historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/hw/xen/xen_pt_config_init.c
2024-01-16 11:20:27 -06:00

2110 lines
65 KiB
C

/*
* Copyright (c) 2007, Neocleus Corporation.
* Copyright (c) 2007, Intel Corporation.
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Alex Novik <alex@neocleus.com>
* Allen Kay <allen.m.kay@intel.com>
* Guy Zana <guy@neocleus.com>
*
* This file implements direct PCI assignment to a HVM guest
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/timer.h"
#include "hw/xen/xen-legacy-backend.h"
#include "xen_pt.h"
#define XEN_PT_MERGE_VALUE(value, data, val_mask) \
(((value) & (val_mask)) | ((data) & ~(val_mask)))
#define XEN_PT_INVALID_REG 0xFFFFFFFF /* invalid register value */
/* prototype */
static int xen_pt_ptr_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
uint32_t real_offset, uint32_t *data);
/* helper */
/* A return value of 1 means the capability should NOT be exposed to guest. */
static int xen_pt_hide_dev_cap(const XenHostPCIDevice *d, uint8_t grp_id)
{
switch (grp_id) {
case PCI_CAP_ID_EXP:
/* The PCI Express Capability Structure of the VF of Intel 82599 10GbE
* Controller looks trivial, e.g., the PCI Express Capabilities
* Register is 0. We should not try to expose it to guest.
*
* The datasheet is available at
* http://download.intel.com/design/network/datashts/82599_datasheet.pdf
*
* See 'Table 9.7. VF PCIe Configuration Space' of the datasheet, the
* PCI Express Capability Structure of the VF of Intel 82599 10GbE
* Controller looks trivial, e.g., the PCI Express Capabilities
* Register is 0, so the Capability Version is 0 and
* xen_pt_pcie_size_init() would fail.
*/
if (d->vendor_id == PCI_VENDOR_ID_INTEL &&
d->device_id == PCI_DEVICE_ID_INTEL_82599_SFP_VF) {
return 1;
}
break;
}
return 0;
}
/* find emulate register group entry */
XenPTRegGroup *xen_pt_find_reg_grp(XenPCIPassthroughState *s, uint32_t address)
{
XenPTRegGroup *entry = NULL;
/* find register group entry */
QLIST_FOREACH(entry, &s->reg_grps, entries) {
/* check address */
if ((entry->base_offset <= address)
&& ((entry->base_offset + entry->size) > address)) {
return entry;
}
}
/* group entry not found */
return NULL;
}
/* find emulate register entry */
XenPTReg *xen_pt_find_reg(XenPTRegGroup *reg_grp, uint32_t address)
{
XenPTReg *reg_entry = NULL;
XenPTRegInfo *reg = NULL;
uint32_t real_offset = 0;
/* find register entry */
QLIST_FOREACH(reg_entry, &reg_grp->reg_tbl_list, entries) {
reg = reg_entry->reg;
real_offset = reg_grp->base_offset + reg->offset;
/* check address */
if ((real_offset <= address)
&& ((real_offset + reg->size) > address)) {
return reg_entry;
}
}
return NULL;
}
static uint32_t get_throughable_mask(const XenPCIPassthroughState *s,
XenPTRegInfo *reg, uint32_t valid_mask)
{
uint32_t throughable_mask = ~(reg->emu_mask | reg->ro_mask);
if (!s->permissive) {
throughable_mask &= ~reg->res_mask;
}
return throughable_mask & valid_mask;
}
/****************
* general register functions
*/
/* register initialization function */
static int xen_pt_common_reg_init(XenPCIPassthroughState *s,
XenPTRegInfo *reg, uint32_t real_offset,
uint32_t *data)
{
*data = reg->init_val;
return 0;
}
/* Read register functions */
static int xen_pt_byte_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
uint8_t *value, uint8_t valid_mask)
{
XenPTRegInfo *reg = cfg_entry->reg;
uint8_t valid_emu_mask = 0;
uint8_t *data = cfg_entry->ptr.byte;
/* emulate byte register */
valid_emu_mask = reg->emu_mask & valid_mask;
*value = XEN_PT_MERGE_VALUE(*value, *data, ~valid_emu_mask);
return 0;
}
static int xen_pt_word_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
uint16_t *value, uint16_t valid_mask)
{
XenPTRegInfo *reg = cfg_entry->reg;
uint16_t valid_emu_mask = 0;
uint16_t *data = cfg_entry->ptr.half_word;
/* emulate word register */
valid_emu_mask = reg->emu_mask & valid_mask;
*value = XEN_PT_MERGE_VALUE(*value, *data, ~valid_emu_mask);
return 0;
}
static int xen_pt_long_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
uint32_t *value, uint32_t valid_mask)
{
XenPTRegInfo *reg = cfg_entry->reg;
uint32_t valid_emu_mask = 0;
uint32_t *data = cfg_entry->ptr.word;
/* emulate long register */
valid_emu_mask = reg->emu_mask & valid_mask;
*value = XEN_PT_MERGE_VALUE(*value, *data, ~valid_emu_mask);
return 0;
}
/* Write register functions */
static int xen_pt_byte_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
uint8_t *val, uint8_t dev_value,
uint8_t valid_mask)
{
XenPTRegInfo *reg = cfg_entry->reg;
uint8_t writable_mask = 0;
uint8_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
uint8_t *data = cfg_entry->ptr.byte;
/* modify emulate register */
writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
*data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
/* create value for writing to I/O device register */
*val = XEN_PT_MERGE_VALUE(*val, dev_value & ~reg->rw1c_mask,
throughable_mask);
return 0;
}
static int xen_pt_word_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
uint16_t *val, uint16_t dev_value,
uint16_t valid_mask)
{
XenPTRegInfo *reg = cfg_entry->reg;
uint16_t writable_mask = 0;
uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
uint16_t *data = cfg_entry->ptr.half_word;
/* modify emulate register */
writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
*data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
/* create value for writing to I/O device register */
*val = XEN_PT_MERGE_VALUE(*val, dev_value & ~reg->rw1c_mask,
throughable_mask);
return 0;
}
static int xen_pt_long_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
uint32_t *val, uint32_t dev_value,
uint32_t valid_mask)
{
XenPTRegInfo *reg = cfg_entry->reg;
uint32_t writable_mask = 0;
uint32_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
uint32_t *data = cfg_entry->ptr.word;
/* modify emulate register */
writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
*data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
/* create value for writing to I/O device register */
*val = XEN_PT_MERGE_VALUE(*val, dev_value & ~reg->rw1c_mask,
throughable_mask);
return 0;
}
/* XenPTRegInfo declaration
* - only for emulated register (either a part or whole bit).
* - for passthrough register that need special behavior (like interacting with
* other component), set emu_mask to all 0 and specify r/w func properly.
* - do NOT use ALL F for init_val, otherwise the tbl will not be registered.
*/
/********************
* Header Type0
*/
static int xen_pt_vendor_reg_init(XenPCIPassthroughState *s,
XenPTRegInfo *reg, uint32_t real_offset,
uint32_t *data)
{
*data = s->real_device.vendor_id;
return 0;
}
static int xen_pt_device_reg_init(XenPCIPassthroughState *s,
XenPTRegInfo *reg, uint32_t real_offset,
uint32_t *data)
{
*data = s->real_device.device_id;
return 0;
}
static int xen_pt_status_reg_init(XenPCIPassthroughState *s,
XenPTRegInfo *reg, uint32_t real_offset,
uint32_t *data)
{
XenPTRegGroup *reg_grp_entry = NULL;
XenPTReg *reg_entry = NULL;
uint32_t reg_field = 0;
/* find Header register group */
reg_grp_entry = xen_pt_find_reg_grp(s, PCI_CAPABILITY_LIST);
if (reg_grp_entry) {
/* find Capabilities Pointer register */
reg_entry = xen_pt_find_reg(reg_grp_entry, PCI_CAPABILITY_LIST);
if (reg_entry) {
/* check Capabilities Pointer register */
if (*reg_entry->ptr.half_word) {
reg_field |= PCI_STATUS_CAP_LIST;
} else {
reg_field &= ~PCI_STATUS_CAP_LIST;
}
} else {
xen_shutdown_fatal_error("Internal error: Couldn't find XenPTReg*"
" for Capabilities Pointer register."
