historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/roms/SLOF/lib/libusb/usb-ehci.c
2024-01-16 11:20:27 -06:00

611 lines
17 KiB
C

/*****************************************************************************
* Copyright (c) 2013 IBM Corporation
* All rights reserved.
* This program and the accompanying materials
* are made available under the terms of the BSD License
* which accompanies this distribution, and is available at
* http://www.opensource.org/licenses/bsd-license.php
*
* Contributors:
* IBM Corporation - initial implementation
*****************************************************************************/
#include <string.h>
#include "usb.h"
#include "usb-core.h"
#include "usb-ehci.h"
#include "tools.h"
#include "paflof.h"
#undef EHCI_DEBUG
//#define EHCI_DEBUG
#ifdef EHCI_DEBUG
#define dprintf(_x ...) do { printf(_x); } while(0)
#else
#define dprintf(_x ...)
#endif
#ifdef EHCI_DEBUG
static void dump_ehci_regs(struct ehci_hcd *ehcd)
{
struct ehci_cap_regs *cap_regs;
struct ehci_op_regs *op_regs;
cap_regs = ehcd->cap_regs;
op_regs = ehcd->op_regs;
dprintf("\n - CAPLENGTH %02X", read_reg8(&cap_regs->caplength));
dprintf("\n - HCIVERSION %04X", read_reg16(&cap_regs->hciversion));
dprintf("\n - HCSPARAMS %08X", read_reg32(&cap_regs->hcsparams));
dprintf("\n - HCCPARAMS %08X", read_reg32(&cap_regs->hccparams));
dprintf("\n - HCSP_PORTROUTE %016llX", read_reg64(&cap_regs->portroute));
dprintf("\n");
dprintf("\n - USBCMD %08X", read_reg32(&op_regs->usbcmd));
dprintf("\n - USBSTS %08X", read_reg32(&op_regs->usbsts));
dprintf("\n - USBINTR %08X", read_reg32(&op_regs->usbintr));
dprintf("\n - FRINDEX %08X", read_reg32(&op_regs->frindex));
dprintf("\n - CTRLDSSEGMENT %08X", read_reg32(&op_regs->ctrldssegment));
dprintf("\n - PERIODICLISTBASE %08X", read_reg32(&op_regs->periodiclistbase));
dprintf("\n - ASYNCLISTADDR %08X", read_reg32(&op_regs->asynclistaddr));
dprintf("\n - CONFIGFLAG %08X", read_reg32(&op_regs->configflag));
dprintf("\n - PORTSC %08X", read_reg32(&op_regs->portsc[0]));
dprintf("\n");
}
#endif
static int ehci_hub_check_ports(struct ehci_hcd *ehcd)
{
uint32_t num_ports, portsc, i;
struct usb_dev *dev;
dprintf("%s: enter\n", __func__);
num_ports = read_reg32(&ehcd->cap_regs->hcsparams) & HCS_NPORTS_MASK;
for (i = 0; i < num_ports; i++) {
dprintf("%s: device %d\n", __func__, i);
portsc = read_reg32(&ehcd->op_regs->portsc[i]);
if (portsc & PORT_CONNECT) { /* Device present */
dprintf("usb-ehci: Device present on port %d\n", i);
/* Reset the port */
portsc = read_reg32(&ehcd->op_regs->portsc[i]);
portsc = (portsc & ~PORT_PE) | PORT_RESET;
write_reg32(&ehcd->op_regs->portsc[i], portsc);
SLOF_msleep(20);
portsc = read_reg32(&ehcd->op_regs->portsc[i]);
