historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/include/qemu/timer.h
2024-01-16 11:20:27 -06:00

1015 lines
27 KiB
C

#ifndef QEMU_TIMER_H
#define QEMU_TIMER_H
#include "qemu/bitops.h"
#include "qemu/notify.h"
#include "qemu/host-utils.h"
#define NANOSECONDS_PER_SECOND 1000000000LL
/* timers */
#define SCALE_MS 1000000
#define SCALE_US 1000
#define SCALE_NS 1
/**
* QEMUClockType:
*
* The following clock types are available:
*
* @QEMU_CLOCK_REALTIME: Real time clock
*
* The real time clock should be used only for stuff which does not
* change the virtual machine state, as it runs even if the virtual
* machine is stopped.
*
* @QEMU_CLOCK_VIRTUAL: virtual clock
*
* The virtual clock only runs during the emulation. It stops
* when the virtual machine is stopped.
*
* @QEMU_CLOCK_HOST: host clock
*
* The host clock should be used for device models that emulate accurate
* real time sources. It will continue to run when the virtual machine
* is suspended, and it will reflect system time changes the host may
* undergo (e.g. due to NTP).
*
* @QEMU_CLOCK_VIRTUAL_RT: realtime clock used for icount warp
*
* Outside icount mode, this clock is the same as @QEMU_CLOCK_VIRTUAL.
* In icount mode, this clock counts nanoseconds while the virtual
* machine is running. It is used to increase @QEMU_CLOCK_VIRTUAL
* while the CPUs are sleeping and thus not executing instructions.
*/
typedef enum {
QEMU_CLOCK_REALTIME = 0,
QEMU_CLOCK_VIRTUAL = 1,
QEMU_CLOCK_HOST = 2,
QEMU_CLOCK_VIRTUAL_RT = 3,
QEMU_CLOCK_MAX
} QEMUClockType;
/**
* QEMU Timer attributes:
*
* An individual timer may be given one or multiple attributes when initialized.
* Each attribute corresponds to one bit. Attributes modify the processing
* of timers when they fire.
*
* The following attributes are available:
*
* QEMU_TIMER_ATTR_EXTERNAL: drives external subsystem
* QEMU_TIMER_ATTR_ALL: mask for all existing attributes
*
* Timers with this attribute do not recorded in rr mode, therefore it could be
* used for the subsystems that operate outside the guest core. Applicable only
* with virtual clock type.
*/
#define QEMU_TIMER_ATTR_EXTERNAL ((int)BIT(0))
#define QEMU_TIMER_ATTR_ALL 0xffffffff
typedef struct QEMUTimerList QEMUTimerList;
struct QEMUTimerListGroup {
QEMUTimerList *tl[QEMU_CLOCK_MAX];
};
typedef void QEMUTimerCB(void *opaque);
typedef void QEMUTimerListNotifyCB(void *opaque, QEMUClockType type);
struct QEMUTimer {
int64_t expire_time; /* in nanoseconds */
QEMUTimerList *timer_list;
QEMUTimerCB *cb;
void *opaque;
QEMUTimer *next;
int attributes;
int scale;
};
extern QEMUTimerListGroup main_loop_tlg;
/*
* qemu_clock_get_ns;
* @type: the clock type
*
* Get the nanosecond value of a clock with
* type @type
*
* Returns: the clock value in nanoseconds
*/
int64_t qemu_clock_get_ns(QEMUClockType type);
/**
* qemu_clock_get_ms;
* @type: the clock type
*
* Get the millisecond value of a clock with
* type @type
*
* Returns: the clock value in milliseconds
*/
static inline int64_t qemu_clock_get_ms(QEMUClockType type)
{
return qemu_clock_get_ns(type) / SCALE_MS;
}
/**
* qemu_clock_get_us;
* @type: the clock type
*
* Get the microsecond value of a clock with
* type @type
*
* Returns: the clock value in microseconds
*/
static inline int64_t qemu_clock_get_us(QEMUClockType type)
{
return qemu_clock_get_ns(type) / SCALE_US;
}
/**
* qemu_clock_has_timers:
* @type: the clock type
*
* Determines whether a clock's default timer list
* has timers attached
*
* Note that this function should not be used when other threads also access
* the timer list. The return value may be outdated by the time it is acted
* upon.