" (%s)\n", __func__);
return -1;
}
} else {
xen_shutdown_fatal_error("Internal error: Couldn't find XenPTRegGroup"
" for Header. (%s)\n", __func__);
return -1;
}
*data = reg_field;
return 0;
}
static int xen_pt_header_type_reg_init(XenPCIPassthroughState *s,
XenPTRegInfo *reg, uint32_t real_offset,
uint32_t *data)
{
/* read PCI_HEADER_TYPE */
*data = reg->init_val | 0x80;
return 0;
}
/* initialize Interrupt Pin register */
static int xen_pt_irqpin_reg_init(XenPCIPassthroughState *s,
XenPTRegInfo *reg, uint32_t real_offset,
uint32_t *data)
{
if (s->real_device.irq) {
*data = xen_pt_pci_read_intx(s);
}
return 0;
}
/* Command register */
static int xen_pt_cmd_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
uint16_t *val, uint16_t dev_value,
uint16_t valid_mask)
{
XenPTRegInfo *reg = cfg_entry->reg;
uint16_t writable_mask = 0;
uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
uint16_t *data = cfg_entry->ptr.half_word;
/* modify emulate register */
writable_mask = ~reg->ro_mask & valid_mask;
*data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
/* create value for writing to I/O device register */
if (*val & PCI_COMMAND_INTX_DISABLE) {
throughable_mask |= PCI_COMMAND_INTX_DISABLE;
} else {
if (s->machine_irq) {
throughable_mask |= PCI_COMMAND_INTX_DISABLE;
}
}
*val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
return 0;
}
/* BAR */
#define XEN_PT_BAR_MEM_RO_MASK 0x0000000F /* BAR ReadOnly mask(Memory) */
#define XEN_PT_BAR_MEM_EMU_MASK 0xFFFFFFF0 /* BAR emul mask(Memory) */
#define XEN_PT_BAR_IO_RO_MASK 0x00000003 /* BAR ReadOnly mask(I/O) */
#define XEN_PT_BAR_IO_EMU_MASK 0xFFFFFFFC /* BAR emul mask(I/O) */
static bool is_64bit_bar(PCIIORegion *r)
{
return !!(r->type & PCI_BASE_ADDRESS_MEM_TYPE_64);
}
static uint64_t xen_pt_get_bar_size(PCIIORegion *r)
{
if (is_64bit_bar(r)) {
uint64_t size64;
size64 = (r + 1)->size;
size64 <<= 32;
size64 += r->size;
return size64;
}
return r->size;
}
static XenPTBarFlag xen_pt_bar_reg_parse(XenPCIPassthroughState *s,
int index)
{
PCIDevice *d = PCI_DEVICE(s);
XenPTRegion *region = NULL;
PCIIORegion *r;
/* check 64bit BAR */
if ((0 < index) && (index < PCI_ROM_SLOT)) {
int type = s->real_device.io_regions[index - 1].type;
if ((type & XEN_HOST_PCI_REGION_TYPE_MEM)
&& (type & XEN_HOST_PCI_REGION_TYPE_MEM_64)) {
region = &s->bases[index - 1];
if (region->bar_flag != XEN_PT_BAR_FLAG_UPPER) {
return XEN_PT_BAR_FLAG_UPPER;
}
}
}
/* check unused BAR */
r = &d->io_regions[index];
if (!xen_pt_get_bar_size(r)) {
return XEN_PT_BAR_FLAG_UNUSED;
}
/* for ExpROM BAR */
if (index == PCI_ROM_SLOT) {
return XEN_PT_BAR_FLAG_MEM;
}
/* check BAR I/O indicator */
if (s->real_device.io_regions[index].type & XEN_HOST_PCI_REGION_TYPE_IO) {
return XEN_PT_BAR_FLAG_IO;
} else {
return XEN_PT_BAR_FLAG_MEM;
}
}
static inline uint32_t base_address_with_flags(XenHostPCIIORegion *hr)
{
if (hr->type & XEN_HOST_PCI_REGION_TYPE_IO) {
return hr->base_addr | (hr->bus_flags & ~PCI_BASE_ADDRESS_IO_MASK);
} else {
return hr->base_addr | (hr->bus_flags & ~PCI_BASE_ADDRESS_MEM_MASK);
}
}
static int xen_pt_bar_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
uint32_t real_offset, uint32_t *data)
{
uint32_t reg_field = 0;
int index;
index = xen_pt_bar_offset_to_index(reg->offset);
if (index < 0 || index >= PCI_NUM_REGIONS) {
XEN_PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
return -1;
}
/* set BAR flag */
s->bases[index].bar_flag = xen_pt_bar_reg_parse(s, index);
if (s->bases[index].bar_flag == XEN_PT_BAR_FLAG_UNUSED) {
reg_field = XEN_PT_INVALID_REG;
}
*data = reg_field;
return 0;
}
static int xen_pt_bar_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
uint32_t *value, uint32_t valid_mask)
{
XenPTRegInfo *reg = cfg_entry->reg;
uint32_t valid_emu_mask = 0;
uint32_t bar_emu_mask = 0;
int index;
/* get BAR index */
index = xen_pt_bar_offset_to_index(reg->offset);
if (index < 0 || index >= PCI_NUM_REGIONS - 1) {
XEN_PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
return -1;
}
/* use fixed-up value from kernel sysfs */
*value = base_address_with_flags(&s->real_device.io_regions[index]);
/* set emulate mask depend on BAR flag */
switch (s->bases[index].bar_flag) {
case XEN_PT_BAR_FLAG_MEM:
bar_emu_mask = XEN_PT_BAR_MEM_EMU_MASK;
break;
case XEN_PT_BAR_FLAG_IO:
bar_emu_mask = XEN_PT_BAR_IO_EMU_MASK;
break;
case XEN_PT_BAR_FLAG_UPPER:
bar_emu_mask = XEN_PT_BAR_ALLF;
break;
default:
break;
}
/* emulate BAR */
valid_emu_mask = bar_emu_mask & valid_mask;
*value = XEN_PT_MERGE_VALUE(*value, *cfg_entry->ptr.word, ~valid_emu_mask);
return 0;
}
static int xen_pt_bar_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
uint32_t *val, uint32_t dev_value,
uint32_t valid_mask)
{
XenPTRegInfo *reg = cfg_entry->reg;
XenPTRegion *base = NULL;
PCIDevice *d = PCI_DEVICE(s);
const PCIIORegion *r;
uint32_t writable_mask = 0;
uint32_t bar_emu_mask = 0;
uint32_t bar_ro_mask = 0;
uint32_t r_size = 0;
int index = 0;
uint32_t *data = cfg_entry->ptr.word;
index = xen_pt_bar_offset_to_index(reg->offset);
if (index < 0 || index >= PCI_NUM_REGIONS) {
XEN_PT_ERR(d, "Internal error: Invalid BAR index [%d].\n", index);
return -1;
}
r = &d->io_regions[index];
base = &s->bases[index];
r_size = xen_pt_get_emul_size(base->bar_flag, r->size);
/* set emulate mask and read-only mask values depend on the BAR flag */
switch (s->bases[index].bar_flag) {
case XEN_PT_BAR_FLAG_MEM:
bar_emu_mask = XEN_PT_BAR_MEM_EMU_MASK;
if (!r_size) {
/* low 32 bits mask for 64 bit bars */
bar_ro_mask = XEN_PT_BAR_ALLF;
} else {
bar_ro_mask = XEN_PT_BAR_MEM_RO_MASK | (r_size - 1);
}
break;
case XEN_PT_BAR_FLAG_IO:
bar_emu_mask = XEN_PT_BAR_IO_EMU_MASK;
bar_ro_mask = XEN_PT_BAR_IO_RO_MASK | (r_size - 1);
break;
case XEN_PT_BAR_FLAG_UPPER:
assert(index > 0);
r_size = d->io_regions[index - 1].size >> 32;
bar_emu_mask = XEN_PT_BAR_ALLF;
bar_ro_mask = r_size ? r_size - 1 : 0;
break;
default:
break;
}
/* modify emulate register */
writable_mask = bar_emu_mask & ~bar_ro_mask & valid_mask;
*data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
/* check whether we need to update the virtual region address or not */
switch (s->bases[index].bar_flag) {
case XEN_PT_BAR_FLAG_UPPER:
case XEN_PT_BAR_FLAG_MEM:
/* nothing to do */
break;
case XEN_PT_BAR_FLAG_IO:
/* nothing to do */
break;
default:
break;
}
/* create value for writing to I/O device register */
*val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
return 0;
}
/* write Exp ROM BAR */
static int xen_pt_exp_rom_bar_reg_write(XenPCIPassthroughState *s,
XenPTReg *cfg_entry, uint32_t *val,