portsc &= ~PORT_RESET;
write_reg32(&ehcd->op_regs->portsc[i], portsc);
SLOF_msleep(20);
dev = usb_devpool_get();
dprintf("usb-ehci: allocated device %p\n", dev);
dev->hcidev = ehcd->hcidev;
dev->speed = USB_HIGH_SPEED; /* TODO: Check for Low/Full speed device */
if (usb_setup_new_device(dev, i))
usb_slof_populate_new_device(dev);
else
printf("usb-ehci: unable to setup device on port %d\n", i);
}
}
dprintf("%s: exit\n", __func__);
return 0;
}
static int ehci_hcd_init(struct ehci_hcd *ehcd)
{
uint32_t usbcmd;
uint32_t time;
struct ehci_framelist *fl;
struct ehci_qh *qh_intr, *qh_async;
int i;
long fl_phys = 0, qh_intr_phys = 0, qh_async_phys;
/* Reset the host controller */
time = SLOF_GetTimer() + 250;
usbcmd = read_reg32(&ehcd->op_regs->usbcmd);
write_reg32(&ehcd->op_regs->usbcmd, (usbcmd & ~(CMD_PSE | CMD_ASE)) | CMD_HCRESET);
while (time > SLOF_GetTimer())
cpu_relax();
usbcmd = read_reg32(&ehcd->op_regs->usbcmd);
if (usbcmd & CMD_HCRESET) {
printf("usb-ehci: reset failed\n");
return -1;
}
/* Initialize periodic list */
fl = SLOF_dma_alloc(sizeof(*fl));
if (!fl) {
printf("usb-ehci: Unable to allocate frame list\n");
goto fail;
}
fl_phys = SLOF_dma_map_in(fl, sizeof(*fl), true);
dprintf("fl %p, fl_phys %lx\n", fl, fl_phys);
/* TODO: allocate qh pool */
qh_intr = SLOF_dma_alloc(sizeof(*qh_intr));
if (!qh_intr) {
printf("usb-ehci: Unable to allocate interrupt queue head\n");
goto fail_qh_intr;
}
qh_intr_phys = SLOF_dma_map_in(qh_intr, sizeof(*qh_intr), true);
dprintf("qh_intr %p, qh_intr_phys %lx\n", qh_intr, qh_intr_phys);
memset(qh_intr, 0, sizeof(*qh_intr));
qh_intr->qh_ptr = QH_PTR_TERM;
qh_intr->ep_cap2 = cpu_to_le32(0x01 << QH_SMASK_SHIFT);
qh_intr->next_qtd = qh_intr->alt_next_qtd = QH_PTR_TERM;
qh_intr->token = cpu_to_le32(QH_STS_HALTED);
for (i = 0; i < FL_SIZE; i++)
fl->fl_ptr[i] = cpu_to_le32(qh_intr_phys | EHCI_TYP_QH);
write_reg32(&ehcd->op_regs->periodiclistbase, fl_phys);
/* Initialize async list */
qh_async = SLOF_dma_alloc(sizeof(*qh_async));
if (!qh_async) {
printf("usb-ehci: Unable to allocate async queue head\n");
goto fail_qh_async;
}
qh_async_phys = SLOF_dma_map_in(qh_async, sizeof(*qh_async), true);
dprintf("qh_async %p, qh_async_phys %lx\n", qh_async, qh_async_phys);
memset(qh_async, 0, sizeof(*qh_async));
qh_async->qh_ptr = cpu_to_le32(qh_async_phys | EHCI_TYP_QH);
qh_async->ep_cap1 = cpu_to_le32(QH_CAP_H);
qh_async->next_qtd = qh_async->alt_next_qtd = QH_PTR_TERM;
qh_async->token = cpu_to_le32(QH_STS_HALTED);
write_reg32(&ehcd->op_regs->asynclistaddr, qh_async_phys);
ehcd->qh_async = qh_async;
ehcd->qh_async_phys = qh_async_phys;
ehcd->qh_intr = qh_intr;
ehcd->qh_intr_phys = qh_intr_phys;
ehcd->fl = fl;
ehcd->fl_phys = fl_phys;
write_reg32(&ehcd->op_regs->usbcmd, usbcmd | CMD_ASE | CMD_RUN);