*
* Returns: true if the clock's default timer list
* has timers attached
*/
bool qemu_clock_has_timers(QEMUClockType type);
/**
* qemu_clock_expired:
* @type: the clock type
*
* Determines whether a clock's default timer list
* has an expired timer.
*
* Returns: true if the clock's default timer list has
* an expired timer
*/
bool qemu_clock_expired(QEMUClockType type);
/**
* qemu_clock_use_for_deadline:
* @type: the clock type
*
* Determine whether a clock should be used for deadline
* calculations. Some clocks, for instance vm_clock with
* use_icount set, do not count in nanoseconds. Such clocks
* are not used for deadline calculations, and are presumed
* to interrupt any poll using qemu_notify/aio_notify
* etc.
*
* Returns: true if the clock runs in nanoseconds and
* should be used for a deadline.
*/
bool qemu_clock_use_for_deadline(QEMUClockType type);
/**
* qemu_clock_deadline_ns_all:
* @type: the clock type
* @attr_mask: mask for the timer attributes that are included
* in deadline calculation
*
* Calculate the deadline across all timer lists associated
* with a clock (as opposed to just the default one)
* in nanoseconds, or -1 if no timer is set to expire.
*
* Returns: time until expiry in nanoseconds or -1
*/
int64_t qemu_clock_deadline_ns_all(QEMUClockType type, int attr_mask);
/**
* qemu_clock_get_main_loop_timerlist:
* @type: the clock type
*
* Return the default timer list associated with a clock.
*
* Returns: the default timer list
*/
QEMUTimerList *qemu_clock_get_main_loop_timerlist(QEMUClockType type);
/**
* qemu_clock_nofify:
* @type: the clock type
*
* Call the notifier callback connected with the default timer
* list linked to the clock, or qemu_notify() if none.
*/
void qemu_clock_notify(QEMUClockType type);
/**
* qemu_clock_enable:
* @type: the clock type
* @enabled: true to enable, false to disable
*
* Enable or disable a clock
* Disabling the clock will wait for related timerlists to stop
* executing qemu_run_timers. Thus, this functions should not
* be used from the callback of a timer that is based on @clock.
* Doing so would cause a deadlock.
*
* Caller should hold BQL.
*/
void qemu_clock_enable(QEMUClockType type, bool enabled);
/**
* qemu_start_warp_timer:
*
* Starts a timer for virtual clock update
*/
void qemu_start_warp_timer(void);
/**
* qemu_clock_run_timers:
* @type: clock on which to operate
*
* Run all the timers associated with the default timer list
* of a clock.
*
* Returns: true if any timer ran.
*/
bool qemu_clock_run_timers(QEMUClockType type);
/**
* qemu_clock_run_all_timers:
*
* Run all the timers associated with the default timer list
* of every clock.
*
* Returns: true if any timer ran.
*/
bool qemu_clock_run_all_timers(void);
/*
* QEMUTimerList
*/
/**
* timerlist_new:
* @type: the clock type to associate with the timerlist
* @cb: the callback to call on notification
* @opaque: the opaque pointer to pass to the callback
*
* Create a new timerlist associated with the clock of
* type @type.
*
* Returns: a pointer to the QEMUTimerList created
*/
QEMUTimerList *timerlist_new(QEMUClockType type,
QEMUTimerListNotifyCB *cb, void *opaque);
/**
* timerlist_free:
* @timer_list: the timer list to free
*
* Frees a timer_list. It must have no active timers.
*/
void timerlist_free(QEMUTimerList *timer_list);
/**
* timerlist_has_timers:
* @timer_list: the timer list to operate on
*
* Determine whether a timer list has active timers
*
* Note that this function should not be used when other threads also access
* the timer list. The return value may be outdated by the time it is acted
* upon.