uint32_t dev_value, uint32_t valid_mask)
{
XenPTRegInfo *reg = cfg_entry->reg;
XenPTRegion *base = NULL;
PCIDevice *d = PCI_DEVICE(s);
uint32_t writable_mask = 0;
uint32_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
pcibus_t r_size = 0;
uint32_t bar_ro_mask = 0;
uint32_t *data = cfg_entry->ptr.word;
r_size = d->io_regions[PCI_ROM_SLOT].size;
base = &s->bases[PCI_ROM_SLOT];
/* align memory type resource size */
r_size = xen_pt_get_emul_size(base->bar_flag, r_size);
/* set emulate mask and read-only mask */
bar_ro_mask = (reg->ro_mask | (r_size - 1)) & ~PCI_ROM_ADDRESS_ENABLE;
/* modify emulate register */
writable_mask = ~bar_ro_mask & valid_mask;
*data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
/* create value for writing to I/O device register */
*val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
return 0;
}
static int xen_pt_intel_opregion_read(XenPCIPassthroughState *s,
XenPTReg *cfg_entry,
uint32_t *value, uint32_t valid_mask)
{
*value = igd_read_opregion(s);
return 0;
}
static int xen_pt_intel_opregion_write(XenPCIPassthroughState *s,
XenPTReg *cfg_entry, uint32_t *value,
uint32_t dev_value, uint32_t valid_mask)
{
igd_write_opregion(s, *value);
return 0;
}
/* Header Type0 reg static information table */
static XenPTRegInfo xen_pt_emu_reg_header0[] = {
/* Vendor ID reg */
{
.offset = PCI_VENDOR_ID,
.size = 2,
.init_val = 0x0000,
.ro_mask = 0xFFFF,
.emu_mask = 0xFFFF,
.init = xen_pt_vendor_reg_init,
.u.w.read = xen_pt_word_reg_read,
.u.w.write = xen_pt_word_reg_write,
},
/* Device ID reg */
{
.offset = PCI_DEVICE_ID,
.size = 2,
.init_val = 0x0000,
.ro_mask = 0xFFFF,
.emu_mask = 0xFFFF,
.init = xen_pt_device_reg_init,
.u.w.read = xen_pt_word_reg_read,
.u.w.write = xen_pt_word_reg_write,
},
/* Command reg */
{
.offset = PCI_COMMAND,
.size = 2,
.init_val = 0x0000,
.res_mask = 0xF880,
.emu_mask = 0x0743,
.init = xen_pt_common_reg_init,
.u.w.read = xen_pt_word_reg_read,
.u.w.write = xen_pt_cmd_reg_write,
},
/* Capabilities Pointer reg */
{
.offset = PCI_CAPABILITY_LIST,
.size = 1,
.init_val = 0x00,
.ro_mask = 0xFF,
.emu_mask = 0xFF,
.init = xen_pt_ptr_reg_init,
.u.b.read = xen_pt_byte_reg_read,
.u.b.write = xen_pt_byte_reg_write,
},
/* Status reg */
/* use emulated Cap Ptr value to initialize,
* so need to be declared after Cap Ptr reg
*/
{
.offset = PCI_STATUS,
.size = 2,
.init_val = 0x0000,
.res_mask = 0x0007,
.ro_mask = 0x06F8,
.rw1c_mask = 0xF900,
.emu_mask = 0x0010,
.init = xen_pt_status_reg_init,
.u.w.read = xen_pt_word_reg_read,
.u.w.write = xen_pt_word_reg_write,
},
/* Cache Line Size reg */
{
.offset = PCI_CACHE_LINE_SIZE,
.size = 1,
.init_val = 0x00,
.ro_mask = 0x00,
.emu_mask = 0xFF,
.init = xen_pt_common_reg_init,
.u.b.read = xen_pt_byte_reg_read,
.u.b.write = xen_pt_byte_reg_write,
},
/* Latency Timer reg */
{
.offset = PCI_LATENCY_TIMER,
.size = 1,
.init_val = 0x00,
.ro_mask = 0x00,
.emu_mask = 0xFF,
.init = xen_pt_common_reg_init,
.u.b.read = xen_pt_byte_reg_read,
.u.b.write = xen_pt_byte_reg_write,
},
/* Header Type reg */
{
.offset = PCI_HEADER_TYPE,
.size = 1,
.init_val = 0x00,
.ro_mask = 0xFF,
.emu_mask = 0x00,
.init = xen_pt_header_type_reg_init,
.u.b.read = xen_pt_byte_reg_read,
.u.b.write = xen_pt_byte_reg_write,
},
/* Interrupt Line reg */
{
.offset = PCI_INTERRUPT_LINE,
.size = 1,
.init_val = 0x00,
.ro_mask = 0x00,
.emu_mask = 0xFF,
.init = xen_pt_common_reg_init,
.u.b.read = xen_pt_byte_reg_read,
.u.b.write = xen_pt_byte_reg_write,
},
/* Interrupt Pin reg */
{
.offset = PCI_INTERRUPT_PIN,
.size = 1,
.init_val = 0x00,
.ro_mask = 0xFF,
.emu_mask = 0xFF,
.init = xen_pt_irqpin_reg_init,
.u.b.read = xen_pt_byte_reg_read,
.u.b.write = xen_pt_byte_reg_write,
},
/* BAR 0 reg */
/* mask of BAR need to be decided later, depends on IO/MEM type */
{
.offset = PCI_BASE_ADDRESS_0,
.size = 4,
.init_val = 0x00000000,
.init = xen_pt_bar_reg_init,
.u.dw.read = xen_pt_bar_reg_read,
.u.dw.write = xen_pt_bar_reg_write,
},
/* BAR 1 reg */
{
.offset = PCI_BASE_ADDRESS_1,
.size = 4,
.init_val = 0x00000000,
.init = xen_pt_bar_reg_init,
.u.dw.read = xen_pt_bar_reg_read,
.u.dw.write = xen_pt_bar_reg_write,
},
/* BAR 2 reg */
{
.offset = PCI_BASE_ADDRESS_2,
.size = 4,
.init_val = 0x00000000,
.init = xen_pt_bar_reg_init,
.u.dw.read = xen_pt_bar_reg_read,
.u.dw.write = xen_pt_bar_reg_write,
},
/* BAR 3 reg */
{
.offset = PCI_BASE_ADDRESS_3,
.size = 4,
.init_val = 0x00000000,
.init = xen_pt_bar_reg_init,
.u.dw.read = xen_pt_bar_reg_read,
.u.dw.write = xen_pt_bar_reg_write,
},
/* BAR 4 reg */
{
.offset = PCI_BASE_ADDRESS_4,
.size = 4,
.init_val = 0x00000000,
.init = xen_pt_bar_reg_init,
.u.dw.read = xen_pt_bar_reg_read,
.u.dw.write = xen_pt_bar_reg_write,
},
/* BAR 5 reg */
{
.offset = PCI_BASE_ADDRESS_5,
.size = 4,
.init_val = 0x00000000,
.init = xen_pt_bar_reg_init,
.u.dw.read = xen_pt_bar_reg_read,
.u.dw.write = xen_pt_bar_reg_write,
},
/* Expansion ROM BAR reg */
{
.offset = PCI_ROM_ADDRESS,
.size = 4,
.init_val = 0x00000000,
.ro_mask = ~PCI_ROM_ADDRESS_MASK & ~PCI_ROM_ADDRESS_ENABLE,
.emu_mask = (uint32_t)PCI_ROM_ADDRESS_MASK,
.init = xen_pt_bar_reg_init,
.u.dw.read = xen_pt_long_reg_read,
.u.dw.write = xen_pt_exp_rom_bar_reg_write,
},
{
.size = 0,
},
};
/*********************************
* Vital Product Data Capability
*/
/* Vital Product Data Capability Structure reg static information table */
static XenPTRegInfo xen_pt_emu_reg_vpd[] = {
{
.offset = PCI_CAP_LIST_NEXT,
.size = 1,
.init_val = 0x00,
.ro_mask = 0xFF,
.emu_mask = 0xFF,
.init = xen_pt_ptr_reg_init,
.u.b.read = xen_pt_byte_reg_read,
.u.b.write = xen_pt_byte_reg_write,
},
{
.offset = PCI_VPD_ADDR,
.size = 2,
.ro_mask = 0x0003,
.emu_mask = 0x0003,
.init = xen_pt_common_reg_init,
.u.w.read = xen_pt_word_reg_read,
.u.w.write = xen_pt_word_reg_write,
},
{
.size = 0,
},
};
/**************************************
* Vendor Specific Capability
*/
/* Vendor Specific Capability Structure reg static information table */
static XenPTRegInfo xen_pt_emu_reg_vendor[] = {
{
.offset = PCI_CAP_LIST_NEXT,
.size = 1,
.init_val = 0x00,
.ro_mask = 0xFF,
.emu_mask = 0xFF,
.init = xen_pt_ptr_reg_init,
.u.b.read = xen_pt_byte_reg_read,
.u.b.write = xen_pt_byte_reg_write,
},
{
.size = 0,
},
};
/*****************************
* PCI Express Capability
*/
static inline uint8_t get_capability_version(XenPCIPassthroughState *s,
uint32_t offset)
{
uint8_t flag;
if (xen_host_pci_get_byte(&s->real_device, offset + PCI_EXP_FLAGS, &flag)) {
return 0;
}
return flag & PCI_EXP_FLAGS_VERS;
}
static inline uint8_t get_device_type(XenPCIPassthroughState *s,
uint32_t offset)
{
uint8_t flag;
