1068 lines
43 KiB
C
1068 lines
43 KiB
C
/*
|
||
* QEMU float support
|
||
*
|
||
* The code in this source file is derived from release 2a of the SoftFloat
|
||
* IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
|
||
* some later contributions) are provided under that license, as detailed below.
|
||
* It has subsequently been modified by contributors to the QEMU Project,
|
||
* so some portions are provided under:
|
||
* the SoftFloat-2a license
|
||
* the BSD license
|
||
* GPL-v2-or-later
|
||
*
|
||
* Any future contributions to this file after December 1st 2014 will be
|
||
* taken to be licensed under the Softfloat-2a license unless specifically
|
||
* indicated otherwise.
|
||
*/
|
||
|
||
/*
|
||
===============================================================================
|
||
This C header file is part of the SoftFloat IEC/IEEE Floating-point
|
||
Arithmetic Package, Release 2a.
|
||
|
||
Written by John R. Hauser. This work was made possible in part by the
|
||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||
National Science Foundation under grant MIP-9311980. The original version
|
||
of this code was written as part of a project to build a fixed-point vector
|
||
processor in collaboration with the University of California at Berkeley,
|
||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
||
arithmetic/SoftFloat.html'.
|
||
|
||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
||
|
||
Derivative works are acceptable, even for commercial purposes, so long as
|
||
(1) they include prominent notice that the work is derivative, and (2) they
|
||
include prominent notice akin to these four paragraphs for those parts of
|
||
this code that are retained.
|
||
|
||
===============================================================================
|
||
*/
|
||
|
||
/* BSD licensing:
|
||
* Copyright (c) 2006, Fabrice Bellard
|
||
* All rights reserved.
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions are met:
|
||
*
|
||
* 1. Redistributions of source code must retain the above copyright notice,
|
||
* this list of conditions and the following disclaimer.
|
||
*
|
||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||
* this list of conditions and the following disclaimer in the documentation
|
||
* and/or other materials provided with the distribution.
|
||
*
|
||
* 3. Neither the name of the copyright holder nor the names of its contributors
|
||
* may be used to endorse or promote products derived from this software without
|
||
* specific prior written permission.
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
||
* THE POSSIBILITY OF SUCH DAMAGE.
|
||
*/
|
||
|
||
/* Portions of this work are licensed under the terms of the GNU GPL,
|
||
* version 2 or later. See the COPYING file in the top-level directory.
|
||
*/
|
||
|
||
#ifndef SOFTFLOAT_H
|
||
#define SOFTFLOAT_H
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Software IEC/IEEE floating-point ordering relations
|
||
*----------------------------------------------------------------------------*/
|
||
|
||
typedef enum {
|
||
float_relation_less = -1,
|
||
float_relation_equal = 0,
|
||
float_relation_greater = 1,
|
||
float_relation_unordered = 2
|
||
} FloatRelation;
|
||
|
||
#include "fpu/softfloat-types.h"
|
||
#include "fpu/softfloat-helpers.h"
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Routine to raise any or all of the software IEC/IEEE floating-point
|
||
| exception flags.
|
||
*----------------------------------------------------------------------------*/
|
||
void float_raise(uint8_t flags, float_status *status);
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| If `a' is denormal and we are in flush-to-zero mode then set the
|
||
| input-denormal exception and return zero. Otherwise just return the value.
|
||
*----------------------------------------------------------------------------*/
|
||
float16 float16_squash_input_denormal(float16 a, float_status *status);
|
||
float32 float32_squash_input_denormal(float32 a, float_status *status);
|
||
float64 float64_squash_input_denormal(float64 a, float_status *status);
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Options to indicate which negations to perform in float*_muladd()
|
||
| Using these differs from negating an input or output before calling
|
||
| the muladd function in that this means that a NaN doesn't have its
|
||
| sign bit inverted before it is propagated.
|
||
| We also support halving the result before rounding, as a special
|
||
| case to support the ARM fused-sqrt-step instruction FRSQRTS.
|
||
*----------------------------------------------------------------------------*/
|
||
enum {
|
||
float_muladd_negate_c = 1,
|
||
float_muladd_negate_product = 2,
|
||
float_muladd_negate_result = 4,
|
||
float_muladd_halve_result = 8,
|
||
};
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Software IEC/IEEE integer-to-floating-point conversion routines.