write_reg32(&ehcd->op_regs->configflag, 1);
return 0;
fail_qh_async:
SLOF_dma_map_out(qh_intr_phys, qh_intr, sizeof(*qh_intr));
SLOF_dma_free(qh_intr, sizeof(*qh_intr));
fail_qh_intr:
SLOF_dma_map_out(fl_phys, fl, sizeof(*fl));
SLOF_dma_free(fl, sizeof(*fl));
fail:
return -1;
}
static int ehci_hcd_exit(struct ehci_hcd *ehcd)
{
uint32_t usbcmd;
if (!ehcd) {
dprintf("NULL pointer\n");
return false;
}
usbcmd = read_reg32(&ehcd->op_regs->usbcmd);
write_reg32(&ehcd->op_regs->usbcmd, usbcmd | ~CMD_RUN);
write_reg32(&ehcd->op_regs->periodiclistbase, 0);
if (ehcd->pool) {
SLOF_dma_map_out(ehcd->pool_phys, ehcd->pool, EHCI_PIPE_POOL_SIZE);
SLOF_dma_free(ehcd->pool, EHCI_PIPE_POOL_SIZE);
}
if (ehcd->qh_intr) {
SLOF_dma_map_out(ehcd->qh_intr_phys, ehcd->qh_intr, sizeof(struct ehci_qh));
SLOF_dma_free(ehcd->qh_intr, sizeof(struct ehci_qh));
}
if (ehcd->qh_async) {
SLOF_dma_map_out(ehcd->qh_async_phys, ehcd->qh_async, sizeof(struct ehci_qh));
SLOF_dma_free(ehcd->qh_async, sizeof(struct ehci_qh));
}
if (ehcd->fl) {
SLOF_dma_map_out(ehcd->fl_phys, ehcd->fl, sizeof(struct ehci_framelist));
SLOF_dma_free(ehcd->fl, sizeof(struct ehci_framelist));
}
return true;
}
static int ehci_alloc_pipe_pool(struct ehci_hcd *ehcd)
{
struct ehci_pipe *epipe, *curr, *prev;
unsigned int i, count;
long epipe_phys = 0;
count = EHCI_PIPE_POOL_SIZE/sizeof(*epipe);
ehcd->pool = epipe = SLOF_dma_alloc(EHCI_PIPE_POOL_SIZE);
if (!epipe)
return -1;
ehcd->pool_phys = epipe_phys = SLOF_dma_map_in(epipe, EHCI_PIPE_POOL_SIZE, true);
dprintf("%s: epipe %p, epipe_phys %lx\n", __func__, epipe, epipe_phys);
/* Although an array, link them */
for (i = 0, curr = epipe, prev = NULL; i < count; i++, curr++) {
if (prev)
prev->pipe.next = &curr->pipe;
curr->pipe.next = NULL;
prev = curr;
curr->qh_phys = epipe_phys + (curr - epipe) * sizeof(*curr) +
offset_of(struct ehci_pipe, qh);
dprintf("%s - %d: qh %p, qh_phys %lx\n", __func__,
i, &curr->qh, curr->qh_phys);
}
if (!ehcd->freelist)
ehcd->freelist = &epipe->pipe;
else
ehcd->end->next = &epipe->pipe;
ehcd->end = &prev->pipe;
return 0;
}
static void ehci_init(struct usb_hcd_dev *hcidev)
{
struct ehci_hcd *ehcd;
printf(" EHCI: Initializing\n");
dprintf("%s: device base address %p\n", __func__, hcidev->base);
ehcd = SLOF_alloc_mem(sizeof(*ehcd));
if (!ehcd) {
printf("usb-ehci: Unable to allocate memory\n");
return;
}
memset(ehcd, 0, sizeof(*ehcd));
hcidev->nextaddr = 1;
hcidev->priv = ehcd;
ehcd->hcidev = hcidev;
ehcd->cap_regs = (struct ehci_cap_regs *)(hcidev->base);
ehcd->op_regs = (struct ehci_op_regs *)(hcidev->base +
read_reg8(&ehcd->cap_regs->caplength));
#ifdef EHCI_DEBUG
dump_ehci_regs(ehcd);
#endif
ehci_hcd_init(ehcd);
ehci_hub_check_ports(ehcd);
}