if (xen_host_pci_get_byte(&s->real_device, offset + PCI_EXP_FLAGS, &flag)) {
return 0;
}
return (flag & PCI_EXP_FLAGS_TYPE) >> 4;
}
/* initialize Link Control register */
static int xen_pt_linkctrl_reg_init(XenPCIPassthroughState *s,
XenPTRegInfo *reg, uint32_t real_offset,
uint32_t *data)
{
uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
uint8_t dev_type = get_device_type(s, real_offset - reg->offset);
/* no need to initialize in case of Root Complex Integrated Endpoint
* with cap_ver 1.x
*/
if ((dev_type == PCI_EXP_TYPE_RC_END) && (cap_ver == 1)) {
*data = XEN_PT_INVALID_REG;
}
*data = reg->init_val;
return 0;
}
/* initialize Device Control 2 register */
static int xen_pt_devctrl2_reg_init(XenPCIPassthroughState *s,
XenPTRegInfo *reg, uint32_t real_offset,
uint32_t *data)
{
uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
/* no need to initialize in case of cap_ver 1.x */
if (cap_ver == 1) {
*data = XEN_PT_INVALID_REG;
}
*data = reg->init_val;
return 0;
}
/* initialize Link Control 2 register */
static int xen_pt_linkctrl2_reg_init(XenPCIPassthroughState *s,
XenPTRegInfo *reg, uint32_t real_offset,
uint32_t *data)
{
uint8_t cap_ver = get_capability_version(s, real_offset - reg->offset);
uint32_t reg_field = 0;
/* no need to initialize in case of cap_ver 1.x */
if (cap_ver == 1) {
reg_field = XEN_PT_INVALID_REG;
} else {
/* set Supported Link Speed */
uint8_t lnkcap;
int rc;
rc = xen_host_pci_get_byte(&s->real_device,
real_offset - reg->offset + PCI_EXP_LNKCAP,
&lnkcap);
if (rc) {
return rc;
}
reg_field |= PCI_EXP_LNKCAP_SLS & lnkcap;
}
*data = reg_field;
return 0;
}
/* PCI Express Capability Structure reg static information table */
static XenPTRegInfo xen_pt_emu_reg_pcie[] = {
/* Next Pointer reg */
{
.offset = PCI_CAP_LIST_NEXT,
.size = 1,
.init_val = 0x00,
.ro_mask = 0xFF,
.emu_mask = 0xFF,
.init = xen_pt_ptr_reg_init,
.u.b.read = xen_pt_byte_reg_read,
.u.b.write = xen_pt_byte_reg_write,
},
/* Device Capabilities reg */
{
.offset = PCI_EXP_DEVCAP,
.size = 4,
.init_val = 0x00000000,
.ro_mask = 0xFFFFFFFF,
.emu_mask = 0x10000000,
.init = xen_pt_common_reg_init,
.u.dw.read = xen_pt_long_reg_read,
.u.dw.write = xen_pt_long_reg_write,
},
/* Device Control reg */
{
.offset = PCI_EXP_DEVCTL,
.size = 2,
.init_val = 0x2810,
.ro_mask = 0x8400,
.emu_mask = 0xFFFF,
.init = xen_pt_common_reg_init,
.u.w.read = xen_pt_word_reg_read,
.u.w.write = xen_pt_word_reg_write,
},
/* Device Status reg */
{
.offset = PCI_EXP_DEVSTA,
.size = 2,
.res_mask = 0xFFC0,
.ro_mask = 0x0030,
.rw1c_mask = 0x000F,
.init = xen_pt_common_reg_init,
.u.w.read = xen_pt_word_reg_read,
.u.w.write = xen_pt_word_reg_write,
},
/* Link Control reg */
{
.offset = PCI_EXP_LNKCTL,
.size = 2,
.init_val = 0x0000,
.ro_mask = 0xFC34,
.emu_mask = 0xFFFF,
.init = xen_pt_linkctrl_reg_init,
.u.w.read = xen_pt_word_reg_read,
.u.w.write = xen_pt_word_reg_write,
},
/* Link Status reg */
{
.offset = PCI_EXP_LNKSTA,
.size = 2,
.ro_mask = 0x3FFF,
.rw1c_mask = 0xC000,
.init = xen_pt_common_reg_init,
.u.w.read = xen_pt_word_reg_read,
.u.w.write = xen_pt_word_reg_write,
},
/* Device Control 2 reg */
{
.offset = 0x28,
.size = 2,
.init_val = 0x0000,
.ro_mask = 0xFFE0,
.emu_mask = 0xFFFF,
.init = xen_pt_devctrl2_reg_init,
.u.w.read = xen_pt_word_reg_read,
.u.w.write = xen_pt_word_reg_write,
},
/* Link Control 2 reg */
{
.offset = 0x30,
.size = 2,
.init_val = 0x0000,
.ro_mask = 0xE040,
.emu_mask = 0xFFFF,
.init = xen_pt_linkctrl2_reg_init,
.u.w.read = xen_pt_word_reg_read,
.u.w.write = xen_pt_word_reg_write,
},
{
.size = 0,
},
};
/*********************************
* Power Management Capability
*/
/* Power Management Capability reg static information table */
static XenPTRegInfo xen_pt_emu_reg_pm[] = {
/* Next Pointer reg */
{
.offset = PCI_CAP_LIST_NEXT,
.size = 1,
.init_val = 0x00,
.ro_mask = 0xFF,
.emu_mask = 0xFF,
.init = xen_pt_ptr_reg_init,
.u.b.read = xen_pt_byte_reg_read,
.u.b.write = xen_pt_byte_reg_write,
},
/* Power Management Capabilities reg */
{
.offset = PCI_CAP_FLAGS,
.size = 2,
.init_val = 0x0000,
.ro_mask = 0xFFFF,
.emu_mask = 0xF9C8,
.init = xen_pt_common_reg_init,
.u.w.read = xen_pt_word_reg_read,
.u.w.write = xen_pt_word_reg_write,
},
/* PCI Power Management Control/Status reg */
{
.offset = PCI_PM_CTRL,
.size = 2,
.init_val = 0x0008,
.res_mask = 0x00F0,
.ro_mask = 0x610C,
.rw1c_mask = 0x8000,
.emu_mask = 0x810B,
.init = xen_pt_common_reg_init,
.u.w.read = xen_pt_word_reg_read,
.u.w.write = xen_pt_word_reg_write,
},
{
.size = 0,
},
};
/********************************
* MSI Capability
*/
/* Helper */
#define xen_pt_msi_check_type(offset, flags, what) \
((offset) == ((flags) & PCI_MSI_FLAGS_64BIT ? \
PCI_MSI_##what##_64 : PCI_MSI_##what##_32))
/* Message Control register */
static int xen_pt_msgctrl_reg_init(XenPCIPassthroughState *s,
XenPTRegInfo *reg, uint32_t real_offset,
uint32_t *data)
{
XenPTMSI *msi = s->msi;
uint16_t reg_field;
int rc;
/* use I/O device register's value as initial value */
rc = xen_host_pci_get_word(&s->real_device, real_offset, &reg_field);
if (rc) {
return rc;
}
if (reg_field & PCI_MSI_FLAGS_ENABLE) {
XEN_PT_LOG(&s->dev, "MSI already enabled, disabling it first\n");
xen_host_pci_set_word(&s->real_device, real_offset,
reg_field & ~PCI_MSI_FLAGS_ENABLE);
}
msi->flags |= reg_field;
msi->ctrl_offset = real_offset;
msi->initialized = false;
msi->mapped = false;
*data = reg->init_val;
return 0;
}
static int xen_pt_msgctrl_reg_write(XenPCIPassthroughState *s,
XenPTReg *cfg_entry, uint16_t *val,
uint16_t dev_value, uint16_t valid_mask)
{
XenPTRegInfo *reg = cfg_entry->reg;
XenPTMSI *msi = s->msi;
uint16_t writable_mask = 0;
uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
uint16_t *data = cfg_entry->ptr.half_word;
/* Currently no support for multi-vector */
if (*val & PCI_MSI_FLAGS_QSIZE) {
XEN_PT_WARN(&s->dev, "Tries to set more than 1 vector ctrl %x\n", *val);
}
/* modify emulate register */
writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
*data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
msi->flags |= *data & ~PCI_MSI_FLAGS_ENABLE;
/* create value for writing to I/O device register */
*val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
/* update MSI */
if (*val & PCI_MSI_FLAGS_ENABLE) {
/* setup MSI pirq for the first time */
if (!msi->initialized) {
/* Init physical one */
XEN_PT_LOG(&s->dev, "setup MSI (register: %x).\n", *val);
if (xen_pt_msi_setup(s)) {
/* We do not broadcast the error to the framework code, so
* that MSI errors are contained in MSI emulation code and
* QEMU can go on running.