|
||
*----------------------------------------------------------------------------*/
|
||
|
||
float16 int16_to_float16_scalbn(int16_t a, int, float_status *status);
|
||
float16 int32_to_float16_scalbn(int32_t a, int, float_status *status);
|
||
float16 int64_to_float16_scalbn(int64_t a, int, float_status *status);
|
||
float16 uint16_to_float16_scalbn(uint16_t a, int, float_status *status);
|
||
float16 uint32_to_float16_scalbn(uint32_t a, int, float_status *status);
|
||
float16 uint64_to_float16_scalbn(uint64_t a, int, float_status *status);
|
||
|
||
float16 int16_to_float16(int16_t a, float_status *status);
|
||
float16 int32_to_float16(int32_t a, float_status *status);
|
||
float16 int64_to_float16(int64_t a, float_status *status);
|
||
float16 uint16_to_float16(uint16_t a, float_status *status);
|
||
float16 uint32_to_float16(uint32_t a, float_status *status);
|
||
float16 uint64_to_float16(uint64_t a, float_status *status);
|
||
|
||
float32 int16_to_float32_scalbn(int16_t, int, float_status *status);
|
||
float32 int32_to_float32_scalbn(int32_t, int, float_status *status);
|
||
float32 int64_to_float32_scalbn(int64_t, int, float_status *status);
|
||
float32 uint16_to_float32_scalbn(uint16_t, int, float_status *status);
|
||
float32 uint32_to_float32_scalbn(uint32_t, int, float_status *status);
|
||
float32 uint64_to_float32_scalbn(uint64_t, int, float_status *status);
|
||
|
||
float32 int16_to_float32(int16_t, float_status *status);
|
||
float32 int32_to_float32(int32_t, float_status *status);
|
||
float32 int64_to_float32(int64_t, float_status *status);
|
||
float32 uint16_to_float32(uint16_t, float_status *status);
|
||
float32 uint32_to_float32(uint32_t, float_status *status);
|
||
float32 uint64_to_float32(uint64_t, float_status *status);
|
||
|
||
float64 int16_to_float64_scalbn(int16_t, int, float_status *status);
|
||
float64 int32_to_float64_scalbn(int32_t, int, float_status *status);
|
||
float64 int64_to_float64_scalbn(int64_t, int, float_status *status);
|
||
float64 uint16_to_float64_scalbn(uint16_t, int, float_status *status);
|
||
float64 uint32_to_float64_scalbn(uint32_t, int, float_status *status);
|
||
float64 uint64_to_float64_scalbn(uint64_t, int, float_status *status);
|
||
|
||
float64 int16_to_float64(int16_t, float_status *status);
|
||
float64 int32_to_float64(int32_t, float_status *status);
|
||
float64 int64_to_float64(int64_t, float_status *status);
|
||
float64 uint16_to_float64(uint16_t, float_status *status);
|
||
float64 uint32_to_float64(uint32_t, float_status *status);
|
||
float64 uint64_to_float64(uint64_t, float_status *status);
|
||
|
||
floatx80 int32_to_floatx80(int32_t, float_status *status);
|
||
floatx80 int64_to_floatx80(int64_t, float_status *status);
|
||
|
||
float128 int32_to_float128(int32_t, float_status *status);
|
||
float128 int64_to_float128(int64_t, float_status *status);
|
||
float128 uint64_to_float128(uint64_t, float_status *status);
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Software half-precision conversion routines.
|
||
*----------------------------------------------------------------------------*/
|
||
|
||
float16 float32_to_float16(float32, bool ieee, float_status *status);
|
||
float32 float16_to_float32(float16, bool ieee, float_status *status);
|
||
float16 float64_to_float16(float64 a, bool ieee, float_status *status);
|
||
float64 float16_to_float64(float16 a, bool ieee, float_status *status);
|
||
|
||
int16_t float16_to_int16_scalbn(float16, FloatRoundMode, int, float_status *);
|
||
int32_t float16_to_int32_scalbn(float16, FloatRoundMode, int, float_status *);
|
||
int64_t float16_to_int64_scalbn(float16, FloatRoundMode, int, float_status *);
|
||
|
||
int16_t float16_to_int16(float16, float_status *status);
|
||
int32_t float16_to_int32(float16, float_status *status);
|
||
int64_t float16_to_int64(float16, float_status *status);
|
||
|
||
int16_t float16_to_int16_round_to_zero(float16, float_status *status);
|
||
int32_t float16_to_int32_round_to_zero(float16, float_status *status);
|
||
int64_t float16_to_int64_round_to_zero(float16, float_status *status);
|
||
|
||
uint16_t float16_to_uint16_scalbn(float16 a, FloatRoundMode,
|
||
int, float_status *status);
|
||
uint32_t float16_to_uint32_scalbn(float16 a, FloatRoundMode,
|
||
int, float_status *status);
|
||
uint64_t float16_to_uint64_scalbn(float16 a, FloatRoundMode,
|
||
int, float_status *status);
|
||
|
||
uint16_t float16_to_uint16(float16 a, float_status *status);
|
||
uint32_t float16_to_uint32(float16 a, float_status *status);
|
||
uint64_t float16_to_uint64(float16 a, float_status *status);
|
||
|
||
uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *status);
|
||
uint32_t float16_to_uint32_round_to_zero(float16 a, float_status *status);
|
||
uint64_t float16_to_uint64_round_to_zero(float16 a, float_status *status);
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Software half-precision operations.
|
||
*----------------------------------------------------------------------------*/
|
||
|
||
float16 float16_round_to_int(float16, float_status *status);
|
||
float16 float16_add(float16, float16, float_status *status);
|
||
float16 float16_sub(float16, float16, float_status *status);
|
||
float16 float16_mul(float16, float16, float_status *status);
|
||
float16 float16_muladd(float16, float16, float16, int, float_status *status);
|
||
float16 float16_div(float16, float16, float_status *status);
|
||
float16 float16_scalbn(float16, int, float_status *status);
|
||
float16 float16_min(float16, float16, float_status *status);
|
||
float16 float16_max(float16, float16, float_status *status);
|
||
float16 float16_minnum(float16, float16, float_status *status);
|
||
float16 float16_maxnum(float16, float16, float_status *status);
|
||
float16 float16_minnummag(float16, float16, float_status *status);
|
||
float16 float16_maxnummag(float16, float16, float_status *status);
|
||
float16 float16_sqrt(float16, float_status *status);
|
||
FloatRelation float16_compare(float16, float16, float_status *status);
|
||
FloatRelation float16_compare_quiet(float16, float16, float_status *status);
|
||
|
||
bool float16_is_quiet_nan(float16, float_status *status);
|
||
bool float16_is_signaling_nan(float16, float_status *status);
|
||
float16 float16_silence_nan(float16, float_status *status);
|
||
|
||
static inline bool float16_is_any_nan(float16 a)
|
||
{
|
||
return ((float16_val(a) & ~0x8000) > 0x7c00);
|
||
}
|
||
|
||
static inline bool float16_is_neg(float16 a)
|
||
{
|
||
return float16_val(a) >> 15;
|
||
}
|
||
|
||
static inline bool float16_is_infinity(float16 a)
|
||
{
|
||
return (float16_val(a) & 0x7fff) == 0x7c00;
|
||
}
|
||
|
||
static inline bool float16_is_zero(float16 a)
|
||
{
|
||
return (float16_val(a) & 0x7fff) == 0;
|
||
}
|
||
|
||
static inline bool float16_is_zero_or_denormal(float16 a)
|
||
{
|
||
return (float16_val(a) & 0x7c00) == 0;
|
||
}
|
||
|
||
static inline float16 float16_abs(float16 a)
|
||
{
|
||
/* Note that abs does *not* handle NaN specially, nor does
|
||
* it flush denormal inputs to zero.