static void ehci_exit(struct usb_hcd_dev *hcidev)
{
struct ehci_hcd *ehcd;
static int count = 0;
dprintf("%s: enter \n", __func__);
if (!hcidev && !hcidev->priv) {
return;
}
count++;
if (count > 1) {
printf("%s: already called once \n", __func__);
return;
}
ehcd = hcidev->priv;
ehci_hcd_exit(ehcd);
SLOF_free_mem(ehcd, sizeof(*ehcd));
hcidev->priv = NULL;
}
static void ehci_detect(void)
{
}
static void ehci_disconnect(void)
{
}
static int ehci_handshake(struct ehci_hcd *ehcd, uint32_t timeout)
{
uint32_t usbsts = 0, time;
uint32_t usbcmd;
mb();
usbcmd = read_reg32(&ehcd->op_regs->usbcmd);
/* Ring a doorbell */
write_reg32(&ehcd->op_regs->usbcmd, usbcmd | CMD_IAAD);
mb();
time = SLOF_GetTimer() + timeout;
while ((time > SLOF_GetTimer())) {
/* Wait for controller to confirm */
usbsts = read_reg32(&ehcd->op_regs->usbsts);
if (usbsts & STS_IAA) {
/* Acknowledge it, for next doorbell to work */
write_reg32(&ehcd->op_regs->usbsts, STS_IAA);
return true;
}
cpu_relax();
}
return false;
}
static int fill_qtd_buff(struct ehci_qtd *qtd, long data, uint32_t size)
{
long i, rem;
long pos = (data + 0x1000) & ~0xfff;
qtd->buffer[0] = cpu_to_le32(PTR_U32(data));
for (i = 1; i < 5; i++) {
if ((data + size - 1) >= pos) {
//dprintf("data spans page boundary: %d, %p\n", i, pos);
qtd->buffer[i] = cpu_to_le32(pos);
pos += 0x1000;
} else
break;
}
if ((data + size) > pos)
rem = data + size - pos;
else
rem = 0;
return rem;
}
static int ehci_send_ctrl(struct usb_pipe *pipe, struct usb_dev_req *req, void *data)
{
struct ehci_hcd *ehcd;
struct ehci_qtd *qtd, *qtds, *qtds_phys;
struct ehci_pipe *epipe;
uint32_t transfer_size = sizeof(*req);
uint32_t datalen, pid;
uint32_t time;
long req_phys = 0, data_phys = 0;
int ret = true;
if (pipe->type != USB_EP_TYPE_CONTROL) {
printf("usb-ehci: Not a control pipe.\n");
return false;
}
ehcd = pipe->dev->hcidev->priv;
qtds = qtd = SLOF_dma_alloc(sizeof(*qtds) * 3);
if (!qtds) {
printf("Error allocating qTDs.\n");
return false;
}
qtds_phys = (struct ehci_qtd *)SLOF_dma_map_in(qtds, sizeof(*qtds) * 3, true);
memset(qtds, 0, sizeof(*qtds) * 3);
req_phys = SLOF_dma_map_in(req, sizeof(struct usb_dev_req), true);
qtd->next_qtd = cpu_to_le32(PTR_U32(&qtds_phys[1]));
qtd->alt_next_qtd = QH_PTR_TERM;
qtd->token = cpu_to_le32((transfer_size << TOKEN_TBTT_SHIFT) |
(3 << TOKEN_CERR_SHIFT) |
(PID_SETUP << TOKEN_PID_SHIFT) |
(QH_STS_ACTIVE << TOKEN_STATUS_SHIFT));
fill_qtd_buff(qtd, req_phys, sizeof(*req));
qtd++;
datalen = cpu_to_le16(req->wLength);
pid = (req->bmRequestType & REQT_DIR_IN) ? PID_IN : PID_OUT;
if (datalen) {
data_phys = SLOF_dma_map_in(data, datalen, true);
qtd->next_qtd = cpu_to_le32(PTR_U32(&qtds_phys[2]));
qtd->alt_next_qtd = QH_PTR_TERM;
qtd->token = cpu_to_le32((1 << TOKEN_DT_SHIFT) |
