historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/roms/edk2/UefiCpuPkg/Application/Cpuid/Cpuid.c
2024-01-16 11:20:27 -06:00

1610 lines
55 KiB
C

/** @file
UEFI Application to display CPUID leaf information.
Copyright (c) 2016 - 2019, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Uefi.h>
#include <Library/BaseLib.h>
#include <Library/UefiLib.h>
#include <Register/Cpuid.h>
///
/// Macro used to display the value of a bit field in a register returned by CPUID.
///
#define PRINT_BIT_FIELD(Variable, FieldName) \
Print (L"%5a%42a: %x\n", #Variable, #FieldName, Variable.Bits.FieldName);
///
/// Macro used to display the value of a register returned by CPUID.
///
#define PRINT_VALUE(Variable, Description) \
Print (L"%5a%42a: %x\n", #Variable, #Description, Variable);
///
/// Structure for cache description lookup table
///
typedef struct {
UINT8 CacheDescriptor;
CHAR8 *Type;
CHAR8 *Description;
} CPUID_CACHE_INFO_DESCRIPTION;
///
/// Cache description lookup table
///
CPUID_CACHE_INFO_DESCRIPTION mCpuidCacheInfoDescription[] = {
{ 0x00 , "General" , "Null descriptor, this byte contains no information" },
{ 0x01 , "TLB" , "Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries" },
{ 0x02 , "TLB" , "Instruction TLB: 4 MByte pages, fully associative, 2 entries" },
{ 0x03 , "TLB" , "Data TLB: 4 KByte pages, 4-way set associative, 64 entries" },
{ 0x04 , "TLB" , "Data TLB: 4 MByte pages, 4-way set associative, 8 entries" },
{ 0x05 , "TLB" , "Data TLB1: 4 MByte pages, 4-way set associative, 32 entries" },
{ 0x06 , "Cache" , "1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size" },
{ 0x08 , "Cache" , "1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size" },
{ 0x09 , "Cache" , "1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size" },
{ 0x0A , "Cache" , "1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size" },
{ 0x0B , "TLB" , "Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries" },
{ 0x0C , "Cache" , "1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size" },
{ 0x0D , "Cache" , "1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size" },
{ 0x0E , "Cache" , "1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size" },
{ 0x1D , "Cache" , "2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size" },
{ 0x21 , "Cache" , "2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size" },
{ 0x22 , "Cache" , "3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector" },
{ 0x23 , "Cache" , "3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector" },
{ 0x24 , "Cache" , "2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size" },
{ 0x25 , "Cache" , "3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector" },
{ 0x29 , "Cache" , "3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector" },
{ 0x2C , "Cache" , "1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size" },
{ 0x30 , "Cache" , "1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size" },
{ 0x40 , "Cache" , "No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache" },
{ 0x41 , "Cache" , "2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size" },
{ 0x42 , "Cache" , "2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size" },
{ 0x43 , "Cache" , "2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size" },
{ 0x44 , "Cache" , "2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size" },
{ 0x45 , "Cache" , "2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size" },
{ 0x46 , "Cache" , "3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size" },
{ 0x47 , "Cache" , "3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size" },
{ 0x48 , "Cache" , "2nd-level cache: 3MByte, 12-way set associative, 64 byte line size" },
{ 0x49 , "Cache" , "3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model 06H). 2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size" },
{ 0x4A , "Cache" , "3rd-level cache: 6MByte, 12-way set associative, 64 byte line size" },
{ 0x4B , "Cache" , "3rd-level cache: 8MByte, 16-way set associative, 64 byte line size" },
{ 0x4C , "Cache" , "3rd-level cache: 12MByte, 12-way set associative, 64 byte line size" },
{ 0x4D , "Cache" , "3rd-level cache: 16MByte, 16-way set associative, 64 byte line size" },
{ 0x4E , "Cache" , "2nd-level cache: 6MByte, 24-way set associative, 64 byte line size" },
{ 0x4F , "TLB" , "Instruction TLB: 4 KByte pages, 32 entries" },
{ 0x50 , "TLB" , "Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries" },
{ 0x51 , "TLB" , "Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries" },
{ 0x52 , "TLB" , "Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries" },
{ 0x55 , "TLB" , "Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries" },
{ 0x56 , "TLB" , "Data TLB0: 4 MByte pages, 4-way set associative, 16 entries" },
{ 0x57 , "TLB" , "Data TLB0: 4 KByte pages, 4-way associative, 16 entries" },
{ 0x59 , "TLB" , "Data TLB0: 4 KByte pages, fully associative, 16 entries" },
{ 0x5A , "TLB" , "Data TLB0: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries" },
{ 0x5B , "TLB" , "Data TLB: 4 KByte and 4 MByte pages, 64 entries" },
{ 0x5C , "TLB" , "Data TLB: 4 KByte and 4 MByte pages,128 entries" },
{ 0x5D , "TLB" , "Data TLB: 4 KByte and 4 MByte pages,256 entries" },
{ 0x60 , "Cache" , "1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size" },
{ 0x61 , "TLB" , "Instruction TLB: 4 KByte pages, fully associative, 48 entries" },
{ 0x63 , "TLB" , "Data TLB: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries and a separate array with 1 GByte pages, 4-way set associative, 4 entries" },
{ 0x64 , "TLB" , "Data TLB: 4 KByte pages, 4-way set associative, 512 entries" },
