State *s = opaque;
|
|
|
|
return chkflag(TSO);
|
|
}
|
|
|
|
static const VMStateDescription vmstate_e1000_mit_state = {
|
|
.name = "e1000/mit_state",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = e1000_mit_state_needed,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT32(mac_reg[RDTR], E1000State),
|
|
VMSTATE_UINT32(mac_reg[RADV], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TADV], E1000State),
|
|
VMSTATE_UINT32(mac_reg[ITR], E1000State),
|
|
VMSTATE_BOOL(mit_irq_level, E1000State),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static const VMStateDescription vmstate_e1000_full_mac_state = {
|
|
.name = "e1000/full_mac_state",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = e1000_full_mac_needed,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT32_ARRAY(mac_reg, E1000State, 0x8000),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static const VMStateDescription vmstate_e1000_tx_tso_state = {
|
|
.name = "e1000/tx_tso_state",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = e1000_tso_state_needed,
|
|
.post_load = e1000_tx_tso_post_load,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT8(tx.tso_props.ipcss, E1000State),
|
|
VMSTATE_UINT8(tx.tso_props.ipcso, E1000State),
|
|
VMSTATE_UINT16(tx.tso_props.ipcse, E1000State),
|
|
VMSTATE_UINT8(tx.tso_props.tucss, E1000State),
|
|
VMSTATE_UINT8(tx.tso_props.tucso, E1000State),
|
|
VMSTATE_UINT16(tx.tso_props.tucse, E1000State),
|
|
VMSTATE_UINT32(tx.tso_props.paylen, E1000State),
|
|
VMSTATE_UINT8(tx.tso_props.hdr_len, E1000State),
|
|
VMSTATE_UINT16(tx.tso_props.mss, E1000State),
|
|
VMSTATE_INT8(tx.tso_props.ip, E1000State),
|
|
VMSTATE_INT8(tx.tso_props.tcp, E1000State),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static const VMStateDescription vmstate_e1000 = {
|
|
.name = "e1000",
|
|
.version_id = 2,
|
|
.minimum_version_id = 1,
|
|
.pre_save = e1000_pre_save,
|
|
.post_load = e1000_post_load,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_PCI_DEVICE(parent_obj, E1000State),
|
|
VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */
|
|
VMSTATE_UNUSED(4), /* Was mmio_base. */
|
|
VMSTATE_UINT32(rxbuf_size, E1000State),
|
|
VMSTATE_UINT32(rxbuf_min_shift, E1000State),
|
|
VMSTATE_UINT32(eecd_state.val_in, E1000State),
|
|
VMSTATE_UINT16(eecd_state.bitnum_in, E1000State),
|
|
VMSTATE_UINT16(eecd_state.bitnum_out, E1000State),
|
|
VMSTATE_UINT16(eecd_state.reading, E1000State),
|
|
VMSTATE_UINT32(eecd_state.old_eecd, E1000State),
|
|
VMSTATE_UINT8(mig_props.ipcss, E1000State),
|
|
VMSTATE_UINT8(mig_props.ipcso, E1000State),
|
|
VMSTATE_UINT16(mig_props.ipcse, E1000State),
|
|
VMSTATE_UINT8(mig_props.tucss, E1000State),
|
|
VMSTATE_UINT8(mig_props.tucso, E1000State),
|
|
VMSTATE_UINT16(mig_props.tucse, E1000State),
|
|
VMSTATE_UINT32(mig_props.paylen, E1000State),
|
|
VMSTATE_UINT8(mig_props.hdr_len, E1000State),
|
|
VMSTATE_UINT16(mig_props.mss, E1000State),
|
|
VMSTATE_UINT16(tx.size, E1000State),
|
|
VMSTATE_UINT16(tx.tso_frames, E1000State),
|
|
VMSTATE_UINT8(tx.sum_needed, E1000State),
|
|
VMSTATE_INT8(mig_props.ip, E1000State),
|
|
VMSTATE_INT8(mig_props.tcp, E1000State),
|
|
VMSTATE_BUFFER(tx.header, E1000State),
|
|
VMSTATE_BUFFER(tx.data, E1000State),
|
|
VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64),
|
|
VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20),
|
|
VMSTATE_UINT32(mac_reg[CTRL], E1000State),
|
|
VMSTATE_UINT32(mac_reg[EECD], E1000State),
|
|
VMSTATE_UINT32(mac_reg[EERD], E1000State),
|
|
VMSTATE_UINT32(mac_reg[GPRC], E1000State),
|
|
VMSTATE_UINT32(mac_reg[GPTC], E1000State),
|
|
VMSTATE_UINT32(mac_reg[ICR], E1000State),
|
|
VMSTATE_UINT32(mac_reg[ICS], E1000State),
|
|
VMSTATE_UINT32(mac_reg[IMC], E1000State),
|
|
VMSTATE_UINT32(mac_reg[IMS], E1000State),
|
|
VMSTATE_UINT32(mac_reg[LEDCTL], E1000State),
|
|
VMSTATE_UINT32(mac_reg[MANC], E1000State),
|
|
VMSTATE_UINT32(mac_reg[MDIC], E1000State),
|
|
VMSTATE_UINT32(mac_reg[MPC], E1000State),
|
|
VMSTATE_UINT32(mac_reg[PBA], E1000State),
|
|
VMSTATE_UINT32(mac_reg[RCTL], E1000State),
|
|