*
* Returns: true if the timer list has timers.
*/
bool timerlist_has_timers(QEMUTimerList *timer_list);
/**
* timerlist_expired:
* @timer_list: the timer list to operate on
*
* Determine whether a timer list has any timers which
* are expired.
*
* Returns: true if the timer list has timers which
* have expired.
*/
bool timerlist_expired(QEMUTimerList *timer_list);
/**
* timerlist_deadline_ns:
* @timer_list: the timer list to operate on
*
* Determine the deadline for a timer_list, i.e.
* the number of nanoseconds until the first timer
* expires. Return -1 if there are no timers.
*
* Returns: the number of nanoseconds until the earliest
* timer expires -1 if none
*/
int64_t timerlist_deadline_ns(QEMUTimerList *timer_list);
/**
* timerlist_get_clock:
* @timer_list: the timer list to operate on
*
* Determine the clock type associated with a timer list.
*
* Returns: the clock type associated with the
* timer list.
*/
QEMUClockType timerlist_get_clock(QEMUTimerList *timer_list);
/**
* timerlist_run_timers:
* @timer_list: the timer list to use
*
* Call all expired timers associated with the timer list.
*
* Returns: true if any timer expired
*/
bool timerlist_run_timers(QEMUTimerList *timer_list);
/**
* timerlist_notify:
* @timer_list: the timer list to use
*
* call the notifier callback associated with the timer list.
*/
void timerlist_notify(QEMUTimerList *timer_list);
/*
* QEMUTimerListGroup
*/
/**
* timerlistgroup_init:
* @tlg: the timer list group
* @cb: the callback to call when a notify is required
* @opaque: the opaque pointer to be passed to the callback.
*
* Initialise a timer list group. This must already be
* allocated in memory and zeroed. The notifier callback is
* called whenever a clock in the timer list group is
* reenabled or whenever a timer associated with any timer
* list is modified. If @cb is specified as null, qemu_notify()
* is used instead.
*/
void timerlistgroup_init(QEMUTimerListGroup *tlg,
QEMUTimerListNotifyCB *cb, void *opaque);
/**
* timerlistgroup_deinit:
* @tlg: the timer list group
*
* Deinitialise a timer list group. This must already be
* initialised. Note the memory is not freed.
*/
void timerlistgroup_deinit(QEMUTimerListGroup *tlg);
/**
* timerlistgroup_run_timers:
* @tlg: the timer list group
*
* Run the timers associated with a timer list group.
* This will run timers on multiple clocks.
*
* Returns: true if any timer callback ran
*/
bool timerlistgroup_run_timers(QEMUTimerListGroup *tlg);
/**
* timerlistgroup_deadline_ns:
* @tlg: the timer list group
*
* Determine the deadline of the soonest timer to
* expire associated with any timer list linked to
* the timer list group. Only clocks suitable for
* deadline calculation are included.
*
* Returns: the deadline in nanoseconds or -1 if no
* timers are to expire.
*/
int64_t timerlistgroup_deadline_ns(QEMUTimerListGroup *tlg);
/*
* QEMUTimer
*/
/**
* timer_init_full:
* @ts: the timer to be initialised
* @timer_list_group: (optional) the timer list group to attach the timer to
* @type: the clock type to use
* @scale: the scale value for the timer
* @attributes: 0, or one or more OR'ed QEMU_TIMER_ATTR_<id> values
* @cb: the callback to be called when the timer expires
* @opaque: the opaque pointer to be passed to the callback
*
* Initialise a timer with the given scale and attributes,
* and associate it with timer list for given clock @type in @timer_list_group
* (or default timer list group, if NULL).
* The caller is responsible for allocating the memory.
*
* You need not call an explicit deinit call. Simply make
* sure it is not on a list with timer_del.