{ 0x66 , "Cache" , "1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size" },
{ 0x67 , "Cache" , "1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size" },
{ 0x68 , "Cache" , "1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size" },
{ 0x6A , "Cache" , "uTLB: 4 KByte pages, 8-way set associative, 64 entries" },
{ 0x6B , "Cache" , "DTLB: 4 KByte pages, 8-way set associative, 256 entries" },
{ 0x6C , "Cache" , "DTLB: 2M/4M pages, 8-way set associative, 128 entries" },
{ 0x6D , "Cache" , "DTLB: 1 GByte pages, fully associative, 16 entries" },
{ 0x70 , "Cache" , "Trace cache: 12 K-uop, 8-way set associative" },
{ 0x71 , "Cache" , "Trace cache: 16 K-uop, 8-way set associative" },
{ 0x72 , "Cache" , "Trace cache: 32 K-uop, 8-way set associative" },
{ 0x76 , "TLB" , "Instruction TLB: 2M/4M pages, fully associative, 8 entries" },
{ 0x78 , "Cache" , "2nd-level cache: 1 MByte, 4-way set associative, 64byte line size" },
{ 0x79 , "Cache" , "2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector" },
{ 0x7A , "Cache" , "2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector" },
{ 0x7B , "Cache" , "2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector" },
{ 0x7C , "Cache" , "2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector" },
{ 0x7D , "Cache" , "2nd-level cache: 2 MByte, 8-way set associative, 64byte line size" },
{ 0x7F , "Cache" , "2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size" },
{ 0x80 , "Cache" , "2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size" },
{ 0x82 , "Cache" , "2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size" },
{ 0x83 , "Cache" , "2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size" },
{ 0x84 , "Cache" , "2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size" },
{ 0x85 , "Cache" , "2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size" },
{ 0x86 , "Cache" , "2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size" },
{ 0x87 , "Cache" , "2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size" },
{ 0xA0 , "DTLB" , "DTLB: 4k pages, fully associative, 32 entries" },
{ 0xB0 , "TLB" , "Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries" },
{ 0xB1 , "TLB" , "Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries" },
{ 0xB2 , "TLB" , "Instruction TLB: 4KByte pages, 4-way set associative, 64 entries" },
{ 0xB3 , "TLB" , "Data TLB: 4 KByte pages, 4-way set associative, 128 entries" },
{ 0xB4 , "TLB" , "Data TLB1: 4 KByte pages, 4-way associative, 256 entries" },
{ 0xB5 , "TLB" , "Instruction TLB: 4KByte pages, 8-way set associative, 64 entries" },
{ 0xB6 , "TLB" , "Instruction TLB: 4KByte pages, 8-way set associative, 128 entries" },
{ 0xBA , "TLB" , "Data TLB1: 4 KByte pages, 4-way associative, 64 entries" },
{ 0xC0 , "TLB" , "Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries" },
{ 0xC1 , "STLB" , "Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries" },
{ 0xC2 , "DTLB" , "DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries" },
{ 0xC3 , "STLB" , "Shared 2nd-Level TLB: 4 KByte /2 MByte pages, 6-way associative, 1536 entries. Also 1GBbyte pages, 4-way, 16 entries." },
{ 0xC4 , "DTLB" , "DTLB: 2M/4M Byte pages, 4-way associative, 32 entries" },
{ 0xCA , "STLB" , "Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries" },
{ 0xD0 , "Cache" , "3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size" },
{ 0xD1 , "Cache" , "3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size" },
{ 0xD2 , "Cache" , "3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size" },
{ 0xD6 , "Cache" , "3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size" },
{ 0xD7 , "Cache" , "3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size" },
{ 0xD8 , "Cache" , "3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size" },
{ 0xDC , "Cache" , "3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size" },
{ 0xDD , "Cache" , "3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size" },
{ 0xDE , "Cache" , "3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size" },
{ 0xE2 , "Cache" , "3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size" },
{ 0xE3 , "Cache" , "3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size" },
{ 0xE4 , "Cache" , "3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size" },
{ 0xEA , "Cache" , "3rd-level cache: 12MByte, 24-way set associative, 64 byte line size" },
{ 0xEB , "Cache" , "3rd-level cache: 18MByte, 24-way set associative, 64 byte line size" },
{ 0xEC , "Cache" , "3rd-level cache: 24MByte, 24-way set associative, 64 byte line size" },
{ 0xF0 , "Prefetch" , "64-Byte prefetching" },
{ 0xF1 , "Prefetch" , "128-Byte prefetching" },
{ 0xFE , "General" , "CPUID leaf 2 does not report TLB descriptor information; use CPUID leaf 18H to query TLB and other address translation parameters." },
{ 0xFF , "General" , "CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters" }
};
///
/// The maximum supported CPUID leaf index starting from leaf 0x00000000.
///
UINT32 gMaximumBasicFunction = CPUID_SIGNATURE;
///
/// The maximum supported CPUID leaf index starting from leaf 0x80000000.
///
UINT32 gMaximumExtendedFunction = CPUID_EXTENDED_FUNCTION;
/**
Display CPUID_SIGNATURE leaf.
**/
VOID
CpuidSignature (
VOID
)
{
UINT32 Eax;
UINT32 Ebx;
UINT32 Ecx;
UINT32 Edx;
CHAR8 Signature[13];
AsmCpuid (CPUID_SIGNATURE, &Eax, &Ebx, &Ecx, &Edx);
Print (L"CPUID_SIGNATURE (Leaf %08x)\n", CPUID_SIGNATURE);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax, Ebx, Ecx, Edx);
PRINT_VALUE (Eax, MaximumLeaf);
*(UINT32 *)(Signature + 0) = Ebx;
*(UINT32 *)(Signature + 4) = Edx;