(datalen << TOKEN_TBTT_SHIFT) |
(3 << TOKEN_CERR_SHIFT) |
(pid << TOKEN_PID_SHIFT) |
(QH_STS_ACTIVE << TOKEN_STATUS_SHIFT));
fill_qtd_buff(qtd, data_phys, datalen);
qtd++;
}
if (pid == PID_IN)
pid = PID_OUT;
else
pid = PID_IN;
qtd->next_qtd = QH_PTR_TERM;
qtd->alt_next_qtd = QH_PTR_TERM;
qtd->token = cpu_to_le32((1 << TOKEN_DT_SHIFT) |
(3 << TOKEN_CERR_SHIFT) |
(pid << TOKEN_PID_SHIFT) |
(QH_STS_ACTIVE << TOKEN_STATUS_SHIFT));
/* link qtd to qh and attach to ehcd */
mb();
epipe = container_of(pipe, struct ehci_pipe, pipe);
epipe->qh.next_qtd = cpu_to_le32(PTR_U32(qtds_phys));
epipe->qh.qh_ptr = cpu_to_le32(ehcd->qh_async_phys | EHCI_TYP_QH);
epipe->qh.ep_cap1 = cpu_to_le32((pipe->mps << QH_MPS_SHIFT) |
(pipe->speed << QH_EPS_SHIFT) |
(pipe->epno << QH_EP_SHIFT) |
(pipe->dev->addr << QH_DEV_ADDR_SHIFT));
mb();
ehcd->qh_async->qh_ptr = cpu_to_le32(epipe->qh_phys | EHCI_TYP_QH);
/* transfer data */
mb();
qtd = &qtds[0];
time = SLOF_GetTimer() + USB_TIMEOUT;
do {
if (le32_to_cpu(qtd->token) & (QH_STS_ACTIVE << TOKEN_STATUS_SHIFT))
mb();
else
qtd++;
if (time < SLOF_GetTimer()) { /* timed out */
printf("usb-ehci: control transfer timed out_\n");
ret = false;
break;
}
} while (qtd->next_qtd != QH_PTR_TERM);
ehcd->qh_async->qh_ptr = cpu_to_le32(ehcd->qh_async_phys | EHCI_TYP_QH);
mb();
if (!ehci_handshake(ehcd, USB_TIMEOUT)) {
printf("%s: handshake failed\n", __func__);
ret = false;
}
SLOF_dma_map_out(req_phys, req, sizeof(struct usb_dev_req));
SLOF_dma_map_out(data_phys, data, datalen);
SLOF_dma_map_out(PTR_U32(qtds_phys), qtds, sizeof(*qtds) * 3);
SLOF_dma_free(qtds, sizeof(*qtds) * 3);
return ret;
}
static int ehci_transfer_bulk(struct usb_pipe *pipe, void *td, void *td_phys,
void *data_phys, int size)
{
struct ehci_hcd *ehcd;
struct ehci_qtd *qtd, *qtd_phys;
struct ehci_pipe *epipe;
uint32_t pid;
int i, rem, ret = true;
uint32_t time;
long ptr;
dprintf("usb-ehci: bulk transfer: data %p, size %d, td %p, td_phys %p\n",
data_phys, size, td, td_phys);
if (pipe->type != USB_EP_TYPE_BULK) {
printf("usb-ehci: Not a bulk pipe.\n");
return false;
}
if (size > QTD_MAX_TRANSFER_LEN) {
printf("usb-ehci: bulk transfer size too big\n");
return false;
}
ehcd = pipe->dev->hcidev->priv;
pid = (pipe->dir == USB_PIPE_OUT) ? PID_OUT : PID_IN;
qtd = (struct ehci_qtd *)td;
qtd_phys = (struct ehci_qtd *)td_phys;
ptr = (long)data_phys;
for (i = 0; i < NUM_BULK_QTDS; i++) {
memset(qtd, 0, sizeof(*qtd));
rem = fill_qtd_buff(qtd, ptr, size);
qtd->token = cpu_to_le32((1 << TOKEN_DT_SHIFT) |
((size - rem) << TOKEN_TBTT_SHIFT) |
(3 << TOKEN_CERR_SHIFT) |
(pid << TOKEN_PID_SHIFT) |
(QH_STS_ACTIVE << TOKEN_STATUS_SHIFT));
if (rem) {
qtd->next_qtd = cpu_to_le32(PTR_U32(&qtd_phys[i+1]));