* Guest MSI would be actually not working.
*/
*val &= ~PCI_MSI_FLAGS_ENABLE;
XEN_PT_WARN(&s->dev, "Can not map MSI (register: %x)!\n", *val);
return 0;
}
if (xen_pt_msi_update(s)) {
*val &= ~PCI_MSI_FLAGS_ENABLE;
XEN_PT_WARN(&s->dev, "Can not bind MSI (register: %x)!\n", *val);
return 0;
}
msi->initialized = true;
msi->mapped = true;
}
msi->flags |= PCI_MSI_FLAGS_ENABLE;
} else if (msi->mapped) {
xen_pt_msi_disable(s);
}
return 0;
}
/* initialize Message Upper Address register */
static int xen_pt_msgaddr64_reg_init(XenPCIPassthroughState *s,
XenPTRegInfo *reg, uint32_t real_offset,
uint32_t *data)
{
/* no need to initialize in case of 32 bit type */
if (!(s->msi->flags & PCI_MSI_FLAGS_64BIT)) {
*data = XEN_PT_INVALID_REG;
} else {
*data = reg->init_val;
}
return 0;
}
/* this function will be called twice (for 32 bit and 64 bit type) */
/* initialize Message Data register */
static int xen_pt_msgdata_reg_init(XenPCIPassthroughState *s,
XenPTRegInfo *reg, uint32_t real_offset,
uint32_t *data)
{
uint32_t flags = s->msi->flags;
uint32_t offset = reg->offset;
/* check the offset whether matches the type or not */
if (xen_pt_msi_check_type(offset, flags, DATA)) {
*data = reg->init_val;
} else {
*data = XEN_PT_INVALID_REG;
}
return 0;
}
/* this function will be called twice (for 32 bit and 64 bit type) */
/* initialize Mask register */
static int xen_pt_mask_reg_init(XenPCIPassthroughState *s,
XenPTRegInfo *reg, uint32_t real_offset,
uint32_t *data)
{
uint32_t flags = s->msi->flags;
/* check the offset whether matches the type or not */
if (!(flags & PCI_MSI_FLAGS_MASKBIT)) {
*data = XEN_PT_INVALID_REG;
} else if (xen_pt_msi_check_type(reg->offset, flags, MASK)) {
*data = reg->init_val;
} else {
*data = XEN_PT_INVALID_REG;
}
return 0;
}
/* this function will be called twice (for 32 bit and 64 bit type) */
/* initialize Pending register */
static int xen_pt_pending_reg_init(XenPCIPassthroughState *s,
XenPTRegInfo *reg, uint32_t real_offset,
uint32_t *data)
{
uint32_t flags = s->msi->flags;
/* check the offset whether matches the type or not */
if (!(flags & PCI_MSI_FLAGS_MASKBIT)) {
*data = XEN_PT_INVALID_REG;
} else if (xen_pt_msi_check_type(reg->offset, flags, PENDING)) {
*data = reg->init_val;
} else {
*data = XEN_PT_INVALID_REG;
}
return 0;
}
/* write Message Address register */
static int xen_pt_msgaddr32_reg_write(XenPCIPassthroughState *s,
XenPTReg *cfg_entry, uint32_t *val,
uint32_t dev_value, uint32_t valid_mask)
{
XenPTRegInfo *reg = cfg_entry->reg;
uint32_t writable_mask = 0;
uint32_t old_addr = *cfg_entry->ptr.word;
uint32_t *data = cfg_entry->ptr.word;
/* modify emulate register */
writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
*data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
s->msi->addr_lo = *data;
/* create value for writing to I/O device register */
*val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
/* update MSI */
if (*data != old_addr) {
if (s->msi->mapped) {
xen_pt_msi_update(s);
}
}
return 0;
}
/* write Message Upper Address register */
static int xen_pt_msgaddr64_reg_write(XenPCIPassthroughState *s,
XenPTReg *cfg_entry, uint32_t *val,
uint32_t dev_value, uint32_t valid_mask)
{
XenPTRegInfo *reg = cfg_entry->reg;
uint32_t writable_mask = 0;
uint32_t old_addr = *cfg_entry->ptr.word;
uint32_t *data = cfg_entry->ptr.word;
/* check whether the type is 64 bit or not */
if (!(s->msi->flags & PCI_MSI_FLAGS_64BIT)) {
XEN_PT_ERR(&s->dev,
"Can't write to the upper address without 64 bit support\n");
return -1;
}
/* modify emulate register */
writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
*data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
/* update the msi_info too */
s->msi->addr_hi = *data;
/* create value for writing to I/O device register */
*val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
/* update MSI */
if (*data != old_addr) {
if (s->msi->mapped) {
xen_pt_msi_update(s);
}
}
return 0;
}
/* this function will be called twice (for 32 bit and 64 bit type) */
/* write Message Data register */
static int xen_pt_msgdata_reg_write(XenPCIPassthroughState *s,
XenPTReg *cfg_entry, uint16_t *val,
uint16_t dev_value, uint16_t valid_mask)
{
XenPTRegInfo *reg = cfg_entry->reg;
XenPTMSI *msi = s->msi;
uint16_t writable_mask = 0;
uint16_t old_data = *cfg_entry->ptr.half_word;
uint32_t offset = reg->offset;
uint16_t *data = cfg_entry->ptr.half_word;
/* check the offset whether matches the type or not */
if (!xen_pt_msi_check_type(offset, msi->flags, DATA)) {
/* exit I/O emulator */
XEN_PT_ERR(&s->dev, "the offset does not match the 32/64 bit type!\n");
return -1;
}
/* modify emulate register */
writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
*data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
/* update the msi_info too */
msi->data = *data;
/* create value for writing to I/O device register */
*val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
/* update MSI */
if (*data != old_data) {
if (msi->mapped) {
xen_pt_msi_update(s);
}
}
return 0;
}
static int xen_pt_mask_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
uint32_t *val, uint32_t dev_value,
uint32_t valid_mask)
{
int rc;
rc = xen_pt_long_reg_write(s, cfg_entry, val, dev_value, valid_mask);
if (rc) {
return rc;
}
s->msi->mask = *val;
return 0;
}
/* MSI Capability Structure reg static information table */
static XenPTRegInfo xen_pt_emu_reg_msi[] = {
/* Next Pointer reg */
{
.offset = PCI_CAP_LIST_NEXT,
.size = 1,
.init_val = 0x00,
.ro_mask = 0xFF,
.emu_mask = 0xFF,
.init = xen_pt_ptr_reg_init,
.u.b.read = xen_pt_byte_reg_read,
.u.b.write = xen_pt_byte_reg_write,
},
/* Message Control reg */
{
.offset = PCI_MSI_FLAGS,
.size = 2,
.init_val = 0x0000,
.res_mask = 0xFE00,
.ro_mask = 0x018E,
.emu_mask = 0x017E,
.init = xen_pt_msgctrl_reg_init,
.u.w.read = xen_pt_word_reg_read,
.u.w.write = xen_pt_msgctrl_reg_write,
},
/* Message Address reg */
{
.offset = PCI_MSI_ADDRESS_LO,
.size = 4,
.init_val = 0x00000000,