*(UINT32 *)(Signature + 8) = Ecx;
Signature [12] = 0;
Print (L" Signature = %a\n", Signature);
gMaximumBasicFunction = Eax;
}
/**
Display CPUID_VERSION_INFO leaf.
**/
VOID
CpuidVersionInfo (
VOID
)
{
CPUID_VERSION_INFO_EAX Eax;
CPUID_VERSION_INFO_EBX Ebx;
CPUID_VERSION_INFO_ECX Ecx;
CPUID_VERSION_INFO_EDX Edx;
UINT32 DisplayFamily;
UINT32 DisplayModel;
if (CPUID_VERSION_INFO > gMaximumBasicFunction) {
return;
}
AsmCpuid (CPUID_VERSION_INFO, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32);
Print (L"CPUID_VERSION_INFO (Leaf %08x)\n", CPUID_VERSION_INFO);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx.Uint32, Ecx.Uint32, Edx.Uint32);
DisplayFamily = Eax.Bits.FamilyId;
if (Eax.Bits.FamilyId == 0x0F) {
DisplayFamily |= (Eax.Bits.ExtendedFamilyId << 4);
}
DisplayModel = Eax.Bits.Model;
if (Eax.Bits.FamilyId == 0x06 || Eax.Bits.FamilyId == 0x0f) {
DisplayModel |= (Eax.Bits.ExtendedModelId << 4);
}
Print (L" Family = %x Model = %x Stepping = %x\n", DisplayFamily, DisplayModel, Eax.Bits.SteppingId);
PRINT_BIT_FIELD (Eax, SteppingId);
PRINT_BIT_FIELD (Eax, Model);
PRINT_BIT_FIELD (Eax, FamilyId);
PRINT_BIT_FIELD (Eax, ProcessorType);
PRINT_BIT_FIELD (Eax, ExtendedModelId);
PRINT_BIT_FIELD (Eax, ExtendedFamilyId);
PRINT_BIT_FIELD (Ebx, BrandIndex);
PRINT_BIT_FIELD (Ebx, CacheLineSize);
PRINT_BIT_FIELD (Ebx, MaximumAddressableIdsForLogicalProcessors);
PRINT_BIT_FIELD (Ebx, InitialLocalApicId);
PRINT_BIT_FIELD (Ecx, SSE3);
PRINT_BIT_FIELD (Ecx, PCLMULQDQ);
PRINT_BIT_FIELD (Ecx, DTES64);
PRINT_BIT_FIELD (Ecx, MONITOR);
PRINT_BIT_FIELD (Ecx, DS_CPL);
PRINT_BIT_FIELD (Ecx, VMX);
PRINT_BIT_FIELD (Ecx, SMX);
PRINT_BIT_FIELD (Ecx, TM2);
PRINT_BIT_FIELD (Ecx, SSSE3);
PRINT_BIT_FIELD (Ecx, CNXT_ID);
PRINT_BIT_FIELD (Ecx, SDBG);
PRINT_BIT_FIELD (Ecx, FMA);
PRINT_BIT_FIELD (Ecx, CMPXCHG16B);
PRINT_BIT_FIELD (Ecx, xTPR_Update_Control);
PRINT_BIT_FIELD (Ecx, PDCM);
PRINT_BIT_FIELD (Ecx, PCID);
PRINT_BIT_FIELD (Ecx, DCA);
PRINT_BIT_FIELD (Ecx, SSE4_1);
PRINT_BIT_FIELD (Ecx, SSE4_2);
PRINT_BIT_FIELD (Ecx, x2APIC);
PRINT_BIT_FIELD (Ecx, MOVBE);
PRINT_BIT_FIELD (Ecx, POPCNT);
PRINT_BIT_FIELD (Ecx, TSC_Deadline);
PRINT_BIT_FIELD (Ecx, AESNI);
PRINT_BIT_FIELD (Ecx, XSAVE);
PRINT_BIT_FIELD (Ecx, OSXSAVE);
PRINT_BIT_FIELD (Ecx, AVX);
PRINT_BIT_FIELD (Ecx, F16C);
PRINT_BIT_FIELD (Ecx, RDRAND);
PRINT_BIT_FIELD (Edx, FPU);
PRINT_BIT_FIELD (Edx, VME);
PRINT_BIT_FIELD (Edx, DE);
PRINT_BIT_FIELD (Edx, PSE);
PRINT_BIT_FIELD (Edx, TSC);
PRINT_BIT_FIELD (Edx, MSR);
PRINT_BIT_FIELD (Edx, PAE);
PRINT_BIT_FIELD (Edx, MCE);
PRINT_BIT_FIELD (Edx, CX8);
PRINT_BIT_FIELD (Edx, APIC);
PRINT_BIT_FIELD (Edx, SEP);
PRINT_BIT_FIELD (Edx, MTRR);
PRINT_BIT_FIELD (Edx, PGE);
PRINT_BIT_FIELD (Edx, MCA);
PRINT_BIT_FIELD (Edx, CMOV);
PRINT_BIT_FIELD (Edx, PAT);
PRINT_BIT_FIELD (Edx, PSE_36);
PRINT_BIT_FIELD (Edx, PSN);
PRINT_BIT_FIELD (Edx, CLFSH);
PRINT_BIT_FIELD (Edx, DS);
PRINT_BIT_FIELD (Edx, ACPI);
PRINT_BIT_FIELD (Edx, MMX);
PRINT_BIT_FIELD (Edx, FXSR);
PRINT_BIT_FIELD (Edx, SSE);
PRINT_BIT_FIELD (Edx, SSE2);
PRINT_BIT_FIELD (Edx, SS);
PRINT_BIT_FIELD (Edx, HTT);
PRINT_BIT_FIELD (Edx, TM);
PRINT_BIT_FIELD (Edx, PBE);
}
/**
Lookup a cache description string from the mCpuidCacheInfoDescription table.
@param[in] CacheDescriptor Cache descriptor value from CPUID_CACHE_INFO.
**/
CPUID_CACHE_INFO_DESCRIPTION *
LookupCacheDescription (
UINT8 CacheDescriptor
)
{
UINTN NumDescriptors;
UINTN Descriptor;
if (CacheDescriptor == 0x00) {
return NULL;
}
NumDescriptors = sizeof (mCpuidCacheInfoDescription)/sizeof (mCpuidCacheInfoDescription[0]);
for (Descriptor = 0; Descriptor < NumDescriptors; Descriptor++) {
if (CacheDescriptor == mCpuidCacheInfoDescription[Descriptor].CacheDescriptor) {
return &mCpuidCacheInfoDescription[Descriptor];
}
}
return NULL;
}
/**
Display CPUID_CACHE_INFO leaf for each supported cache descriptor.
**/
VOID
CpuidCacheInfo (
VOID
)
{
CPUID_CACHE_INFO_CACHE_TLB Eax;
CPUID_CACHE_INFO_CACHE_TLB Ebx;
CPUID_CACHE_INFO_CACHE_TLB Ecx;
CPUID_CACHE_INFO_CACHE_TLB Edx;
UINTN Index;
CPUID_CACHE_INFO_DESCRIPTION *CacheDescription;
if (CPUID_CACHE_INFO > gMaximumBasicFunction) {
return;
}
AsmCpuid (CPUID_CACHE_INFO, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32);
Print (L"CPUID_CACHE_INFO (Leaf %08x)\n", CPUID_CACHE_INFO);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx.Uint32, Ecx.Uint32, Edx.Uint32);
if (Eax.Bits.NotValid == 0) {
//
// Process Eax.CacheDescriptor[1..3]. Ignore Eax.CacheDescriptor[0]
//
for (Index = 1; Index < 4; Index++) {
CacheDescription = LookupCacheDescription (Eax.CacheDescriptor[Index]);
if (CacheDescription != NULL) {
Print (L" %-8a %a\n",
CacheDescription->Type,
CacheDescription->Description
);
}
}
}
if (Ebx.Bits.NotValid == 0) {
//
// Process Ebx.CacheDescriptor[0..3]
//
for (Index = 0; Index < 4; Index++) {
CacheDescription = LookupCacheDescription (Ebx.CacheDescriptor[Index]);
if (CacheDescription != NULL) {
Print (L" %-8a %a\n",
CacheDescription->Type,
CacheDescription->Description
);
}
}
}
if (Ecx.Bits.NotValid == 0) {
//
// Process Ecx.CacheDescriptor[0..3]
//
for (Index = 0; Index < 4; Index++) {
CacheDescription = LookupCacheDescription (Ecx.CacheDescriptor[Index]);
if (CacheDescription != NULL) {
Print (L" %-8a %a\n",
CacheDescription->Type,
CacheDescription->Description
);
}
}
}
if (Edx.Bits.NotValid == 0) {
//
// Process Edx.CacheDescriptor[0..3]
//
for (Index = 0; Index < 4; Index++) {
CacheDescription = LookupCacheDescription (Edx.CacheDescriptor[Index]);
if (CacheDescription != NULL) {
Print (L" %-8a %a\n",
CacheDescription->Type,
CacheDescription->Description
);
}
}
}
}
/**
Display CPUID_SERIAL_NUMBER leaf if it is supported.