VMSTATE_UINT32(mac_reg[RDBAH], E1000State),
|
|
VMSTATE_UINT32(mac_reg[RDBAL], E1000State),
|
|
VMSTATE_UINT32(mac_reg[RDH], E1000State),
|
|
VMSTATE_UINT32(mac_reg[RDLEN], E1000State),
|
|
VMSTATE_UINT32(mac_reg[RDT], E1000State),
|
|
VMSTATE_UINT32(mac_reg[STATUS], E1000State),
|
|
VMSTATE_UINT32(mac_reg[SWSM], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TCTL], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TDBAH], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TDBAL], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TDH], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TDLEN], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TDT], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TORH], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TORL], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TOTH], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TOTL], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TPR], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TPT], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TXDCTL], E1000State),
|
|
VMSTATE_UINT32(mac_reg[WUFC], E1000State),
|
|
VMSTATE_UINT32(mac_reg[VET], E1000State),
|
|
VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32),
|
|
VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128),
|
|
VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
.subsections = (const VMStateDescription*[]) {
|
|
&vmstate_e1000_mit_state,
|
|
&vmstate_e1000_full_mac_state,
|
|
&vmstate_e1000_tx_tso_state,
|
|
NULL
|
|
}
|
|
};
|
|
|
|
/*
|
|
* EEPROM contents documented in Tables 5-2 and 5-3, pp. 98-102.
|
|
* Note: A valid DevId will be inserted during pci_e1000_realize().
|
|
*/
|
|
static const uint16_t e1000_eeprom_template[64] = {
|
|
0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000,
|
|
0x3000, 0x1000, 0x6403, 0 /*DevId*/, 0x8086, 0 /*DevId*/, 0x8086, 0x3040,
|
|
0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700,
|
|
0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706,
|
|
0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000,
|
|
};
|
|
|
|
/* PCI interface */
|
|
|
|
static void
|
|
e1000_mmio_setup(E1000State *d)
|
|
{
|
|
int i;
|
|
const uint32_t excluded_regs[] = {
|
|
E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS,
|
|
E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE
|
|
};
|
|
|
|
memory_region_init_io(&d->mmio, OBJECT(d), &e1000_mmio_ops, d,
|
|
"e1000-mmio", PNPMMIO_SIZE);
|
|
memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]);
|
|
for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++)
|
|
memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4,
|
|
excluded_regs[i+1] - excluded_regs[i] - 4);
|
|
memory_region_init_io(&d->io, OBJECT(d), &e1000_io_ops, d, "e1000-io", IOPORT_SIZE);
|
|
}
|
|
|
|
static void
|
|
pci_e1000_uninit(PCIDevice *dev)
|
|
{
|
|
E1000State *d = E1000(dev);
|
|
|
|
timer_del(d->autoneg_timer);
|
|
timer_free(d->autoneg_timer);
|
|
timer_del(d->mit_timer);
|
|
timer_free(d->mit_timer);
|
|
timer_del(d->flush_queue_timer);
|
|
timer_free(d->flush_queue_timer);
|
|
qemu_del_nic(d->nic);
|
|
}
|
|
|
|
static NetClientInfo net_e1000_info = {
|
|
.type = NET_CLIENT_DRIVER_NIC,
|
|
.size = sizeof(NICState),
|
|
.can_receive = e1000_can_receive,
|
|
.receive = e1000_receive,
|
|
.receive_iov = e1000_receive_iov,
|
|
.link_status_changed = e1000_set_link_status,
|
|
};
|
|
|
|
static void e1000_write_config(PCIDevice *pci_dev, uint32_t address,
|
|
uint32_t val, int len)
|
|
{
|
|
E1000State *s = E1000(pci_dev);
|
|
|
|
pci_default_write_config(pci_dev, address, val, len);
|
|
|
|
if (range_covers_byte(address, len, PCI_COMMAND) &&
|
|
(pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) {
|
|
qemu_flush_queued_packets(qemu_get_queue(s->nic));
|
|
}
|
|
}
|
|
|
|
static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp)
|
|
{
|
|
DeviceState *dev = DEVICE(pci_dev);
|
|
E1000State *d = E1000(pci_dev);
|
|
uint8_t *pci_conf;
|
|
uint8_t *macaddr;
|
|
|
|
pci_dev->config_write = e1000_write_config;
|
|
|
|
pci_conf = pci_dev->config;
|
|
|
|