|
||
*/
|
||
return make_float16(float16_val(a) & 0x7fff);
|
||
}
|
||
|
||
static inline float16 float16_chs(float16 a)
|
||
{
|
||
/* Note that chs does *not* handle NaN specially, nor does
|
||
* it flush denormal inputs to zero.
|
||
*/
|
||
return make_float16(float16_val(a) ^ 0x8000);
|
||
}
|
||
|
||
static inline float16 float16_set_sign(float16 a, int sign)
|
||
{
|
||
return make_float16((float16_val(a) & 0x7fff) | (sign << 15));
|
||
}
|
||
|
||
#define float16_zero make_float16(0)
|
||
#define float16_half make_float16(0x3800)
|
||
#define float16_one make_float16(0x3c00)
|
||
#define float16_one_point_five make_float16(0x3e00)
|
||
#define float16_two make_float16(0x4000)
|
||
#define float16_three make_float16(0x4200)
|
||
#define float16_infinity make_float16(0x7c00)
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| The pattern for a default generated half-precision NaN.
|
||
*----------------------------------------------------------------------------*/
|
||
float16 float16_default_nan(float_status *status);
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Software IEC/IEEE single-precision conversion routines.
|
||
*----------------------------------------------------------------------------*/
|
||
|
||
int16_t float32_to_int16_scalbn(float32, FloatRoundMode, int, float_status *);
|
||
int32_t float32_to_int32_scalbn(float32, FloatRoundMode, int, float_status *);
|
||
int64_t float32_to_int64_scalbn(float32, FloatRoundMode, int, float_status *);
|
||
|
||
int16_t float32_to_int16(float32, float_status *status);
|
||
int32_t float32_to_int32(float32, float_status *status);
|
||
int64_t float32_to_int64(float32, float_status *status);
|
||
|
||
int16_t float32_to_int16_round_to_zero(float32, float_status *status);
|
||
int32_t float32_to_int32_round_to_zero(float32, float_status *status);
|
||
int64_t float32_to_int64_round_to_zero(float32, float_status *status);
|
||
|
||
uint16_t float32_to_uint16_scalbn(float32, FloatRoundMode, int, float_status *);
|
||
uint32_t float32_to_uint32_scalbn(float32, FloatRoundMode, int, float_status *);
|
||
uint64_t float32_to_uint64_scalbn(float32, FloatRoundMode, int, float_status *);
|
||
|
||
uint16_t float32_to_uint16(float32, float_status *status);
|
||
uint32_t float32_to_uint32(float32, float_status *status);
|
||
uint64_t float32_to_uint64(float32, float_status *status);
|
||
|
||
uint16_t float32_to_uint16_round_to_zero(float32, float_status *status);
|
||
uint32_t float32_to_uint32_round_to_zero(float32, float_status *status);
|
||
uint64_t float32_to_uint64_round_to_zero(float32, float_status *status);
|
||
|
||
float64 float32_to_float64(float32, float_status *status);
|
||
floatx80 float32_to_floatx80(float32, float_status *status);
|
||
float128 float32_to_float128(float32, float_status *status);
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Software IEC/IEEE single-precision operations.
|
||
*----------------------------------------------------------------------------*/
|
||
float32 float32_round_to_int(float32, float_status *status);
|
||
float32 float32_add(float32, float32, float_status *status);
|
||
float32 float32_sub(float32, float32, float_status *status);
|
||
float32 float32_mul(float32, float32, float_status *status);
|
||
float32 float32_div(float32, float32, float_status *status);
|
||
float32 float32_rem(float32, float32, float_status *status);
|
||
float32 float32_muladd(float32, float32, float32, int, float_status *status);
|
||
float32 float32_sqrt(float32, float_status *status);
|
||
float32 float32_exp2(float32, float_status *status);
|
||
float32 float32_log2(float32, float_status *status);
|
||
FloatRelation float32_compare(float32, float32, float_status *status);
|
||
FloatRelation float32_compare_quiet(float32, float32, float_status *status);
|
||
float32 float32_min(float32, float32, float_status *status);
|
||
float32 float32_max(float32, float32, float_status *status);
|
||
float32 float32_minnum(float32, float32, float_status *status);
|
||
float32 float32_maxnum(float32, float32, float_status *status);
|
||
float32 float32_minnummag(float32, float32, float_status *status);
|
||
float32 float32_maxnummag(float32, float32, float_status *status);
|
||
bool float32_is_quiet_nan(float32, float_status *status);
|
||
bool float32_is_signaling_nan(float32, float_status *status);
|
||
float32 float32_silence_nan(float32, float_status *status);
|
||
float32 float32_scalbn(float32, int, float_status *status);
|
||
|
||
static inline float32 float32_abs(float32 a)
|
||
{
|
||
/* Note that abs does *not* handle NaN specially, nor does
|
||
* it flush denormal inputs to zero.
|
||
*/
|
||
return make_float32(float32_val(a) & 0x7fffffff);
|
||
}
|
||
|
||
static inline float32 float32_chs(float32 a)
|
||
{
|
||
/* Note that chs does *not* handle NaN specially, nor does
|
||
* it flush denormal inputs to zero.