*/
void timer_init_full(QEMUTimer *ts,
QEMUTimerListGroup *timer_list_group, QEMUClockType type,
int scale, int attributes,
QEMUTimerCB *cb, void *opaque);
/**
* timer_init:
* @ts: the timer to be initialised
* @type: the clock to associate with the timer
* @scale: the scale value for the timer
* @cb: the callback to call when the timer expires
* @opaque: the opaque pointer to pass to the callback
*
* Initialize a timer with the given scale on the default timer list
* associated with the clock.
* See timer_init_full for details.
*/
static inline void timer_init(QEMUTimer *ts, QEMUClockType type, int scale,
QEMUTimerCB *cb, void *opaque)
{
timer_init_full(ts, NULL, type, scale, 0, cb, opaque);
}
/**
* timer_init_ns:
* @ts: the timer to be initialised
* @type: the clock to associate with the timer
* @cb: the callback to call when the timer expires
* @opaque: the opaque pointer to pass to the callback
*
* Initialize a timer with nanosecond scale on the default timer list
* associated with the clock.
* See timer_init_full for details.
*/
static inline void timer_init_ns(QEMUTimer *ts, QEMUClockType type,
QEMUTimerCB *cb, void *opaque)
{
timer_init(ts, type, SCALE_NS, cb, opaque);
}
/**
* timer_init_us:
* @ts: the timer to be initialised
* @type: the clock to associate with the timer
* @cb: the callback to call when the timer expires
* @opaque: the opaque pointer to pass to the callback
*
* Initialize a timer with microsecond scale on the default timer list
* associated with the clock.
* See timer_init_full for details.
*/
static inline void timer_init_us(QEMUTimer *ts, QEMUClockType type,
QEMUTimerCB *cb, void *opaque)
{
timer_init(ts, type, SCALE_US, cb, opaque);
}
/**
* timer_init_ms:
* @ts: the timer to be initialised
* @type: the clock to associate with the timer
* @cb: the callback to call when the timer expires
* @opaque: the opaque pointer to pass to the callback
*
* Initialize a timer with millisecond scale on the default timer list
* associated with the clock.
* See timer_init_full for details.
*/
static inline void timer_init_ms(QEMUTimer *ts, QEMUClockType type,
QEMUTimerCB *cb, void *opaque)
{
timer_init(ts, type, SCALE_MS, cb, opaque);
}
/**
* timer_new_full:
* @timer_list_group: (optional) the timer list group to attach the timer to
* @type: the clock type to use
* @scale: the scale value for the timer
* @attributes: 0, or one or more OR'ed QEMU_TIMER_ATTR_<id> values
* @cb: the callback to be called when the timer expires
* @opaque: the opaque pointer to be passed to the callback
*
* Create a new timer with the given scale and attributes,
* and associate it with timer list for given clock @type in @timer_list_group
* (or default timer list group, if NULL).
* The memory is allocated by the function.
*
* This is not the preferred interface unless you know you
* are going to call timer_free. Use timer_init or timer_init_full instead.
*
* The default timer list has one special feature: in icount mode,
* %QEMU_CLOCK_VIRTUAL timers are run in the vCPU thread. This is
* not true of other timer lists, which are typically associated
* with an AioContext---each of them runs its timer callbacks in its own
* AioContext thread.
*
* Returns: a pointer to the timer
*/
static inline QEMUTimer *timer_new_full(QEMUTimerListGroup *timer_list_group,
QEMUClockType type,
int scale, int attributes,
QEMUTimerCB *cb, void *opaque)
{
QEMUTimer *ts = g_malloc0(sizeof(QEMUTimer));
timer_init_full(ts, timer_list_group, type, scale, attributes, cb, opaque);
return ts;
}
/**
* timer_new:
* @type: the clock type to use
* @scale: the scale value for the timer
* @cb: the callback to be called when the timer expires
* @opaque: the opaque pointer to be passed to the callback
*
* Create a new timer with the given scale,
* and associate it with the default timer list for the clock type @type.
* See timer_new_full for details.