/* TODO: RST# value should be 0, PCI spec 6.2.4 */
|
|
pci_conf[PCI_CACHE_LINE_SIZE] = 0x10;
|
|
|
|
pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
|
|
|
|
e1000_mmio_setup(d);
|
|
|
|
pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio);
|
|
|
|
pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io);
|
|
|
|
qemu_macaddr_default_if_unset(&d->conf.macaddr);
|
|
macaddr = d->conf.macaddr.a;
|
|
|
|
e1000x_core_prepare_eeprom(d->eeprom_data,
|
|
e1000_eeprom_template,
|
|
sizeof(e1000_eeprom_template),
|
|
PCI_DEVICE_GET_CLASS(pci_dev)->device_id,
|
|
macaddr);
|
|
|
|
d->nic = qemu_new_nic(&net_e1000_info, &d->conf,
|
|
object_get_typename(OBJECT(d)), dev->id, d);
|
|
|
|
qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr);
|
|
|
|
d->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000_autoneg_timer, d);
|
|
d->mit_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000_mit_timer, d);
|
|
d->flush_queue_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
|
|
e1000_flush_queue_timer, d);
|
|
}
|
|
|
|
static void qdev_e1000_reset(DeviceState *dev)
|
|
{
|
|
E1000State *d = E1000(dev);
|
|
e1000_reset(d);
|
|
}
|
|
|
|
static Property e1000_properties[] = {
|
|
DEFINE_NIC_PROPERTIES(E1000State, conf),
|
|
DEFINE_PROP_BIT("autonegotiation", E1000State,
|
|
compat_flags, E1000_FLAG_AUTONEG_BIT, true),
|
|
DEFINE_PROP_BIT("mitigation", E1000State,
|
|
compat_flags, E1000_FLAG_MIT_BIT, true),
|
|
DEFINE_PROP_BIT("extra_mac_registers", E1000State,
|
|
compat_flags, E1000_FLAG_MAC_BIT, true),
|
|
DEFINE_PROP_BIT("migrate_tso_props", E1000State,
|
|
compat_flags, E1000_FLAG_TSO_BIT, true),
|
|
DEFINE_PROP_END_OF_LIST(),
|
|
};
|
|
|
|
typedef struct E1000Info {
|
|
const char *name;
|
|
uint16_t device_id;
|
|
uint8_t revision;
|
|
uint16_t phy_id2;
|
|
} E1000Info;
|
|
|
|
static void e1000_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
|
|
E1000BaseClass *e = E1000_DEVICE_CLASS(klass);
|
|
const E1000Info *info = data;
|
|
|
|
k->realize = pci_e1000_realize;
|
|
k->exit = pci_e1000_uninit;
|
|
k->romfile = "efi-e1000.rom";
|
|
k->vendor_id = PCI_VENDOR_ID_INTEL;
|
|
k->device_id = info->device_id;
|
|
k->revision = info->revision;
|
|
e->phy_id2 = info->phy_id2;
|
|
k->class_id = PCI_CLASS_NETWORK_ETHERNET;
|
|
set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
|
|
dc->desc = "Intel Gigabit Ethernet";
|
|
dc->reset = qdev_e1000_reset;
|
|
dc->vmsd = &vmstate_e1000;
|
|
device_class_set_props(dc, e1000_properties);
|
|
}
|
|
|
|
static void e1000_instance_init(Object *obj)
|
|
{
|
|
E1000State *n = E1000(obj);
|
|
device_add_bootindex_property(obj, &n->conf.bootindex,
|
|
"bootindex", "/ethernet-phy@0",
|
|
DEVICE(n));
|
|
}
|
|
|
|
static const TypeInfo e1000_base_info = {
|
|
.name = TYPE_E1000_BASE,
|
|
.parent = TYPE_PCI_DEVICE,
|
|
.instance_size = sizeof(E1000State),
|
|
.instance_init = e1000_instance_init,
|
|
.class_size = sizeof(E1000BaseClass),
|
|
.abstract = true,
|
|
.interfaces = (InterfaceInfo[]) {
|
|
{ INTERFACE_CONVENTIONAL_PCI_DEVICE },
|
|
{ },
|
|
},
|
|
};
|
|
|
|
static const E1000Info e1000_devices[] = {
|
|
{
|
|
.name = "e1000",
|
|
.device_id = E1000_DEV_ID_82540EM,
|
|
.revision = 0x03,
|
|
.phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT,
|
|
},
|
|
{
|
|
.name = "e1000-82544gc",
|
|
.device_id = E1000_DEV_ID_82544GC_COPPER,
|
|
.revision = 0x03,
|
|
.phy_id2 = E1000_PHY_ID2_82544x,
|
|
},
|
|
{
|
|
.name = "e1000-82545em",
|
|
.device_id = E1000_DEV_ID_82545EM_COPPER,
|
|
.revision = 0x03,
|
|
.phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT,
|
|
},
|
|
};
|
|
|
|
static void e1000_register_types(void)
|
|
{
|
|
int i;
|
|
|
|
type_register_static(&e1000_base_info);
|
|
for (i = 0; i < ARRAY_SIZE(e1000_devices); i++) {
|
|
const E1000Info *info = &e1000_devices[i];
|
|
TypeInfo type_info = {};
|
|
|
|
type_info.name = info->name;
|
|
type_info.parent = TYPE_E1000_BASE;
|
|
type_info.class_data = (void *)info;
|
|
type_info.class_init = e1000_class_init;
|
|
|
|
type_register(&type_info);
|
|
}
|
|
}
|
|
|
|
type_init(e1000_register_types)
|