|
||
*/
|
||
return make_float32(float32_val(a) ^ 0x80000000);
|
||
}
|
||
|
||
static inline bool float32_is_infinity(float32 a)
|
||
{
|
||
return (float32_val(a) & 0x7fffffff) == 0x7f800000;
|
||
}
|
||
|
||
static inline bool float32_is_neg(float32 a)
|
||
{
|
||
return float32_val(a) >> 31;
|
||
}
|
||
|
||
static inline bool float32_is_zero(float32 a)
|
||
{
|
||
return (float32_val(a) & 0x7fffffff) == 0;
|
||
}
|
||
|
||
static inline bool float32_is_any_nan(float32 a)
|
||
{
|
||
return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
|
||
}
|
||
|
||
static inline bool float32_is_zero_or_denormal(float32 a)
|
||
{
|
||
return (float32_val(a) & 0x7f800000) == 0;
|
||
}
|
||
|
||
static inline bool float32_is_normal(float32 a)
|
||
{
|
||
return (((float32_val(a) >> 23) + 1) & 0xff) >= 2;
|
||
}
|
||
|
||
static inline bool float32_is_denormal(float32 a)
|
||
{
|
||
return float32_is_zero_or_denormal(a) && !float32_is_zero(a);
|
||
}
|
||
|
||
static inline bool float32_is_zero_or_normal(float32 a)
|
||
{
|
||
return float32_is_normal(a) || float32_is_zero(a);
|
||
}
|
||
|
||
static inline float32 float32_set_sign(float32 a, int sign)
|
||
{
|
||
return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
|
||
}
|
||
|
||
static inline bool float32_eq(float32 a, float32 b, float_status *s)
|
||
{
|
||
return float32_compare(a, b, s) == float_relation_equal;
|
||
}
|
||
|
||
static inline bool float32_le(float32 a, float32 b, float_status *s)
|
||
{
|
||
return float32_compare(a, b, s) <= float_relation_equal;
|
||
}
|
||
|
||
static inline bool float32_lt(float32 a, float32 b, float_status *s)
|
||
{
|
||
return float32_compare(a, b, s) < float_relation_equal;
|
||
}
|
||
|
||
static inline bool float32_unordered(float32 a, float32 b, float_status *s)
|
||
{
|
||
return float32_compare(a, b, s) == float_relation_unordered;
|
||
}
|
||
|
||
static inline bool float32_eq_quiet(float32 a, float32 b, float_status *s)
|
||
{
|
||
return float32_compare_quiet(a, b, s) == float_relation_equal;
|
||
}
|
||
|
||
static inline bool float32_le_quiet(float32 a, float32 b, float_status *s)
|
||
{
|
||
return float32_compare_quiet(a, b, s) <= float_relation_equal;
|
||
}
|
||
|
||
static inline bool float32_lt_quiet(float32 a, float32 b, float_status *s)
|
||
{
|
||
return float32_compare_quiet(a, b, s) < float_relation_equal;
|
||
}
|
||
|
||
static inline bool float32_unordered_quiet(float32 a, float32 b,
|
||
float_status *s)
|
||
{
|
||
return float32_compare_quiet(a, b, s) == float_relation_unordered;
|
||
}
|
||
|
||
#define float32_zero make_float32(0)
|
||
#define float32_half make_float32(0x3f000000)
|
||
#define float32_one make_float32(0x3f800000)
|
||
#define float32_one_point_five make_float32(0x3fc00000)
|
||
#define float32_two make_float32(0x40000000)
|
||
#define float32_three make_float32(0x40400000)
|
||
#define float32_infinity make_float32(0x7f800000)
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
|
||
| single-precision floating-point value, returning the result. After being
|
||
| shifted into the proper positions, the three fields are simply added
|
||
| together to form the result. This means that any integer portion of `zSig'
|
||
| will be added into the exponent. Since a properly normalized significand
|
||
| will have an integer portion equal to 1, the `zExp' input should be 1 less
|
||
| than the desired result exponent whenever `zSig' is a complete, normalized
|
||
| significand.
|
||
*----------------------------------------------------------------------------*/
|
||
|
||
static inline float32 packFloat32(bool zSign, int zExp, uint32_t zSig)
|
||
{
|
||
return make_float32(
|
||
(((uint32_t)zSign) << 31) + (((uint32_t)zExp) << 23) + zSig);
|
||
}
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| The pattern for a default generated single-precision NaN.
|
||
*----------------------------------------------------------------------------*/
|
||
float32 float32_default_nan(float_status *status);
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Software IEC/IEEE double-precision conversion routines.
|
||
*----------------------------------------------------------------------------*/
|
||
|
||
int16_t float64_to_int16_scalbn(float64, FloatRoundMode, int, float_status *);
|
||
int32_t float64_to_int32_scalbn(float64, FloatRoundMode, int, float_status *);
|
||
int64_t float64_to_int64_scalbn(float64, FloatRoundMode, int, float_status *);
|
||
|
||
int16_t float64_to_int16(float64, float_status *status);
|
||
int32_t float64_to_int32(float64, float_status *status);
|
||
int64_t float64_to_int64(float64, float_status *status);
|
||
|
||
int16_t float64_to_int16_round_to_zero(float64, float_status *status);
|
||
int32_t float64_to_int32_round_to_zero(float64, float_status *status);
|
||
int64_t float64_to_int64_round_to_zero(float64, float_status *status);
|
||
|
||
uint16_t float64_to_uint16_scalbn(float64, FloatRoundMode, int, float_status *);
|
||
uint32_t float64_to_uint32_scalbn(float64, FloatRoundMode, int, float_status *);
|
||
uint64_t float64_to_uint64_scalbn(float64, FloatRoundMode, int, float_status *);
|
||
|
||
uint16_t float64_to_uint16(float64, float_status *status);
|
||
uint32_t float64_to_uint32(float64, float_status *status);
|
||
uint64_t float64_to_uint64(float64, float_status *status);
|
||
|
||
uint16_t float64_to_uint16_round_to_zero(float64, float_status *status);
|
||
uint32_t float64_to_uint32_round_to_zero(float64, float_status *status);
|
||
uint64_t float64_to_uint64_round_to_zero(float64, float_status *status);
|
||
|
||
float32 float64_to_float32(float64, float_status *status);
|
||
floatx80 float64_to_floatx80(float64, float_status *status);
|
||
float128 float64_to_float128(float64, float_status *status);
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Software IEC/IEEE double-precision operations.