*
* Returns: a pointer to the timer
*/
static inline QEMUTimer *timer_new(QEMUClockType type, int scale,
QEMUTimerCB *cb, void *opaque)
{
return timer_new_full(NULL, type, scale, 0, cb, opaque);
}
/**
* timer_new_ns:
* @type: the clock type to associate with the timer
* @cb: the callback to call when the timer expires
* @opaque: the opaque pointer to pass to the callback
*
* Create a new timer with nanosecond scale on the default timer list
* associated with the clock.
* See timer_new_full for details.
*
* Returns: a pointer to the newly created timer
*/
static inline QEMUTimer *timer_new_ns(QEMUClockType type, QEMUTimerCB *cb,
void *opaque)
{
return timer_new(type, SCALE_NS, cb, opaque);
}
/**
* timer_new_us:
* @type: the clock type to associate with the timer
* @cb: the callback to call when the timer expires
* @opaque: the opaque pointer to pass to the callback
*
* Create a new timer with microsecond scale on the default timer list
* associated with the clock.
* See timer_new_full for details.
*
* Returns: a pointer to the newly created timer
*/
static inline QEMUTimer *timer_new_us(QEMUClockType type, QEMUTimerCB *cb,
void *opaque)
{
return timer_new(type, SCALE_US, cb, opaque);
}
/**
* timer_new_ms:
* @type: the clock type to associate with the timer
* @cb: the callback to call when the timer expires
* @opaque: the opaque pointer to pass to the callback
*
* Create a new timer with millisecond scale on the default timer list
* associated with the clock.
* See timer_new_full for details.
*
* Returns: a pointer to the newly created timer
*/
static inline QEMUTimer *timer_new_ms(QEMUClockType type, QEMUTimerCB *cb,
void *opaque)
{
return timer_new(type, SCALE_MS, cb, opaque);
}
/**
* timer_deinit:
* @ts: the timer to be de-initialised
*
* Deassociate the timer from any timerlist. You should
* call timer_del before. After this call, any further
* timer_del call cannot cause dangling pointer accesses
* even if the previously used timerlist is freed.
*/
void timer_deinit(QEMUTimer *ts);
/**
* timer_free:
* @ts: the timer
*
* Free a timer (it must not be on the active list)
*/
static inline void timer_free(QEMUTimer *ts)
{
g_free(ts);
}
/**
* timer_del:
* @ts: the timer
*
* Delete a timer from the active list.
*
* This function is thread-safe but the timer and its timer list must not be
* freed while this function is running.
*/
void timer_del(QEMUTimer *ts);
/**
* timer_mod_ns:
* @ts: the timer
* @expire_time: the expiry time in nanoseconds
*
* Modify a timer to expire at @expire_time
*
* This function is thread-safe but the timer and its timer list must not be
* freed while this function is running.
*/
void timer_mod_ns(QEMUTimer *ts, int64_t expire_time);
/**
* timer_mod_anticipate_ns:
* @ts: the timer
* @expire_time: the expiry time in nanoseconds
*
* Modify a timer to expire at @expire_time or the current time,
* whichever comes earlier.
*
* This function is thread-safe but the timer and its timer list must not be
* freed while this function is running.
*/
void timer_mod_anticipate_ns(QEMUTimer *ts, int64_t expire_time);
/**
* timer_mod:
* @ts: the timer
* @expire_time: the expire time in the units associated with the timer
*
* Modify a timer to expiry at @expire_time, taking into
* account the scale associated with the timer.
*
* This function is thread-safe but the timer and its timer list must not be
* freed while this function is running.
*/
void timer_mod(QEMUTimer *ts, int64_t expire_timer);
/**
* timer_mod_anticipate:
* @ts: the timer
* @expire_time: the expiry time in nanoseconds
*
* Modify a timer to expire at @expire_time or the current time, whichever
* comes earlier, taking into account the scale associated with the timer.
*
* This function is thread-safe but the timer and its timer list must not be
* freed while this function is running.
*/
void timer_mod_anticipate(QEMUTimer *ts, int64_t expire_time);
/**
* timer_pending:
* @ts: the timer
*
* Determines whether a timer is pending (i.e. is on the
* active list of timers, whether or not it has not yet expired).