.ro_mask = 0x00000003,
.emu_mask = 0xFFFFFFFF,
.init = xen_pt_common_reg_init,
.u.dw.read = xen_pt_long_reg_read,
.u.dw.write = xen_pt_msgaddr32_reg_write,
},
/* Message Upper Address reg (if PCI_MSI_FLAGS_64BIT set) */
{
.offset = PCI_MSI_ADDRESS_HI,
.size = 4,
.init_val = 0x00000000,
.ro_mask = 0x00000000,
.emu_mask = 0xFFFFFFFF,
.init = xen_pt_msgaddr64_reg_init,
.u.dw.read = xen_pt_long_reg_read,
.u.dw.write = xen_pt_msgaddr64_reg_write,
},
/* Message Data reg (16 bits of data for 32-bit devices) */
{
.offset = PCI_MSI_DATA_32,
.size = 2,
.init_val = 0x0000,
.ro_mask = 0x0000,
.emu_mask = 0xFFFF,
.init = xen_pt_msgdata_reg_init,
.u.w.read = xen_pt_word_reg_read,
.u.w.write = xen_pt_msgdata_reg_write,
},
/* Message Data reg (16 bits of data for 64-bit devices) */
{
.offset = PCI_MSI_DATA_64,
.size = 2,
.init_val = 0x0000,
.ro_mask = 0x0000,
.emu_mask = 0xFFFF,
.init = xen_pt_msgdata_reg_init,
.u.w.read = xen_pt_word_reg_read,
.u.w.write = xen_pt_msgdata_reg_write,
},
/* Mask reg (if PCI_MSI_FLAGS_MASKBIT set, for 32-bit devices) */
{
.offset = PCI_MSI_MASK_32,
.size = 4,
.init_val = 0x00000000,
.ro_mask = 0xFFFFFFFF,
.emu_mask = 0xFFFFFFFF,
.init = xen_pt_mask_reg_init,
.u.dw.read = xen_pt_long_reg_read,
.u.dw.write = xen_pt_mask_reg_write,
},
/* Mask reg (if PCI_MSI_FLAGS_MASKBIT set, for 64-bit devices) */
{
.offset = PCI_MSI_MASK_64,
.size = 4,
.init_val = 0x00000000,
.ro_mask = 0xFFFFFFFF,
.emu_mask = 0xFFFFFFFF,
.init = xen_pt_mask_reg_init,
.u.dw.read = xen_pt_long_reg_read,
.u.dw.write = xen_pt_mask_reg_write,
},
/* Pending reg (if PCI_MSI_FLAGS_MASKBIT set, for 32-bit devices) */
{
.offset = PCI_MSI_MASK_32 + 4,
.size = 4,
.init_val = 0x00000000,
.ro_mask = 0xFFFFFFFF,
.emu_mask = 0x00000000,
.init = xen_pt_pending_reg_init,
.u.dw.read = xen_pt_long_reg_read,
.u.dw.write = xen_pt_long_reg_write,
},
/* Pending reg (if PCI_MSI_FLAGS_MASKBIT set, for 64-bit devices) */
{
.offset = PCI_MSI_MASK_64 + 4,
.size = 4,
.init_val = 0x00000000,
.ro_mask = 0xFFFFFFFF,
.emu_mask = 0x00000000,
.init = xen_pt_pending_reg_init,
.u.dw.read = xen_pt_long_reg_read,
.u.dw.write = xen_pt_long_reg_write,
},
{
.size = 0,
},
};
/**************************************
* MSI-X Capability
*/
/* Message Control register for MSI-X */
static int xen_pt_msixctrl_reg_init(XenPCIPassthroughState *s,
XenPTRegInfo *reg, uint32_t real_offset,
uint32_t *data)
{
uint16_t reg_field;
int rc;
/* use I/O device register's value as initial value */
rc = xen_host_pci_get_word(&s->real_device, real_offset, &reg_field);
if (rc) {
return rc;
}
if (reg_field & PCI_MSIX_FLAGS_ENABLE) {
XEN_PT_LOG(&s->dev, "MSIX already enabled, disabling it first\n");
xen_host_pci_set_word(&s->real_device, real_offset,
reg_field & ~PCI_MSIX_FLAGS_ENABLE);
}
s->msix->ctrl_offset = real_offset;
*data = reg->init_val;
return 0;
}
static int xen_pt_msixctrl_reg_write(XenPCIPassthroughState *s,
XenPTReg *cfg_entry, uint16_t *val,
uint16_t dev_value, uint16_t valid_mask)
{
XenPTRegInfo *reg = cfg_entry->reg;
uint16_t writable_mask = 0;
uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask);
int debug_msix_enabled_old;
uint16_t *data = cfg_entry->ptr.half_word;
/* modify emulate register */
writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
*data = XEN_PT_MERGE_VALUE(*val, *data, writable_mask);
/* create value for writing to I/O device register */
*val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask);
/* update MSI-X */
if ((*val & PCI_MSIX_FLAGS_ENABLE)
&& !(*val & PCI_MSIX_FLAGS_MASKALL)) {
xen_pt_msix_update(s);
} else if (!(*val & PCI_MSIX_FLAGS_ENABLE) && s->msix->enabled) {
xen_pt_msix_disable(s);
}
s->msix->maskall = *val & PCI_MSIX_FLAGS_MASKALL;
debug_msix_enabled_old = s->msix->enabled;
s->msix->enabled = !!(*val & PCI_MSIX_FLAGS_ENABLE);
if (s->msix->enabled != debug_msix_enabled_old) {
XEN_PT_LOG(&s->dev, "%s MSI-X\n",
s->msix->enabled ? "enable" : "disable");
}
return 0;
}
/* MSI-X Capability Structure reg static information table */
static XenPTRegInfo xen_pt_emu_reg_msix[] = {
/* Next Pointer reg */
{
.offset = PCI_CAP_LIST_NEXT,
.size = 1,
.init_val = 0x00,
.ro_mask = 0xFF,
.emu_mask = 0xFF,
.init = xen_pt_ptr_reg_init,
.u.b.read = xen_pt_byte_reg_read,
.u.b.write = xen_pt_byte_reg_write,
},
/* Message Control reg */
{
.offset = PCI_MSI_FLAGS,
.size = 2,
.init_val = 0x0000,
.res_mask = 0x3800,
.ro_mask = 0x07FF,
.emu_mask = 0x0000,
.init = xen_pt_msixctrl_reg_init,
.u.w.read = xen_pt_word_reg_read,
.u.w.write = xen_pt_msixctrl_reg_write,
},
{
.size = 0,
},
};
static XenPTRegInfo xen_pt_emu_reg_igd_opregion[] = {
/* Intel IGFX OpRegion reg */
{
.offset = 0x0,
.size = 4,
.init_val = 0,
.emu_mask = 0xFFFFFFFF,
.u.dw.read = xen_pt_intel_opregion_read,
.u.dw.write = xen_pt_intel_opregion_write,
},
{
.size = 0,
},
};
/****************************
* Capabilities
*/
/* capability structure register group size functions */
static int xen_pt_reg_grp_size_init(XenPCIPassthroughState *s,
const XenPTRegGroupInfo *grp_reg,
uint32_t base_offset, uint8_t *size)
{
*size = grp_reg->grp_size;
return 0;
}
/* get Vendor Specific Capability Structure register group size */
static int xen_pt_vendor_size_init(XenPCIPassthroughState *s,
const XenPTRegGroupInfo *grp_reg,
uint32_t base_offset, uint8_t *size)
{
return xen_host_pci_get_byte(&s->real_device, base_offset + 0x02, size);
}
/* get PCI Express Capability Structure register group size */
static int xen_pt_pcie_size_init(XenPCIPassthroughState *s,
const XenPTRegGroupInfo *grp_reg,
uint32_t base_offset, uint8_t *size)
{
PCIDevice *d = PCI_DEVICE(s);
uint8_t version = get_capability_version(s, base_offset);
uint8_t type = get_device_type(s, base_offset);
uint8_t pcie_size = 0;
/* calculate size depend on capability version and device/port type */
/* in case of PCI Express Base Specification Rev 1.x */
if (version == 1) {
/* The PCI Express Capabilities, Device Capabilities, and Device
* Status/Control registers are required for all PCI Express devices.