**/
VOID
CpuidSerialNumber (
VOID
)
{
CPUID_VERSION_INFO_EDX VersionInfoEdx;
UINT32 Ecx;
UINT32 Edx;
Print (L"CPUID_SERIAL_NUMBER (Leaf %08x)\n", CPUID_SERIAL_NUMBER);
if (CPUID_SERIAL_NUMBER > gMaximumBasicFunction) {
return;
}
AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
if (VersionInfoEdx.Bits.PSN == 0) {
Print (L" Not Supported\n");
return;
}
AsmCpuid (CPUID_SERIAL_NUMBER, NULL, NULL, &Ecx, &Edx);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", 0, 0, Ecx, Edx);
Print (L" Processor Serial Number = %08x%08x%08x\n", 0, Edx, Ecx);
}
/**
Display CPUID_CACHE_PARAMS for all supported sub-leafs.
**/
VOID
CpuidCacheParams (
VOID
)
{
UINT32 CacheLevel;
CPUID_CACHE_PARAMS_EAX Eax;
CPUID_CACHE_PARAMS_EBX Ebx;
UINT32 Ecx;
CPUID_CACHE_PARAMS_EDX Edx;
if (CPUID_CACHE_PARAMS > gMaximumBasicFunction) {
return;
}
CacheLevel = 0;
do {
AsmCpuidEx (
CPUID_CACHE_PARAMS, CacheLevel,
&Eax.Uint32, &Ebx.Uint32, &Ecx, &Edx.Uint32
);
if (Eax.Bits.CacheType != CPUID_CACHE_PARAMS_CACHE_TYPE_NULL) {
Print (L"CPUID_CACHE_PARAMS (Leaf %08x, Sub-Leaf %08x)\n", CPUID_CACHE_PARAMS, CacheLevel);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx.Uint32, Ecx, Edx.Uint32);
PRINT_BIT_FIELD (Eax, CacheType);
PRINT_BIT_FIELD (Eax, CacheLevel);
PRINT_BIT_FIELD (Eax, SelfInitializingCache);
PRINT_BIT_FIELD (Eax, FullyAssociativeCache);
PRINT_BIT_FIELD (Eax, MaximumAddressableIdsForLogicalProcessors);
PRINT_BIT_FIELD (Eax, MaximumAddressableIdsForProcessorCores);
PRINT_BIT_FIELD (Ebx, LineSize);
PRINT_BIT_FIELD (Ebx, LinePartitions);
PRINT_BIT_FIELD (Ebx, Ways);
PRINT_VALUE (Ecx, NumberOfSets);
PRINT_BIT_FIELD (Edx, Invalidate);
PRINT_BIT_FIELD (Edx, CacheInclusiveness);
PRINT_BIT_FIELD (Edx, ComplexCacheIndexing);
}
CacheLevel++;
} while (Eax.Bits.CacheType != CPUID_CACHE_PARAMS_CACHE_TYPE_NULL);
}
/**
Display CPUID_MONITOR_MWAIT leaf.
**/
VOID
CpuidMonitorMwait (
VOID
)
{
CPUID_MONITOR_MWAIT_EAX Eax;
CPUID_MONITOR_MWAIT_EBX Ebx;
CPUID_MONITOR_MWAIT_ECX Ecx;
CPUID_MONITOR_MWAIT_EDX Edx;
if (CPUID_MONITOR_MWAIT > gMaximumBasicFunction) {
return;
}
AsmCpuid (CPUID_MONITOR_MWAIT, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32);
Print (L"CPUID_MONITOR_MWAIT (Leaf %08x)\n", CPUID_MONITOR_MWAIT);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx.Uint32, Ecx.Uint32, Edx.Uint32);
PRINT_BIT_FIELD (Eax, SmallestMonitorLineSize);
PRINT_BIT_FIELD (Ebx, LargestMonitorLineSize);
PRINT_BIT_FIELD (Ecx, ExtensionsSupported);
PRINT_BIT_FIELD (Ecx, InterruptAsBreak);
PRINT_BIT_FIELD (Edx, C0States);
PRINT_BIT_FIELD (Edx, C1States);
PRINT_BIT_FIELD (Edx, C2States);
PRINT_BIT_FIELD (Edx, C3States);
PRINT_BIT_FIELD (Edx, C4States);
PRINT_BIT_FIELD (Edx, C5States);
PRINT_BIT_FIELD (Edx, C6States);
PRINT_BIT_FIELD (Edx, C7States);
}
/**
Display CPUID_THERMAL_POWER_MANAGEMENT leaf.
**/
VOID
CpuidThermalPowerManagement (
VOID
)
{
CPUID_THERMAL_POWER_MANAGEMENT_EAX Eax;
CPUID_THERMAL_POWER_MANAGEMENT_EBX Ebx;
CPUID_THERMAL_POWER_MANAGEMENT_ECX Ecx;
if (CPUID_THERMAL_POWER_MANAGEMENT > gMaximumBasicFunction) {
return;
}
AsmCpuid (CPUID_THERMAL_POWER_MANAGEMENT, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, NULL);
Print (L"CPUID_THERMAL_POWER_MANAGEMENT (Leaf %08x)\n", CPUID_THERMAL_POWER_MANAGEMENT);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx.Uint32, Ecx.Uint32, 0);
PRINT_BIT_FIELD (Eax, DigitalTemperatureSensor);
PRINT_BIT_FIELD (Eax, TurboBoostTechnology);
PRINT_BIT_FIELD (Eax, ARAT);
PRINT_BIT_FIELD (Eax, PLN);
PRINT_BIT_FIELD (Eax, ECMD);
PRINT_BIT_FIELD (Eax, PTM);
PRINT_BIT_FIELD (Eax, HWP);
PRINT_BIT_FIELD (Eax, HWP_Notification);
PRINT_BIT_FIELD (Eax, HWP_Activity_Window);
PRINT_BIT_FIELD (Eax, HWP_Energy_Performance_Preference);
PRINT_BIT_FIELD (Eax, HWP_Package_Level_Request);
PRINT_BIT_FIELD (Eax, HDC);
PRINT_BIT_FIELD (Eax, TurboBoostMaxTechnology30);
PRINT_BIT_FIELD (Eax, HWPCapabilities);
PRINT_BIT_FIELD (Eax, HWPPECIOverride);
PRINT_BIT_FIELD (Eax, FlexibleHWP);
PRINT_BIT_FIELD (Eax, FastAccessMode);
PRINT_BIT_FIELD (Eax, IgnoringIdleLogicalProcessorHWPRequest);
PRINT_BIT_FIELD (Ebx, InterruptThresholds);
PRINT_BIT_FIELD (Ecx, HardwareCoordinationFeedback);
PRINT_BIT_FIELD (Ecx, PerformanceEnergyBias);
}
/**
Display CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS for all supported sub-leafs.