|
||
*----------------------------------------------------------------------------*/
|
||
float64 float64_round_to_int(float64, float_status *status);
|
||
float64 float64_add(float64, float64, float_status *status);
|
||
float64 float64_sub(float64, float64, float_status *status);
|
||
float64 float64_mul(float64, float64, float_status *status);
|
||
float64 float64_div(float64, float64, float_status *status);
|
||
float64 float64_rem(float64, float64, float_status *status);
|
||
float64 float64_muladd(float64, float64, float64, int, float_status *status);
|
||
float64 float64_sqrt(float64, float_status *status);
|
||
float64 float64_log2(float64, float_status *status);
|
||
FloatRelation float64_compare(float64, float64, float_status *status);
|
||
FloatRelation float64_compare_quiet(float64, float64, float_status *status);
|
||
float64 float64_min(float64, float64, float_status *status);
|
||
float64 float64_max(float64, float64, float_status *status);
|
||
float64 float64_minnum(float64, float64, float_status *status);
|
||
float64 float64_maxnum(float64, float64, float_status *status);
|
||
float64 float64_minnummag(float64, float64, float_status *status);
|
||
float64 float64_maxnummag(float64, float64, float_status *status);
|
||
bool float64_is_quiet_nan(float64 a, float_status *status);
|
||
bool float64_is_signaling_nan(float64, float_status *status);
|
||
float64 float64_silence_nan(float64, float_status *status);
|
||
float64 float64_scalbn(float64, int, float_status *status);
|
||
|
||
static inline float64 float64_abs(float64 a)
|
||
{
|
||
/* Note that abs does *not* handle NaN specially, nor does
|
||
* it flush denormal inputs to zero.
|
||
*/
|
||
return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
|
||
}
|
||
|
||
static inline float64 float64_chs(float64 a)
|
||
{
|
||
/* Note that chs does *not* handle NaN specially, nor does
|
||
* it flush denormal inputs to zero.
|
||
*/
|
||
return make_float64(float64_val(a) ^ 0x8000000000000000LL);
|
||
}
|
||
|
||
static inline bool float64_is_infinity(float64 a)
|
||
{
|
||
return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
|
||
}
|
||
|
||
static inline bool float64_is_neg(float64 a)
|
||
{
|
||
return float64_val(a) >> 63;
|
||
}
|
||
|
||
static inline bool float64_is_zero(float64 a)
|
||
{
|
||
return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
|
||
}
|
||
|
||
static inline bool float64_is_any_nan(float64 a)
|
||
{
|
||
return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
|
||
}
|
||
|
||
static inline bool float64_is_zero_or_denormal(float64 a)
|
||
{
|
||
return (float64_val(a) & 0x7ff0000000000000LL) == 0;
|
||
}
|
||
|
||
static inline bool float64_is_normal(float64 a)
|
||
{
|
||
return (((float64_val(a) >> 52) + 1) & 0x7ff) >= 2;
|
||
}
|
||
|
||
static inline bool float64_is_denormal(float64 a)
|
||
{
|
||
return float64_is_zero_or_denormal(a) && !float64_is_zero(a);
|
||
}
|
||
|
||
static inline bool float64_is_zero_or_normal(float64 a)
|
||
{
|
||
return float64_is_normal(a) || float64_is_zero(a);
|
||
}
|
||
|
||
static inline float64 float64_set_sign(float64 a, int sign)
|
||
{
|
||
return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
|
||
| ((int64_t)sign << 63));
|
||
}
|
||
|
||
static inline bool float64_eq(float64 a, float64 b, float_status *s)
|
||
{
|
||
return float64_compare(a, b, s) == float_relation_equal;
|
||
}
|
||
|
||
static inline bool float64_le(float64 a, float64 b, float_status *s)
|
||
{
|
||
return float64_compare(a, b, s) <= float_relation_equal;
|
||
}
|
||
|
||
static inline bool float64_lt(float64 a, float64 b, float_status *s)
|
||
{
|
||
return float64_compare(a, b, s) < float_relation_equal;
|
||
}
|
||
|
||
static inline bool float64_unordered(float64 a, float64 b, float_status *s)
|
||
{
|
||
return float64_compare(a, b, s) == float_relation_unordered;
|
||
}
|
||
|
||
static inline bool float64_eq_quiet(float64 a, float64 b, float_status *s)
|
||
{
|
||
return float64_compare_quiet(a, b, s) == float_relation_equal;
|
||
}
|
||
|
||
static inline bool float64_le_quiet(float64 a, float64 b, float_status *s)
|
||
{
|
||
return float64_compare_quiet(a, b, s) <= float_relation_equal;
|
||
}
|
||
|
||
static inline bool float64_lt_quiet(float64 a, float64 b, float_status *s)
|
||
{
|
||
return float64_compare_quiet(a, b, s) < float_relation_equal;
|
||
}
|
||
|
||
static inline bool float64_unordered_quiet(float64 a, float64 b,
|
||
float_status *s)
|
||
{
|
||
return float64_compare_quiet(a, b, s) == float_relation_unordered;
|
||
}
|
||
|
||
#define float64_zero make_float64(0)
|
||
#define float64_half make_float64(0x3fe0000000000000LL)
|
||
#define float64_one make_float64(0x3ff0000000000000LL)
|
||
#define float64_one_point_five make_float64(0x3FF8000000000000ULL)
|
||
#define float64_two make_float64(0x4000000000000000ULL)
|
||
#define float64_three make_float64(0x4008000000000000ULL)
|
||
#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
|
||
#define float64_infinity make_float64(0x7ff0000000000000LL)
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| The pattern for a default generated double-precision NaN.