* The Link Capabilities and Link Status/Control are required for all
* Endpoints that are not Root Complex Integrated Endpoints. Endpoints
* are not required to implement registers other than those listed
* above and terminate the capability structure.
*/
switch (type) {
case PCI_EXP_TYPE_ENDPOINT:
case PCI_EXP_TYPE_LEG_END:
pcie_size = 0x14;
break;
case PCI_EXP_TYPE_RC_END:
/* has no link */
pcie_size = 0x0C;
break;
/* only EndPoint passthrough is supported */
case PCI_EXP_TYPE_ROOT_PORT:
case PCI_EXP_TYPE_UPSTREAM:
case PCI_EXP_TYPE_DOWNSTREAM:
case PCI_EXP_TYPE_PCI_BRIDGE:
case PCI_EXP_TYPE_PCIE_BRIDGE:
case PCI_EXP_TYPE_RC_EC:
default:
XEN_PT_ERR(d, "Unsupported device/port type %#x.\n", type);
return -1;
}
}
/* in case of PCI Express Base Specification Rev 2.0 */
else if (version == 2) {
switch (type) {
case PCI_EXP_TYPE_ENDPOINT:
case PCI_EXP_TYPE_LEG_END:
case PCI_EXP_TYPE_RC_END:
/* For Functions that do not implement the registers,
* these spaces must be hardwired to 0b.
*/
pcie_size = 0x3C;
break;
/* only EndPoint passthrough is supported */
case PCI_EXP_TYPE_ROOT_PORT:
case PCI_EXP_TYPE_UPSTREAM:
case PCI_EXP_TYPE_DOWNSTREAM:
case PCI_EXP_TYPE_PCI_BRIDGE:
case PCI_EXP_TYPE_PCIE_BRIDGE:
case PCI_EXP_TYPE_RC_EC:
default:
XEN_PT_ERR(d, "Unsupported device/port type %#x.\n", type);
return -1;
}
} else {
XEN_PT_ERR(d, "Unsupported capability version %#x.\n", version);
return -1;
}
*size = pcie_size;
return 0;
}
/* get MSI Capability Structure register group size */
static int xen_pt_msi_size_init(XenPCIPassthroughState *s,
const XenPTRegGroupInfo *grp_reg,
uint32_t base_offset, uint8_t *size)
{
uint16_t msg_ctrl = 0;
uint8_t msi_size = 0xa;
int rc;
rc = xen_host_pci_get_word(&s->real_device, base_offset + PCI_MSI_FLAGS,
&msg_ctrl);
if (rc) {
return rc;
}
/* check if 64-bit address is capable of per-vector masking */
if (msg_ctrl & PCI_MSI_FLAGS_64BIT) {
msi_size += 4;
}
if (msg_ctrl & PCI_MSI_FLAGS_MASKBIT) {
msi_size += 10;
}
s->msi = g_new0(XenPTMSI, 1);
s->msi->pirq = XEN_PT_UNASSIGNED_PIRQ;
*size = msi_size;
return 0;
}
/* get MSI-X Capability Structure register group size */
static int xen_pt_msix_size_init(XenPCIPassthroughState *s,
const XenPTRegGroupInfo *grp_reg,
uint32_t base_offset, uint8_t *size)
{
int rc = 0;
rc = xen_pt_msix_init(s, base_offset);
if (rc < 0) {
XEN_PT_ERR(&s->dev, "Internal error: Invalid xen_pt_msix_init.\n");
return rc;
}
*size = grp_reg->grp_size;
return 0;
}
static const XenPTRegGroupInfo xen_pt_emu_reg_grps[] = {
/* Header Type0 reg group */
{
.grp_id = 0xFF,
.grp_type = XEN_PT_GRP_TYPE_EMU,
.grp_size = 0x40,
.size_init = xen_pt_reg_grp_size_init,
.emu_regs = xen_pt_emu_reg_header0,
},
/* PCI PowerManagement Capability reg group */
{
.grp_id = PCI_CAP_ID_PM,
.grp_type = XEN_PT_GRP_TYPE_EMU,
.grp_size = PCI_PM_SIZEOF,
.size_init = xen_pt_reg_grp_size_init,
.emu_regs = xen_pt_emu_reg_pm,
},
/* AGP Capability Structure reg group */
{
.grp_id = PCI_CAP_ID_AGP,
.grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
.grp_size = 0x30,
.size_init = xen_pt_reg_grp_size_init,
},
/* Vital Product Data Capability Structure reg group */
{
.grp_id = PCI_CAP_ID_VPD,
.grp_type = XEN_PT_GRP_TYPE_EMU,
.grp_size = 0x08,
.size_init = xen_pt_reg_grp_size_init,
.emu_regs = xen_pt_emu_reg_vpd,
},
/* Slot Identification reg group */
{
.grp_id = PCI_CAP_ID_SLOTID,
.grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
.grp_size = 0x04,
.size_init = xen_pt_reg_grp_size_init,
},
/* MSI Capability Structure reg group */
{
.grp_id = PCI_CAP_ID_MSI,
.grp_type = XEN_PT_GRP_TYPE_EMU,
.grp_size = 0xFF,
.size_init = xen_pt_msi_size_init,
.emu_regs = xen_pt_emu_reg_msi,
},
/* PCI-X Capabilities List Item reg group */
{
.grp_id = PCI_CAP_ID_PCIX,
.grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
.grp_size = 0x18,
.size_init = xen_pt_reg_grp_size_init,
},
/* Vendor Specific Capability Structure reg group */
{
.grp_id = PCI_CAP_ID_VNDR,
.grp_type = XEN_PT_GRP_TYPE_EMU,
.grp_size = 0xFF,
.size_init = xen_pt_vendor_size_init,
.emu_regs = xen_pt_emu_reg_vendor,
},
/* SHPC Capability List Item reg group */
{
.grp_id = PCI_CAP_ID_SHPC,
.grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
.grp_size = 0x08,
.size_init = xen_pt_reg_grp_size_init,
},
/* Subsystem ID and Subsystem Vendor ID Capability List Item reg group */
{
.grp_id = PCI_CAP_ID_SSVID,
.grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
.grp_size = 0x08,
.size_init = xen_pt_reg_grp_size_init,
},
/* AGP 8x Capability Structure reg group */
{
.grp_id = PCI_CAP_ID_AGP3,
.grp_type = XEN_PT_GRP_TYPE_HARDWIRED,
.grp_size = 0x30,
.size_init = xen_pt_reg_grp_size_init,
},
/* PCI Express Capability Structure reg group */
{
.grp_id = PCI_CAP_ID_EXP,
.grp_type = XEN_PT_GRP_TYPE_EMU,
.grp_size = 0xFF,
.size_init = xen_pt_pcie_size_init,
.emu_regs = xen_pt_emu_reg_pcie,
},
/* MSI-X Capability Structure reg group */
{
.grp_id = PCI_CAP_ID_MSIX,
.grp_type = XEN_PT_GRP_TYPE_EMU,
.grp_size = 0x0C,
.size_init = xen_pt_msix_size_init,
.emu_regs = xen_pt_emu_reg_msix,
},
/* Intel IGD Opregion group */
{
.grp_id = XEN_PCI_INTEL_OPREGION,
.grp_type = XEN_PT_GRP_TYPE_EMU,
.grp_size = 0x4,
.size_init = xen_pt_reg_grp_size_init,
.emu_regs = xen_pt_emu_reg_igd_opregion,
},
{
.grp_size = 0,
},
};
/* initialize Capabilities Pointer or Next Pointer register */
static int xen_pt_ptr_reg_init(XenPCIPassthroughState *s,
XenPTRegInfo *reg, uint32_t real_offset,
uint32_t *data)
{
int i, rc;
uint8_t reg_field;
uint8_t cap_id = 0;
rc = xen_host_pci_get_byte(&s->real_device, real_offset, &reg_field);
if (rc) {
return rc;
}
/* find capability offset */
while (reg_field) {
for (i = 0; xen_pt_emu_reg_grps[i].grp_size != 0; i++) {
if (xen_pt_hide_dev_cap(&s->real_device,
xen_pt_emu_reg_grps[i].grp_id)) {
continue;
}
rc = xen_host_pci_get_byte(&s->real_device,
reg_field + PCI_CAP_LIST_ID, &cap_id);
if (rc) {
XEN_PT_ERR(&s->dev, "Failed to read capability @0x%x (rc:%d)\n",
reg_field + PCI_CAP_LIST_ID, rc);
return rc;
}
if (xen_pt_emu_reg_grps[i].grp_id == cap_id) {
if (xen_pt_emu_reg_grps[i].grp_type == XEN_PT_GRP_TYPE_EMU) {
goto out;
}
/* ignore the 0 hardwired capability, find next one */