**/
VOID
CpuidStructuredExtendedFeatureFlags (
VOID
)
{
UINT32 Eax;
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_EBX Ebx;
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_ECX Ecx;
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_EDX Edx;
UINT32 SubLeaf;
if (CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS > gMaximumBasicFunction) {
return;
}
AsmCpuidEx (
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS,
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO,
&Eax, NULL, NULL, NULL
);
for (SubLeaf = 0; SubLeaf <= Eax; SubLeaf++) {
AsmCpuidEx (
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS,
SubLeaf,
NULL, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32
);
if (Ebx.Uint32 != 0 || Ecx.Uint32 != 0 || Edx.Uint32 != 0) {
Print (L"CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS (Leaf %08x, Sub-Leaf %08x)\n", CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS, SubLeaf);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax, Ebx.Uint32, Ecx.Uint32, Edx.Uint32);
PRINT_BIT_FIELD (Ebx, FSGSBASE);
PRINT_BIT_FIELD (Ebx, IA32_TSC_ADJUST);
PRINT_BIT_FIELD (Ebx, SGX);
PRINT_BIT_FIELD (Ebx, BMI1);
PRINT_BIT_FIELD (Ebx, HLE);
PRINT_BIT_FIELD (Ebx, AVX2);
PRINT_BIT_FIELD (Ebx, FDP_EXCPTN_ONLY);
PRINT_BIT_FIELD (Ebx, SMEP);
PRINT_BIT_FIELD (Ebx, BMI2);
PRINT_BIT_FIELD (Ebx, EnhancedRepMovsbStosb);
PRINT_BIT_FIELD (Ebx, INVPCID);
PRINT_BIT_FIELD (Ebx, RTM);
PRINT_BIT_FIELD (Ebx, RDT_M);
PRINT_BIT_FIELD (Ebx, DeprecateFpuCsDs);
PRINT_BIT_FIELD (Ebx, MPX);
PRINT_BIT_FIELD (Ebx, RDT_A);
PRINT_BIT_FIELD (Ebx, AVX512F);
PRINT_BIT_FIELD (Ebx, AVX512DQ);
PRINT_BIT_FIELD (Ebx, RDSEED);
PRINT_BIT_FIELD (Ebx, ADX);
PRINT_BIT_FIELD (Ebx, SMAP);
PRINT_BIT_FIELD (Ebx, AVX512_IFMA);
PRINT_BIT_FIELD (Ebx, CLFLUSHOPT);
PRINT_BIT_FIELD (Ebx, CLWB);
PRINT_BIT_FIELD (Ebx, IntelProcessorTrace);
PRINT_BIT_FIELD (Ebx, AVX512PF);
PRINT_BIT_FIELD (Ebx, AVX512ER);
PRINT_BIT_FIELD (Ebx, AVX512CD);
PRINT_BIT_FIELD (Ebx, SHA);
PRINT_BIT_FIELD (Ebx, AVX512BW);
PRINT_BIT_FIELD (Ebx, AVX512VL);
PRINT_BIT_FIELD (Ecx, PREFETCHWT1);
PRINT_BIT_FIELD (Ecx, AVX512_VBMI);
PRINT_BIT_FIELD (Ecx, UMIP);
PRINT_BIT_FIELD (Ecx, PKU);
PRINT_BIT_FIELD (Ecx, OSPKE);
PRINT_BIT_FIELD (Ecx, AVX512_VPOPCNTDQ);
PRINT_BIT_FIELD (Ecx, MAWAU);
PRINT_BIT_FIELD (Ecx, RDPID);
PRINT_BIT_FIELD (Ecx, SGX_LC);
PRINT_BIT_FIELD (Edx, AVX512_4VNNIW);
PRINT_BIT_FIELD (Edx, AVX512_4FMAPS);
PRINT_BIT_FIELD (Edx, EnumeratesSupportForIBRSAndIBPB);
PRINT_BIT_FIELD (Edx, EnumeratesSupportForSTIBP);
PRINT_BIT_FIELD (Edx, EnumeratesSupportForL1D_FLUSH);
PRINT_BIT_FIELD (Edx, EnumeratesSupportForCapability);
PRINT_BIT_FIELD (Edx, EnumeratesSupportForSSBD);
}
}
}
/**
Display CPUID_DIRECT_CACHE_ACCESS_INFO leaf.
**/
VOID
CpuidDirectCacheAccessInfo (
VOID
)
{
UINT32 Eax;
if (CPUID_DIRECT_CACHE_ACCESS_INFO > gMaximumBasicFunction) {
return;
}
AsmCpuid (CPUID_DIRECT_CACHE_ACCESS_INFO, &Eax, NULL, NULL, NULL);
Print (L"CPUID_DIRECT_CACHE_ACCESS_INFO (Leaf %08x)\n", CPUID_DIRECT_CACHE_ACCESS_INFO);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax, 0, 0, 0);
}
/**
Display CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING leaf.
**/
VOID
CpuidArchitecturalPerformanceMonitoring (
VOID
)
{
CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING_EAX Eax;
CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING_EBX Ebx;
CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING_EDX Edx;
if (CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING > gMaximumBasicFunction) {
return;
}
AsmCpuid (CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING, &Eax.Uint32, &Ebx.Uint32, NULL, &Edx.Uint32);
Print (L"CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING (Leaf %08x)\n", CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx.Uint32, 0, Edx.Uint32);
PRINT_BIT_FIELD (Eax, ArchPerfMonVerID);
PRINT_BIT_FIELD (Eax, PerformanceMonitorCounters);
PRINT_BIT_FIELD (Eax, PerformanceMonitorCounterWidth);
PRINT_BIT_FIELD (Eax, EbxBitVectorLength);
PRINT_BIT_FIELD (Ebx, UnhaltedCoreCycles);
PRINT_BIT_FIELD (Ebx, InstructionsRetired);
PRINT_BIT_FIELD (Ebx, UnhaltedReferenceCycles);
PRINT_BIT_FIELD (Ebx, LastLevelCacheReferences);
PRINT_BIT_FIELD (Ebx, LastLevelCacheMisses);
PRINT_BIT_FIELD (Ebx, BranchInstructionsRetired);
PRINT_BIT_FIELD (Ebx, AllBranchMispredictRetired);
PRINT_BIT_FIELD (Edx, FixedFunctionPerformanceCounters);
PRINT_BIT_FIELD (Edx, FixedFunctionPerformanceCounterWidth);
PRINT_BIT_FIELD (Edx, AnyThreadDeprecation);
}
/**
Display CPUID_EXTENDED_TOPOLOGY leafs for all supported levels.