qtd->alt_next_qtd = QH_PTR_TERM;
ptr += size - rem;
size = rem;
qtd++;
} else {
qtd->next_qtd = qtd->alt_next_qtd = QH_PTR_TERM;
break; /* no more data */
}
}
/* link qtd to qh and attach to ehcd */
mb();
epipe = container_of(pipe, struct ehci_pipe, pipe);
epipe->qh.next_qtd = cpu_to_le32(PTR_U32(qtd_phys));
epipe->qh.qh_ptr = cpu_to_le32(ehcd->qh_async_phys | EHCI_TYP_QH);
epipe->qh.ep_cap1 = cpu_to_le32((pipe->mps << QH_MPS_SHIFT) |
(pipe->speed << QH_EPS_SHIFT) |
(pipe->epno << QH_EP_SHIFT) |
(pipe->dev->addr << QH_DEV_ADDR_SHIFT));
mb();
ehcd->qh_async->qh_ptr = cpu_to_le32(epipe->qh_phys | EHCI_TYP_QH);
/* transfer data */
mb();
qtd = (struct ehci_qtd *)td;
for (i = 0; i < NUM_BULK_QTDS; i++) {
time = SLOF_GetTimer() + USB_TIMEOUT;
while ((time > SLOF_GetTimer()) &&
(le32_to_cpu(qtd->token) & (QH_STS_ACTIVE << TOKEN_STATUS_SHIFT)))
cpu_relax();
mb();
if (qtd->next_qtd == QH_PTR_TERM)
break;
if (le32_to_cpu(qtd->token) & (QH_STS_ACTIVE << TOKEN_STATUS_SHIFT)) {
printf("usb-ehci: bulk transfer timed out_\n");
ret = false;
break;
}
qtd++;
}
ehcd->qh_async->qh_ptr = cpu_to_le32(ehcd->qh_async_phys | EHCI_TYP_QH);
mb();
if (!ehci_handshake(ehcd, USB_TIMEOUT)) {
printf("%s: handshake failed\n", __func__);
ret = false;
}
return ret;
}
static struct usb_pipe *ehci_get_pipe(struct usb_dev *dev, struct usb_ep_descr *ep,
char *buf, size_t len)
{
struct ehci_hcd *ehcd;
struct usb_pipe *new = NULL;
if (!dev)
return NULL;
ehcd = (struct ehci_hcd *)dev->hcidev->priv;
if (!ehcd->freelist) {
dprintf("usb-ehci: %s allocating pool\n", __func__);
if (ehci_alloc_pipe_pool(ehcd))
return NULL;
}
new = ehcd->freelist;
ehcd->freelist = ehcd->freelist->next;
if (!ehcd->freelist)
ehcd->end = NULL;
memset(new, 0, sizeof(*new));
new->dev = dev;
new->next = NULL;
new->type = ep->bmAttributes & USB_EP_TYPE_MASK;
new->speed = dev->speed;
new->mps = ep->wMaxPacketSize;
new->dir = (ep->bEndpointAddress & 0x80) >> 7;
new->epno = ep->bEndpointAddress & 0x0f;
return new;
}
static void ehci_put_pipe(struct usb_pipe *pipe)
{
struct ehci_hcd *ehcd;
dprintf("usb-ehci: %s enter - %p\n", __func__, pipe);
if (!pipe || !pipe->dev)
return;
ehcd = pipe->dev->hcidev->priv;
if (ehcd->end)
ehcd->end->next = pipe;
else
ehcd->freelist = pipe;
ehcd->end = pipe;
pipe->next = NULL;
pipe->dev = NULL;
memset(pipe, 0, sizeof(*pipe));
dprintf("usb-ehci: %s exit\n", __func__);
}
struct usb_hcd_ops ehci_ops = {
.name = "ehci-hcd",
.init = ehci_init,
.exit = ehci_exit,
.detect = ehci_detect,
.disconnect = ehci_disconnect,
.get_pipe = ehci_get_pipe,
.put_pipe = ehci_put_pipe,
.send_ctrl = ehci_send_ctrl,
.transfer_bulk = ehci_transfer_bulk,
.usb_type = USB_EHCI,
.next = NULL,
};
void usb_ehci_register(void)
{
usb_hcd_register(&ehci_ops);
}