|
||
*----------------------------------------------------------------------------*/
|
||
float64 float64_default_nan(float_status *status);
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Software IEC/IEEE extended double-precision conversion routines.
|
||
*----------------------------------------------------------------------------*/
|
||
int32_t floatx80_to_int32(floatx80, float_status *status);
|
||
int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status);
|
||
int64_t floatx80_to_int64(floatx80, float_status *status);
|
||
int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status);
|
||
float32 floatx80_to_float32(floatx80, float_status *status);
|
||
float64 floatx80_to_float64(floatx80, float_status *status);
|
||
float128 floatx80_to_float128(floatx80, float_status *status);
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| The pattern for an extended double-precision inf.
|
||
*----------------------------------------------------------------------------*/
|
||
extern const floatx80 floatx80_infinity;
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Software IEC/IEEE extended double-precision operations.
|
||
*----------------------------------------------------------------------------*/
|
||
floatx80 floatx80_round(floatx80 a, float_status *status);
|
||
floatx80 floatx80_round_to_int(floatx80, float_status *status);
|
||
floatx80 floatx80_add(floatx80, floatx80, float_status *status);
|
||
floatx80 floatx80_sub(floatx80, floatx80, float_status *status);
|
||
floatx80 floatx80_mul(floatx80, floatx80, float_status *status);
|
||
floatx80 floatx80_div(floatx80, floatx80, float_status *status);
|
||
floatx80 floatx80_modrem(floatx80, floatx80, bool, uint64_t *,
|
||
float_status *status);
|
||
floatx80 floatx80_mod(floatx80, floatx80, float_status *status);
|
||
floatx80 floatx80_rem(floatx80, floatx80, float_status *status);
|
||
floatx80 floatx80_sqrt(floatx80, float_status *status);
|
||
FloatRelation floatx80_compare(floatx80, floatx80, float_status *status);
|
||
FloatRelation floatx80_compare_quiet(floatx80, floatx80, float_status *status);
|
||
int floatx80_is_quiet_nan(floatx80, float_status *status);
|
||
int floatx80_is_signaling_nan(floatx80, float_status *status);
|
||
floatx80 floatx80_silence_nan(floatx80, float_status *status);
|
||
floatx80 floatx80_scalbn(floatx80, int, float_status *status);
|
||
|
||
static inline floatx80 floatx80_abs(floatx80 a)
|
||
{
|
||
a.high &= 0x7fff;
|
||
return a;
|
||
}
|
||
|
||
static inline floatx80 floatx80_chs(floatx80 a)
|
||
{
|
||
a.high ^= 0x8000;
|
||
return a;
|
||
}
|
||
|
||
static inline bool floatx80_is_infinity(floatx80 a)
|
||
{
|
||
#if defined(TARGET_M68K)
|
||
return (a.high & 0x7fff) == floatx80_infinity.high && !(a.low << 1);
|
||
#else
|
||
return (a.high & 0x7fff) == floatx80_infinity.high &&
|
||
a.low == floatx80_infinity.low;
|
||
#endif
|
||
}
|
||
|
||
static inline bool floatx80_is_neg(floatx80 a)
|
||
{
|
||
return a.high >> 15;
|
||
}
|
||
|
||
static inline bool floatx80_is_zero(floatx80 a)
|
||
{
|
||
return (a.high & 0x7fff) == 0 && a.low == 0;
|
||
}
|
||
|
||
static inline bool floatx80_is_zero_or_denormal(floatx80 a)
|
||
{
|
||
return (a.high & 0x7fff) == 0;
|
||
}
|
||
|
||
static inline bool floatx80_is_any_nan(floatx80 a)
|
||
{
|
||
return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
|
||
}
|
||
|
||
static inline bool floatx80_eq(floatx80 a, floatx80 b, float_status *s)
|
||
{
|
||
return floatx80_compare(a, b, s) == float_relation_equal;
|
||
}
|
||
|
||
static inline bool floatx80_le(floatx80 a, floatx80 b, float_status *s)
|
||
{
|
||
return floatx80_compare(a, b, s) <= float_relation_equal;
|
||
}
|
||
|
||
static inline bool floatx80_lt(floatx80 a, floatx80 b, float_status *s)
|
||
{
|
||
return floatx80_compare(a, b, s) < float_relation_equal;
|
||
}
|
||
|
||
static inline bool floatx80_unordered(floatx80 a, floatx80 b, float_status *s)
|
||
{
|
||
return floatx80_compare(a, b, s) == float_relation_unordered;
|
||
}
|
||
|
||
static inline bool floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *s)
|
||
{
|
||
return floatx80_compare_quiet(a, b, s) == float_relation_equal;
|
||
}
|
||
|
||
static inline bool floatx80_le_quiet(floatx80 a, floatx80 b, float_status *s)
|
||
{
|
||
return floatx80_compare_quiet(a, b, s) <= float_relation_equal;
|
||
}
|
||
|
||
static inline bool floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *s)
|
||
{
|
||
return floatx80_compare_quiet(a, b, s) < float_relation_equal;
|
||
}
|
||
|
||
static inline bool floatx80_unordered_quiet(floatx80 a, floatx80 b,
|
||
float_status *s)
|
||
{
|
||
return floatx80_compare_quiet(a, b, s) == float_relation_unordered;
|
||
}
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Return whether the given value is an invalid floatx80 encoding.