**/
VOID
CpuidExtendedTopology (
UINT32 LeafFunction
)
{
CPUID_EXTENDED_TOPOLOGY_EAX Eax;
CPUID_EXTENDED_TOPOLOGY_EBX Ebx;
CPUID_EXTENDED_TOPOLOGY_ECX Ecx;
UINT32 Edx;
UINT32 LevelNumber;
if (LeafFunction > gMaximumBasicFunction) {
return;
}
if ((LeafFunction != CPUID_EXTENDED_TOPOLOGY) && (LeafFunction != CPUID_V2_EXTENDED_TOPOLOGY)) {
return;
}
LevelNumber = 0;
for (LevelNumber = 0; ; LevelNumber++) {
AsmCpuidEx (
LeafFunction, LevelNumber,
&Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx
);
if (Ecx.Bits.LevelType == CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_INVALID) {
break;
}
Print (
L"%a (Leaf %08x, Sub-Leaf %08x)\n",
LeafFunction == CPUID_EXTENDED_TOPOLOGY ? "CPUID_EXTENDED_TOPOLOGY" : "CPUID_V2_EXTENDED_TOPOLOGY",
LeafFunction, LevelNumber
);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx.Uint32, Ecx.Uint32, Edx);
PRINT_BIT_FIELD (Eax, ApicIdShift);
PRINT_BIT_FIELD (Ebx, LogicalProcessors);
PRINT_BIT_FIELD (Ecx, LevelNumber);
PRINT_BIT_FIELD (Ecx, LevelType);
PRINT_VALUE (Edx, x2APIC_ID);
}
}
/**
Display CPUID_EXTENDED_STATE sub-leaf.
**/
VOID
CpuidExtendedStateSubLeaf (
VOID
)
{
CPUID_EXTENDED_STATE_SUB_LEAF_EAX Eax;
UINT32 Ebx;
CPUID_EXTENDED_STATE_SUB_LEAF_ECX Ecx;
UINT32 Edx;
AsmCpuidEx (
CPUID_EXTENDED_STATE, CPUID_EXTENDED_STATE_SUB_LEAF,
&Eax.Uint32, &Ebx, &Ecx.Uint32, &Edx
);
Print (L"CPUID_EXTENDED_STATE (Leaf %08x, Sub-Leaf %08x)\n", CPUID_EXTENDED_STATE, CPUID_EXTENDED_STATE_SUB_LEAF);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx, Ecx.Uint32, Edx);
PRINT_BIT_FIELD (Eax, XSAVEOPT);
PRINT_BIT_FIELD (Eax, XSAVEC);
PRINT_BIT_FIELD (Eax, XGETBV);
PRINT_BIT_FIELD (Eax, XSAVES);
PRINT_VALUE (Ebx, EnabledSaveStateSize_XCR0_IA32_XSS);
PRINT_BIT_FIELD (Ecx, XCR0);
PRINT_BIT_FIELD (Ecx, HWPState);
PRINT_BIT_FIELD (Ecx, PT);
PRINT_BIT_FIELD (Ecx, XCR0_1);
PRINT_VALUE (Edx, IA32_XSS_Supported_32_63);
}
/**
Display CPUID_EXTENDED_STATE size and offset information sub-leaf.
**/
VOID
CpuidExtendedStateSizeOffset (
VOID
)
{
UINT32 Eax;
UINT32 Ebx;
CPUID_EXTENDED_STATE_SIZE_OFFSET_ECX Ecx;
UINT32 Edx;
UINT32 SubLeaf;
for (SubLeaf = CPUID_EXTENDED_STATE_SIZE_OFFSET; SubLeaf < 32; SubLeaf++) {
AsmCpuidEx (
CPUID_EXTENDED_STATE, SubLeaf,
&Eax, &Ebx, &Ecx.Uint32, &Edx
);
if (Edx != 0) {
Print (L"CPUID_EXTENDED_STATE (Leaf %08x, Sub-Leaf %08x)\n", CPUID_EXTENDED_STATE, SubLeaf);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax, Ebx, Ecx.Uint32, Edx);
PRINT_VALUE (Eax, FeatureSaveStateSize);
PRINT_VALUE (Ebx, FeatureSaveStateOffset);
PRINT_BIT_FIELD (Ecx, XSS);
PRINT_BIT_FIELD (Ecx, Compacted);
}
}
}
/**
Display CPUID_EXTENDED_STATE main leaf and sub-leafs.
**/
VOID
CpuidExtendedStateMainLeaf (
VOID
)
{
CPUID_EXTENDED_STATE_MAIN_LEAF_EAX Eax;
UINT32 Ebx;
UINT32 Ecx;
UINT32 Edx;
if (CPUID_EXTENDED_STATE > gMaximumBasicFunction) {
return;
}
AsmCpuidEx (
CPUID_EXTENDED_STATE, CPUID_EXTENDED_STATE_MAIN_LEAF,
&Eax.Uint32, &Ebx, &Ecx, &Edx
);
Print (L"CPUID_EXTENDED_STATE (Leaf %08x, Sub-Leaf %08x)\n", CPUID_EXTENDED_STATE, CPUID_EXTENDED_STATE_MAIN_LEAF);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx, Ecx, Edx);
PRINT_BIT_FIELD (Eax, x87);
PRINT_BIT_FIELD (Eax, SSE);
PRINT_BIT_FIELD (Eax, AVX);
PRINT_BIT_FIELD (Eax, MPX);
PRINT_BIT_FIELD (Eax, AVX_512);
PRINT_BIT_FIELD (Eax, IA32_XSS);
PRINT_BIT_FIELD (Eax, PKRU);
PRINT_BIT_FIELD (Eax, IA32_XSS_2);
PRINT_VALUE (Ebx, EnabledSaveStateSize);
PRINT_VALUE (Ecx, SupportedSaveStateSize);
PRINT_VALUE (Edx, XCR0_Supported_32_63);
CpuidExtendedStateSubLeaf ();
CpuidExtendedStateSizeOffset ();
}
/**
Display CPUID_INTEL_RDT_MONITORING enumeration sub-leaf.
**/
VOID
CpuidIntelRdtMonitoringEnumerationSubLeaf (
VOID
)
{
UINT32 Ebx;
CPUID_INTEL_RDT_MONITORING_ENUMERATION_SUB_LEAF_EDX Edx;
if (CPUID_INTEL_RDT_MONITORING > gMaximumBasicFunction) {
return;
}
AsmCpuidEx (
CPUID_INTEL_RDT_MONITORING, CPUID_INTEL_RDT_MONITORING_ENUMERATION_SUB_LEAF,
NULL, &Ebx, NULL, &Edx.Uint32
);
Print (L"CPUID_INTEL_RDT_MONITORING (Leaf %08x, Sub-Leaf %08x)\n", CPUID_INTEL_RDT_MONITORING, CPUID_INTEL_RDT_MONITORING_ENUMERATION_SUB_LEAF);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", 0, Ebx, 0, Edx.Uint32);
PRINT_VALUE (Ebx, Maximum_RMID_Range);
PRINT_BIT_FIELD (Edx, L3CacheRDT_M);
}
/**
Display CPUID_INTEL_RDT_MONITORING L3 cache capability sub-leaf.