*
* Returns: true if the timer is pending
*/
bool timer_pending(QEMUTimer *ts);
/**
* timer_expired:
* @ts: the timer
* @current_time: the current time
*
* Determines whether a timer has expired.
*
* Returns: true if the timer has expired
*/
bool timer_expired(QEMUTimer *timer_head, int64_t current_time);
/**
* timer_expire_time_ns:
* @ts: the timer
*
* Determine the expiry time of a timer
*
* Returns: the expiry time in nanoseconds
*/
uint64_t timer_expire_time_ns(QEMUTimer *ts);
/**
* timer_get:
* @f: the file
* @ts: the timer
*
* Read a timer @ts from a file @f
*/
void timer_get(QEMUFile *f, QEMUTimer *ts);
/**
* timer_put:
* @f: the file
* @ts: the timer
*/
void timer_put(QEMUFile *f, QEMUTimer *ts);
/*
* General utility functions
*/
/**
* qemu_timeout_ns_to_ms:
* @ns: nanosecond timeout value
*
* Convert a nanosecond timeout value (or -1) to
* a millisecond value (or -1), always rounding up.
*
* Returns: millisecond timeout value
*/
int qemu_timeout_ns_to_ms(int64_t ns);
/**
* qemu_poll_ns:
* @fds: Array of file descriptors
* @nfds: number of file descriptors
* @timeout: timeout in nanoseconds
*
* Perform a poll like g_poll but with a timeout in nanoseconds.
* See g_poll documentation for further details.
*
* Returns: number of fds ready
*/
int qemu_poll_ns(GPollFD *fds, guint nfds, int64_t timeout);
/**
* qemu_soonest_timeout:
* @timeout1: first timeout in nanoseconds (or -1 for infinite)
* @timeout2: second timeout in nanoseconds (or -1 for infinite)
*
* Calculates the soonest of two timeout values. -1 means infinite, which
* is later than any other value.
*
* Returns: soonest timeout value in nanoseconds (or -1 for infinite)
*/
static inline int64_t qemu_soonest_timeout(int64_t timeout1, int64_t timeout2)
{
/* we can abuse the fact that -1 (which means infinite) is a maximal
* value when cast to unsigned. As this is disgusting, it's kept in
* one inline function.
*/
return ((uint64_t) timeout1 < (uint64_t) timeout2) ? timeout1 : timeout2;
}
/**
* initclocks:
*
* Initialise the clock & timer infrastructure
*/
void init_clocks(QEMUTimerListNotifyCB *notify_cb);
int64_t cpu_get_ticks(void);
/* Caller must hold BQL */
void cpu_enable_ticks(void);
/* Caller must hold BQL */
void cpu_disable_ticks(void);
static inline int64_t get_max_clock_jump(void)
{
/* This should be small enough to prevent excessive interrupts from being
* generated by the RTC on clock jumps, but large enough to avoid frequent
* unnecessary resets in idle VMs.