|
||
| Invalid floatx80 encodings arise when the integer bit is not set, but
|
||
| the exponent is not zero. The only times the integer bit is permitted to
|
||
| be zero is in subnormal numbers and the value zero.
|
||
| This includes what the Intel software developer's manual calls pseudo-NaNs,
|
||
| pseudo-infinities and un-normal numbers. It does not include
|
||
| pseudo-denormals, which must still be correctly handled as inputs even
|
||
| if they are never generated as outputs.
|
||
*----------------------------------------------------------------------------*/
|
||
static inline bool floatx80_invalid_encoding(floatx80 a)
|
||
{
|
||
#if defined(TARGET_M68K)
|
||
/*-------------------------------------------------------------------------
|
||
| With m68k, the explicit integer bit can be zero in the case of:
|
||
| - zeros (exp == 0, mantissa == 0)
|
||
| - denormalized numbers (exp == 0, mantissa != 0)
|
||
| - unnormalized numbers (exp != 0, exp < 0x7FFF)
|
||
| - infinities (exp == 0x7FFF, mantissa == 0)
|
||
| - not-a-numbers (exp == 0x7FFF, mantissa != 0)
|
||
|
|
||
| For infinities and NaNs, the explicit integer bit can be either one or
|
||
| zero.
|
||
|
|
||
| The IEEE 754 standard does not define a zero integer bit. Such a number
|
||
| is an unnormalized number. Hardware does not directly support
|
||
| denormalized and unnormalized numbers, but implicitly supports them by
|
||
| trapping them as unimplemented data types, allowing efficient conversion
|
||
| in software.
|
||
|
|
||
| See "M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL",
|
||
| "1.6 FLOATING-POINT DATA TYPES"
|
||
*------------------------------------------------------------------------*/
|
||
return false;
|
||
#else
|
||
return (a.low & (1ULL << 63)) == 0 && (a.high & 0x7FFF) != 0;
|
||
#endif
|
||
}
|
||
|
||
#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
|
||
#define floatx80_zero_init make_floatx80_init(0x0000, 0x0000000000000000LL)
|
||
#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
|
||
#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
|
||
#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
|
||
#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Returns the fraction bits of the extended double-precision floating-point
|
||
| value `a'.
|
||
*----------------------------------------------------------------------------*/
|
||
|
||
static inline uint64_t extractFloatx80Frac(floatx80 a)
|
||
{
|
||
return a.low;
|
||
}
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Returns the exponent bits of the extended double-precision floating-point
|
||
| value `a'.
|
||
*----------------------------------------------------------------------------*/
|
||
|
||
static inline int32_t extractFloatx80Exp(floatx80 a)
|
||
{
|
||
return a.high & 0x7FFF;
|
||
}
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Returns the sign bit of the extended double-precision floating-point value
|
||
| `a'.
|
||
*----------------------------------------------------------------------------*/
|
||
|
||
static inline bool extractFloatx80Sign(floatx80 a)
|
||
{
|
||
return a.high >> 15;
|
||
}
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
|
||
| extended double-precision floating-point value, returning the result.
|
||
*----------------------------------------------------------------------------*/
|
||
|
||
static inline floatx80 packFloatx80(bool zSign, int32_t zExp, uint64_t zSig)
|
||
{
|
||
floatx80 z;
|
||
|
||
z.low = zSig;
|
||
z.high = (((uint16_t)zSign) << 15) + zExp;
|
||
return z;
|
||
}
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Normalizes the subnormal extended double-precision floating-point value
|
||
| represented by the denormalized significand `aSig'. The normalized exponent
|
||
| and significand are stored at the locations pointed to by `zExpPtr' and
|
||
| `zSigPtr', respectively.
|
||
*----------------------------------------------------------------------------*/
|
||
|
||
void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr,
|
||
uint64_t *zSigPtr);
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Takes two extended double-precision floating-point values `a' and `b', one
|
||
| of which is a NaN, and returns the appropriate NaN result. If either `a' or
|
||
| `b' is a signaling NaN, the invalid exception is raised.
|
||
*----------------------------------------------------------------------------*/
|
||
|
||
floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status);
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
||
| and extended significand formed by the concatenation of `zSig0' and `zSig1',
|
||
| and returns the proper extended double-precision floating-point value
|
||
| corresponding to the abstract input. Ordinarily, the abstract value is
|
||
| rounded and packed into the extended double-precision format, with the
|
||
| inexact exception raised if the abstract input cannot be represented
|
||
| exactly. However, if the abstract value is too large, the overflow and
|
||
| inexact exceptions are raised and an infinity or maximal finite value is
|
||
| returned. If the abstract value is too small, the input value is rounded to
|
||
| a subnormal number, and the underflow and inexact exceptions are raised if
|
||
| the abstract input cannot be represented exactly as a subnormal extended
|
||
| double-precision floating-point number.
|
||
| If `roundingPrecision' is 32 or 64, the result is rounded to the same
|
||
| number of bits as single or double precision, respectively. Otherwise, the
|
||
| result is rounded to the full precision of the extended double-precision
|
||
| format.
|
||
| The input significand must be normalized or smaller. If the input
|
||
| significand is not normalized, `zExp' must be 0; in that case, the result
|
||
| returned is a subnormal number, and it must not require rounding. The
|
||
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
|
||
| Floating-Point Arithmetic.
|
||
*----------------------------------------------------------------------------*/
|
||
|
||
floatx80 roundAndPackFloatx80(int8_t roundingPrecision, bool zSign,
|
||
int32_t zExp, uint64_t zSig0, uint64_t zSig1,
|
||
float_status *status);
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Takes an abstract floating-point value having sign `zSign', exponent
|
||
| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
|
||
| and returns the proper extended double-precision floating-point value
|
||
| corresponding to the abstract input. This routine is just like
|
||
| `roundAndPackFloatx80' except that the input significand does not have to be
|
||
| normalized.