**/
VOID
CpuidIntelRdtMonitoringL3CacheCapabilitySubLeaf (
VOID
)
{
UINT32 Ebx;
UINT32 Ecx;
CPUID_INTEL_RDT_MONITORING_L3_CACHE_SUB_LEAF_EDX Edx;
if (CPUID_INTEL_RDT_MONITORING > gMaximumBasicFunction) {
return;
}
AsmCpuidEx (
CPUID_INTEL_RDT_MONITORING, CPUID_INTEL_RDT_MONITORING_L3_CACHE_SUB_LEAF,
NULL, &Ebx, &Ecx, &Edx.Uint32
);
Print (L"CPUID_INTEL_RDT_MONITORING (Leaf %08x, Sub-Leaf %08x)\n", CPUID_INTEL_RDT_MONITORING, CPUID_INTEL_RDT_MONITORING_L3_CACHE_SUB_LEAF);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", 0, Ebx, Ecx, Edx.Uint32);
PRINT_VALUE (Ebx, OccupancyConversionFactor);
PRINT_VALUE (Ecx, Maximum_RMID_Range);
PRINT_BIT_FIELD (Edx, L3CacheOccupancyMonitoring);
PRINT_BIT_FIELD (Edx, L3CacheTotalBandwidthMonitoring);
PRINT_BIT_FIELD (Edx, L3CacheLocalBandwidthMonitoring);
}
/**
Display CPUID_INTEL_RDT_ALLOCATION memory bandwidth allocation technology enumeration
sub-leaf.
**/
VOID
CpuidIntelRdtAllocationMemoryBandwidthSubLeaf (
VOID
)
{
CPUID_INTEL_RDT_ALLOCATION_MEMORY_BANDWIDTH_SUB_LEAF_EAX Eax;
UINT32 Ebx;
CPUID_INTEL_RDT_ALLOCATION_MEMORY_BANDWIDTH_SUB_LEAF_ECX Ecx;
CPUID_INTEL_RDT_ALLOCATION_MEMORY_BANDWIDTH_SUB_LEAF_EDX Edx;
AsmCpuidEx (
CPUID_INTEL_RDT_ALLOCATION, CPUID_INTEL_RDT_ALLOCATION_MEMORY_BANDWIDTH_SUB_LEAF,
&Eax.Uint32, &Ebx, &Ecx.Uint32, &Edx.Uint32
);
Print (L"CPUID_INTEL_RDT_ALLOCATION (Leaf %08x, Sub-Leaf %08x)\n", CPUID_INTEL_RDT_ALLOCATION, CPUID_INTEL_RDT_ALLOCATION_MEMORY_BANDWIDTH_SUB_LEAF);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx, Ecx.Uint32, Edx.Uint32);
PRINT_BIT_FIELD (Eax, MaximumMBAThrottling);
PRINT_VALUE (Ebx, AllocationUnitBitMap);
PRINT_BIT_FIELD (Ecx, Liner);
PRINT_BIT_FIELD (Edx, HighestCosNumber);
}
/**
Display CPUID_INTEL_RDT_ALLOCATION L3 cache allocation technology enumeration
sub-leaf.
**/
VOID
CpuidIntelRdtAllocationL3CacheSubLeaf (
VOID
)
{
CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF_EAX Eax;
UINT32 Ebx;
CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF_ECX Ecx;
CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF_EDX Edx;
AsmCpuidEx (
CPUID_INTEL_RDT_ALLOCATION, CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF,
&Eax.Uint32, &Ebx, &Ecx.Uint32, &Edx.Uint32
);
Print (L"CPUID_INTEL_RDT_ALLOCATION (Leaf %08x, Sub-Leaf %08x)\n", CPUID_INTEL_RDT_ALLOCATION, CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx, Ecx.Uint32, Edx.Uint32);
PRINT_BIT_FIELD (Eax, CapacityLength);
PRINT_VALUE (Ebx, AllocationUnitBitMap);
PRINT_BIT_FIELD (Ecx, CodeDataPrioritization);
PRINT_BIT_FIELD (Edx, HighestCosNumber);
}
/**
Display CPUID_INTEL_RDT_ALLOCATION L2 cache allocation technology enumeration
sub-leaf.
**/
VOID
CpuidIntelRdtAllocationL2CacheSubLeaf (
VOID
)
{
CPUID_INTEL_RDT_ALLOCATION_L2_CACHE_SUB_LEAF_EAX Eax;
UINT32 Ebx;
CPUID_INTEL_RDT_ALLOCATION_L2_CACHE_SUB_LEAF_EDX Edx;
AsmCpuidEx (
CPUID_INTEL_RDT_ALLOCATION, CPUID_INTEL_RDT_ALLOCATION_L2_CACHE_SUB_LEAF,
&Eax.Uint32, &Ebx, NULL, &Edx.Uint32
);
Print (L"CPUID_INTEL_RDT_ALLOCATION (Leaf %08x, Sub-Leaf %08x)\n", CPUID_INTEL_RDT_ALLOCATION, CPUID_INTEL_RDT_ALLOCATION_L2_CACHE_SUB_LEAF);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx, 0, Edx.Uint32);
PRINT_BIT_FIELD (Eax, CapacityLength);
PRINT_VALUE (Ebx, AllocationUnitBitMap);
PRINT_BIT_FIELD (Edx, HighestCosNumber);
}
/**
Display CPUID_INTEL_RDT_ALLOCATION main leaf and sub-leaves.
**/
VOID
CpuidIntelRdtAllocationMainLeaf (
VOID
)
{
CPUID_INTEL_RDT_ALLOCATION_ENUMERATION_SUB_LEAF_EBX Ebx;
if (CPUID_INTEL_RDT_ALLOCATION > gMaximumBasicFunction) {
return;
}
AsmCpuidEx (
CPUID_INTEL_RDT_ALLOCATION, CPUID_INTEL_RDT_ALLOCATION_ENUMERATION_SUB_LEAF,
NULL, &Ebx.Uint32, NULL, NULL
);
Print (L"CPUID_INTEL_RDT_ALLOCATION (Leaf %08x, Sub-Leaf %08x)\n", CPUID_INTEL_RDT_ALLOCATION, CPUID_INTEL_RDT_ALLOCATION_ENUMERATION_SUB_LEAF);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", 0, Ebx.Uint32, 0, 0);
PRINT_BIT_FIELD (Ebx, L3CacheAllocation);
PRINT_BIT_FIELD (Ebx, L2CacheAllocation);
PRINT_BIT_FIELD (Ebx, MemoryBandwidth);
CpuidIntelRdtAllocationMemoryBandwidthSubLeaf ();
CpuidIntelRdtAllocationL3CacheSubLeaf ();
CpuidIntelRdtAllocationL2CacheSubLeaf ();
}
/**
Display Sub-Leaf 0 Enumeration of Intel SGX Capabilities.