break;
}
}
/* next capability */
rc = xen_host_pci_get_byte(&s->real_device,
reg_field + PCI_CAP_LIST_NEXT, &reg_field);
if (rc) {
return rc;
}
}
out:
*data = reg_field;
return 0;
}
/*************
* Main
*/
static uint8_t find_cap_offset(XenPCIPassthroughState *s, uint8_t cap)
{
uint8_t id;
unsigned max_cap = XEN_PCI_CAP_MAX;
uint8_t pos = PCI_CAPABILITY_LIST;
uint8_t status = 0;
if (xen_host_pci_get_byte(&s->real_device, PCI_STATUS, &status)) {
return 0;
}
if ((status & PCI_STATUS_CAP_LIST) == 0) {
return 0;
}
while (max_cap--) {
if (xen_host_pci_get_byte(&s->real_device, pos, &pos)) {
break;
}
if (pos < PCI_CONFIG_HEADER_SIZE) {
break;
}
pos &= ~3;
if (xen_host_pci_get_byte(&s->real_device,
pos + PCI_CAP_LIST_ID, &id)) {
break;
}
if (id == 0xff) {
break;
}
if (id == cap) {
return pos;
}
pos += PCI_CAP_LIST_NEXT;
}
return 0;
}
static void xen_pt_config_reg_init(XenPCIPassthroughState *s,
XenPTRegGroup *reg_grp, XenPTRegInfo *reg,
Error **errp)
{
XenPTReg *reg_entry;
uint32_t data = 0;
int rc = 0;
reg_entry = g_new0(XenPTReg, 1);
reg_entry->reg = reg;
if (reg->init) {
uint32_t host_mask, size_mask;
unsigned int offset;
uint32_t val;
/* initialize emulate register */
rc = reg->init(s, reg_entry->reg,
reg_grp->base_offset + reg->offset, &data);
if (rc < 0) {
g_free(reg_entry);
error_setg(errp, "Init emulate register fail");
return;
}
if (data == XEN_PT_INVALID_REG) {
/* free unused BAR register entry */
g_free(reg_entry);
return;
}
/* Sync up the data to dev.config */
offset = reg_grp->base_offset + reg->offset;
size_mask = 0xFFFFFFFF >> ((4 - reg->size) << 3);
switch (reg->size) {
case 1: rc = xen_host_pci_get_byte(&s->real_device, offset, (uint8_t *)&val);
break;
case 2: rc = xen_host_pci_get_word(&s->real_device, offset, (uint16_t *)&val);
break;
case 4: rc = xen_host_pci_get_long(&s->real_device, offset, &val);
break;
default: abort();
}
if (rc) {
/* Serious issues when we cannot read the host values! */
g_free(reg_entry);
error_setg(errp, "Cannot read host values");
return;
}
/* Set bits in emu_mask are the ones we emulate. The dev.config shall
* contain the emulated view of the guest - therefore we flip the mask
* to mask out the host values (which dev.config initially has) . */
host_mask = size_mask & ~reg->emu_mask;
if ((data & host_mask) != (val & host_mask)) {
uint32_t new_val;
/* Mask out host (including past size). */
new_val = val & host_mask;
/* Merge emulated ones (excluding the non-emulated ones). */
new_val |= data & host_mask;
/* Leave intact host and emulated values past the size - even though
* we do not care as we write per reg->size granularity, but for the
* logging below lets have the proper value. */
new_val |= ((val | data)) & ~size_mask;
XEN_PT_LOG(&s->dev,"Offset 0x%04x mismatch! Emulated=0x%04x, host=0x%04x, syncing to 0x%04x.\n",
offset, data, val, new_val);
val = new_val;
} else
val = data;
if (val & ~size_mask) {
error_setg(errp, "Offset 0x%04x:0x%04x expands past"
" register size (%d)", offset, val, reg->size);
g_free(reg_entry);
return;
}
/* This could be just pci_set_long as we don't modify the bits
* past reg->size, but in case this routine is run in parallel or the
* init value is larger, we do not want to over-write registers. */
switch (reg->size) {
case 1: pci_set_byte(s->dev.config + offset, (uint8_t)val);
break;
case 2: pci_set_word(s->dev.config + offset, (uint16_t)val);
break;
case 4: pci_set_long(s->dev.config + offset, val);
break;
default: abort();
}
/* set register value pointer to the data. */
reg_entry->ptr.byte = s->dev.config + offset;
}
/* list add register entry */
QLIST_INSERT_HEAD(&reg_grp->reg_tbl_list, reg_entry, entries);
}
void xen_pt_config_init(XenPCIPassthroughState *s, Error **errp)
{
ERRP_GUARD();
int i, rc;
QLIST_INIT(&s->reg_grps);
for (i = 0; xen_pt_emu_reg_grps[i].grp_size != 0; i++) {
uint32_t reg_grp_offset = 0;
XenPTRegGroup *reg_grp_entry = NULL;
if (xen_pt_emu_reg_grps[i].grp_id != 0xFF
&& xen_pt_emu_reg_grps[i].grp_id != XEN_PCI_INTEL_OPREGION) {
if (xen_pt_hide_dev_cap(&s->real_device,
xen_pt_emu_reg_grps[i].grp_id)) {
continue;
}
reg_grp_offset = find_cap_offset(s, xen_pt_emu_reg_grps[i].grp_id);
if (!reg_grp_offset) {
continue;
}
}
/*
* By default we will trap up to 0x40 in the cfg space.
* If an intel device is pass through we need to trap 0xfc,
* therefore the size should be 0xff.
*/
if (xen_pt_emu_reg_grps[i].grp_id == XEN_PCI_INTEL_OPREGION) {
reg_grp_offset = XEN_PCI_INTEL_OPREGION;
}
reg_grp_entry = g_new0(XenPTRegGroup, 1);
QLIST_INIT(&reg_grp_entry->reg_tbl_list);
QLIST_INSERT_HEAD(&s->reg_grps, reg_grp_entry, entries);
reg_grp_entry->base_offset = reg_grp_offset;
reg_grp_entry->reg_grp = xen_pt_emu_reg_grps + i;
if (xen_pt_emu_reg_grps[i].size_init) {
/* get register group size */
rc = xen_pt_emu_reg_grps[i].size_init(s, reg_grp_entry->reg_grp,
reg_grp_offset,
&reg_grp_entry->size);
if (rc < 0) {
error_setg(errp, "Failed to initialize %d/%zu, type = 0x%x,"
" rc: %d", i, ARRAY_SIZE(xen_pt_emu_reg_grps),
xen_pt_emu_reg_grps[i].grp_type, rc);
xen_pt_config_delete(s);
return;
}
}
if (xen_pt_emu_reg_grps[i].grp_type == XEN_PT_GRP_TYPE_EMU) {
if (xen_pt_emu_reg_grps[i].emu_regs) {
int j = 0;
XenPTRegInfo *regs = xen_pt_emu_reg_grps[i].emu_regs;
/* initialize capability register */
for (j = 0; regs->size != 0; j++, regs++) {
xen_pt_config_reg_init(s, reg_grp_entry, regs, errp);
if (*errp) {
error_append_hint(errp, "Failed to init register %d"
" offsets 0x%x in grp_type = 0x%x (%d/%zu)",
j,
regs->offset,
xen_pt_emu_reg_grps[i].grp_type,
i, ARRAY_SIZE(xen_pt_emu_reg_grps));
xen_pt_config_delete(s);
return;
}
}
}
}
}
}
/* delete all emulate register */
void xen_pt_config_delete(XenPCIPassthroughState *s)
{
struct XenPTRegGroup *reg_group, *next_grp;
struct XenPTReg *reg, *next_reg;
/* free MSI/MSI-X info table */
if (s->msix) {
xen_pt_msix_unmap(s);
}
g_free(s->msi);
/* free all register group entry */
QLIST_FOREACH_SAFE(reg_group, &s->reg_grps, entries, next_grp) {
/* free all register entry */
QLIST_FOREACH_SAFE(reg, &reg_group->reg_tbl_list, entries, next_reg) {
QLIST_REMOVE(reg, entries);
g_free(reg);
}
QLIST_REMOVE(reg_group, entries);
g_free(reg_group);
}
}