|
||
*----------------------------------------------------------------------------*/
|
||
|
||
floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
|
||
bool zSign, int32_t zExp,
|
||
uint64_t zSig0, uint64_t zSig1,
|
||
float_status *status);
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| The pattern for a default generated extended double-precision NaN.
|
||
*----------------------------------------------------------------------------*/
|
||
floatx80 floatx80_default_nan(float_status *status);
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Software IEC/IEEE quadruple-precision conversion routines.
|
||
*----------------------------------------------------------------------------*/
|
||
int32_t float128_to_int32(float128, float_status *status);
|
||
int32_t float128_to_int32_round_to_zero(float128, float_status *status);
|
||
int64_t float128_to_int64(float128, float_status *status);
|
||
int64_t float128_to_int64_round_to_zero(float128, float_status *status);
|
||
uint64_t float128_to_uint64(float128, float_status *status);
|
||
uint64_t float128_to_uint64_round_to_zero(float128, float_status *status);
|
||
uint32_t float128_to_uint32(float128, float_status *status);
|
||
uint32_t float128_to_uint32_round_to_zero(float128, float_status *status);
|
||
float32 float128_to_float32(float128, float_status *status);
|
||
float64 float128_to_float64(float128, float_status *status);
|
||
floatx80 float128_to_floatx80(float128, float_status *status);
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| Software IEC/IEEE quadruple-precision operations.
|
||
*----------------------------------------------------------------------------*/
|
||
float128 float128_round_to_int(float128, float_status *status);
|
||
float128 float128_add(float128, float128, float_status *status);
|
||
float128 float128_sub(float128, float128, float_status *status);
|
||
float128 float128_mul(float128, float128, float_status *status);
|
||
float128 float128_div(float128, float128, float_status *status);
|
||
float128 float128_rem(float128, float128, float_status *status);
|
||
float128 float128_sqrt(float128, float_status *status);
|
||
FloatRelation float128_compare(float128, float128, float_status *status);
|
||
FloatRelation float128_compare_quiet(float128, float128, float_status *status);
|
||
bool float128_is_quiet_nan(float128, float_status *status);
|
||
bool float128_is_signaling_nan(float128, float_status *status);
|
||
float128 float128_silence_nan(float128, float_status *status);
|
||
float128 float128_scalbn(float128, int, float_status *status);
|
||
|
||
static inline float128 float128_abs(float128 a)
|
||
{
|
||
a.high &= 0x7fffffffffffffffLL;
|
||
return a;
|
||
}
|
||
|
||
static inline float128 float128_chs(float128 a)
|
||
{
|
||
a.high ^= 0x8000000000000000LL;
|
||
return a;
|
||
}
|
||
|
||
static inline bool float128_is_infinity(float128 a)
|
||
{
|
||
return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
|
||
}
|
||
|
||
static inline bool float128_is_neg(float128 a)
|
||
{
|
||
return a.high >> 63;
|
||
}
|
||
|
||
static inline bool float128_is_zero(float128 a)
|
||
{
|
||
return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
|
||
}
|
||
|
||
static inline bool float128_is_zero_or_denormal(float128 a)
|
||
{
|
||
return (a.high & 0x7fff000000000000LL) == 0;
|
||
}
|
||
|
||
static inline bool float128_is_normal(float128 a)
|
||
{
|
||
return (((a.high >> 48) + 1) & 0x7fff) >= 2;
|
||
}
|
||
|
||
static inline bool float128_is_denormal(float128 a)
|
||
{
|
||
return float128_is_zero_or_denormal(a) && !float128_is_zero(a);
|
||
}
|
||
|
||
static inline bool float128_is_any_nan(float128 a)
|
||
{
|
||
return ((a.high >> 48) & 0x7fff) == 0x7fff &&
|
||
((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
|
||
}
|
||
|
||
static inline bool float128_eq(float128 a, float128 b, float_status *s)
|
||
{
|
||
return float128_compare(a, b, s) == float_relation_equal;
|
||
}
|
||
|
||
static inline bool float128_le(float128 a, float128 b, float_status *s)
|
||
{
|
||
return float128_compare(a, b, s) <= float_relation_equal;
|
||
}
|
||
|
||
static inline bool float128_lt(float128 a, float128 b, float_status *s)
|
||
{
|
||
return float128_compare(a, b, s) < float_relation_equal;
|
||
}
|
||
|
||
static inline bool float128_unordered(float128 a, float128 b, float_status *s)
|
||
{
|
||
return float128_compare(a, b, s) == float_relation_unordered;
|
||
}
|
||
|
||
static inline bool float128_eq_quiet(float128 a, float128 b, float_status *s)
|
||
{
|
||
return float128_compare_quiet(a, b, s) == float_relation_equal;
|
||
}
|
||
|
||
static inline bool float128_le_quiet(float128 a, float128 b, float_status *s)
|
||
{
|
||
return float128_compare_quiet(a, b, s) <= float_relation_equal;
|
||
}
|
||
|
||
static inline bool float128_lt_quiet(float128 a, float128 b, float_status *s)
|
||
{
|
||
return float128_compare_quiet(a, b, s) < float_relation_equal;
|
||
}
|
||
|
||
static inline bool float128_unordered_quiet(float128 a, float128 b,
|
||
float_status *s)
|
||
{
|
||
return float128_compare_quiet(a, b, s) == float_relation_unordered;
|
||
}
|
||
|
||
#define float128_zero make_float128(0, 0)
|
||
|
||
/*----------------------------------------------------------------------------
|
||
| The pattern for a default generated quadruple-precision NaN.
|
||
*----------------------------------------------------------------------------*/
|
||
float128 float128_default_nan(float_status *status);
|
||
|
||
#endif /* SOFTFLOAT_H */
|