*/
return 60 * NANOSECONDS_PER_SECOND;
}
/*
* Low level clock functions
*/
/* get host real time in nanosecond */
static inline int64_t get_clock_realtime(void)
{
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
}
/* Warning: don't insert tracepoints into these functions, they are
also used by simpletrace backend and tracepoints would cause
an infinite recursion! */
#ifdef _WIN32
extern int64_t clock_freq;
static inline int64_t get_clock(void)
{
LARGE_INTEGER ti;
QueryPerformanceCounter(&ti);
return muldiv64(ti.QuadPart, NANOSECONDS_PER_SECOND, clock_freq);
}
#else
extern int use_rt_clock;
static inline int64_t get_clock(void)
{
if (use_rt_clock) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ts.tv_sec * 1000000000LL + ts.tv_nsec;
} else {
/* XXX: using gettimeofday leads to problems if the date
changes, so it should be avoided. */
return get_clock_realtime();
}
}
#endif
/* icount */
int64_t cpu_get_icount_raw(void);
int64_t cpu_get_icount(void);
int64_t cpu_get_clock(void);
int64_t cpu_icount_to_ns(int64_t icount);
void cpu_update_icount(CPUState *cpu);
/*******************************************/
/* host CPU ticks (if available) */
#if defined(_ARCH_PPC)
static inline int64_t cpu_get_host_ticks(void)
{
int64_t retval;
#ifdef _ARCH_PPC64
/* This reads timebase in one 64bit go and includes Cell workaround from:
http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
*/
__asm__ __volatile__ ("mftb %0\n\t"
"cmpwi %0,0\n\t"
"beq- $-8"
: "=r" (retval));
#else
/* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
unsigned long junk;
__asm__ __volatile__ ("mfspr %1,269\n\t" /* mftbu */
"mfspr %L0,268\n\t" /* mftb */
"mfspr %0,269\n\t" /* mftbu */
"cmpw %0,%1\n\t"
"bne $-16"
: "=r" (retval), "=r" (junk));
#endif
return retval;
}
#elif defined(__i386__)
static inline int64_t cpu_get_host_ticks(void)
{
int64_t val;
asm volatile ("rdtsc" : "=A" (val));
return val;
}
#elif defined(__x86_64__)
static inline int64_t cpu_get_host_ticks(void)
{
uint32_t low,high;
int64_t val;
asm volatile("rdtsc" : "=a" (low), "=d" (high));
val = high;
val <<= 32;
val |= low;
return val;
}
#elif defined(__hppa__)
static inline int64_t cpu_get_host_ticks(void)
{
int val;
asm volatile ("mfctl %%cr16, %0" : "=r"(val));
return val;
}
#elif defined(__s390__)
static inline int64_t cpu_get_host_ticks(void)
{
int64_t val;
asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
return val;
}
#elif defined(__sparc__)
static inline int64_t cpu_get_host_ticks (void)
{
#if defined(_LP64)
uint64_t rval;
asm volatile("rd %%tick,%0" : "=r"(rval));
return rval;
#else
/* We need an %o or %g register for this. For recent enough gcc
there is an "h" constraint for that. Don't bother with that. */
union {
uint64_t i64;
struct {
uint32_t high;
uint32_t low;
} i32;
} rval;
asm volatile("rd %%tick,%%g1; srlx %%g1,32,%0; mov %%g1,%1"
: "=r"(rval.i32.high), "=r"(rval.i32.low) : : "g1");
return rval.i64;
#endif
}
#elif defined(__mips__) && \
((defined(__mips_isa_rev) && __mips_isa_rev >= 2) || defined(__linux__))
/*
* binutils wants to use rdhwr only on mips32r2
* but as linux kernel emulate it, it's fine
* to use it.
*
*/
#define MIPS_RDHWR(rd, value) { \
__asm__ __volatile__ (".set push\n\t" \
".set mips32r2\n\t" \
"rdhwr %0, "rd"\n\t" \
".set pop" \
: "=r" (value)); \
}
static inline int64_t cpu_get_host_ticks(void)
{
/* On kernels >= 2.6.25 rdhwr <reg>, $2 and $3 are emulated */
uint32_t count;
static uint32_t cyc_per_count = 0;
if (!cyc_per_count) {
MIPS_RDHWR("$3", cyc_per_count);
}
MIPS_RDHWR("$2", count);
return (int64_t)(count * cyc_per_count);
}
#elif defined(__alpha__)
static inline int64_t cpu_get_host_ticks(void)
{
uint64_t cc;
uint32_t cur, ofs;
asm volatile("rpcc %0" : "=r"(cc));
cur = cc;
ofs = cc >> 32;
return cur - ofs;
}
#else
/* The host CPU doesn't have an easily accessible cycle counter.
Just return a monotonically increasing value. This will be
totally wrong, but hopefully better than nothing. */
static inline int64_t cpu_get_host_ticks(void)
{
return get_clock();
}
#endif
#ifdef CONFIG_PROFILER
static inline int64_t profile_getclock(void)
{
return get_clock();
}
extern int64_t dev_time;
#endif
#endif