**/
VOID
CpuidEnumerationOfIntelSgxCapabilities0SubLeaf (
VOID
)
{
CPUID_INTEL_SGX_CAPABILITIES_0_SUB_LEAF_EAX Eax;
UINT32 Ebx;
CPUID_INTEL_SGX_CAPABILITIES_0_SUB_LEAF_EDX Edx;
AsmCpuidEx (
CPUID_INTEL_SGX, CPUID_INTEL_SGX_CAPABILITIES_0_SUB_LEAF,
&Eax.Uint32, &Ebx, NULL, &Edx.Uint32
);
Print (L"CPUID_INTEL_SGX (Leaf %08x, Sub-Leaf %08x)\n", CPUID_INTEL_SGX, CPUID_INTEL_SGX_CAPABILITIES_0_SUB_LEAF);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx, 0, Edx.Uint32);
PRINT_BIT_FIELD (Eax, SGX1);
PRINT_BIT_FIELD (Eax, SGX2);
PRINT_BIT_FIELD (Eax, ENCLV);
PRINT_BIT_FIELD (Eax, ENCLS);
PRINT_BIT_FIELD (Edx, MaxEnclaveSize_Not64);
PRINT_BIT_FIELD (Edx, MaxEnclaveSize_64);
}
/**
Display Sub-Leaf 1 Enumeration of Intel SGX Capabilities.
**/
VOID
CpuidEnumerationOfIntelSgxCapabilities1SubLeaf (
VOID
)
{
UINT32 Eax;
UINT32 Ebx;
UINT32 Ecx;
UINT32 Edx;
AsmCpuidEx (
CPUID_INTEL_SGX, CPUID_INTEL_SGX_CAPABILITIES_1_SUB_LEAF,
&Eax, &Ebx, &Ecx, &Edx
);
Print (L"CPUID_INTEL_SGX (Leaf %08x, Sub-Leaf %08x)\n", CPUID_INTEL_SGX, CPUID_INTEL_SGX_CAPABILITIES_1_SUB_LEAF);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax, Ebx, Ecx, Edx);
}
/**
Display Sub-Leaf Index 2 or Higher Enumeration of Intel SGX Resources.
**/
VOID
CpuidEnumerationOfIntelSgxResourcesSubLeaf (
VOID
)
{
CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF_EAX Eax;
CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF_EBX Ebx;
CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF_ECX Ecx;
CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF_EDX Edx;
UINT32 SubLeaf;
SubLeaf = CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF;
do {
AsmCpuidEx (
CPUID_INTEL_SGX, SubLeaf,
&Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32
);
if (Eax.Bits.SubLeafType == 0x1) {
Print (L"CPUID_INTEL_SGX (Leaf %08x, Sub-Leaf %08x)\n", CPUID_INTEL_SGX, SubLeaf);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx.Uint32, Ecx.Uint32, Edx.Uint32);
PRINT_BIT_FIELD (Eax, SubLeafType);
PRINT_BIT_FIELD (Eax, LowAddressOfEpcSection);
PRINT_BIT_FIELD (Ebx, HighAddressOfEpcSection);
PRINT_BIT_FIELD (Ecx, EpcSection);
PRINT_BIT_FIELD (Ecx, LowSizeOfEpcSection);
PRINT_BIT_FIELD (Edx, HighSizeOfEpcSection);
}
SubLeaf++;
} while (Eax.Bits.SubLeafType == 0x1);
}
/**
Display Intel SGX Resource Enumeration.
**/
VOID
CpuidEnumerationOfIntelSgx (
VOID
)
{
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_EBX Ebx;
if (CPUID_INTEL_SGX > gMaximumBasicFunction) {
return;
}
AsmCpuidEx (
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS,
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO,
NULL, &Ebx.Uint32, NULL, NULL
);
if (Ebx.Bits.SGX != 1) {
//
// Only if CPUID.(EAX=07H, ECX=0H):EBX.SGX = 1, the processor has support
// for Intel SGX.
//
return;
}
CpuidEnumerationOfIntelSgxCapabilities0SubLeaf ();
CpuidEnumerationOfIntelSgxCapabilities1SubLeaf ();
CpuidEnumerationOfIntelSgxResourcesSubLeaf ();
}
/**
Display CPUID_INTEL_PROCESSOR_TRACE sub-leafs.
@param[in] MaximumSubLeaf Maximum sub-leaf index for CPUID_INTEL_PROCESSOR_TRACE.
**/
VOID
CpuidIntelProcessorTraceSubLeaf (
UINT32 MaximumSubLeaf
)
{
UINT32 SubLeaf;
CPUID_INTEL_PROCESSOR_TRACE_SUB_LEAF_EAX Eax;
CPUID_INTEL_PROCESSOR_TRACE_SUB_LEAF_EBX Ebx;
for (SubLeaf = CPUID_INTEL_PROCESSOR_TRACE_SUB_LEAF; SubLeaf <= MaximumSubLeaf; SubLeaf++) {
AsmCpuidEx (
CPUID_INTEL_PROCESSOR_TRACE, SubLeaf,
&Eax.Uint32, &Ebx.Uint32, NULL, NULL
);
Print (L"CPUID_INTEL_PROCESSOR_TRACE (Leaf %08x, Sub-Leaf %08x)\n", CPUID_INTEL_PROCESSOR_TRACE, SubLeaf);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx.Uint32, 0, 0);
PRINT_BIT_FIELD (Eax, ConfigurableAddressRanges);
PRINT_BIT_FIELD (Eax, MtcPeriodEncodings);
PRINT_BIT_FIELD (Ebx, CycleThresholdEncodings);
PRINT_BIT_FIELD (Ebx, PsbFrequencyEncodings);
}
}
/**
Display CPUID_INTEL_PROCESSOR_TRACE main leaf and sub-leafs.
**/
VOID
CpuidIntelProcessorTraceMainLeaf (
VOID
)
{
UINT32 Eax;
CPUID_INTEL_PROCESSOR_TRACE_MAIN_LEAF_EBX Ebx;
CPUID_INTEL_PROCESSOR_TRACE_MAIN_LEAF_ECX Ecx;
if (CPUID_INTEL_PROCESSOR_TRACE > gMaximumBasicFunction) {
return;
}
AsmCpuidEx (
CPUID_INTEL_PROCESSOR_TRACE, CPUID_INTEL_PROCESSOR_TRACE_MAIN_LEAF,
&Eax, &Ebx.Uint32, &Ecx.Uint32, NULL
);
Print (L"CPUID_INTEL_PROCESSOR_TRACE (Leaf %08x, Sub-Leaf %08x)\n", CPUID_INTEL_PROCESSOR_TRACE, CPUID_INTEL_PROCESSOR_TRACE_MAIN_LEAF);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax, Ebx.Uint32, Ecx.Uint32, 0);
PRINT_VALUE (Eax, MaximumSubLeaf);
PRINT_BIT_FIELD (Ebx, Cr3Filter);
PRINT_BIT_FIELD (Ebx, ConfigurablePsb);
PRINT_BIT_FIELD (Ebx, IpTraceStopFiltering);
PRINT_BIT_FIELD (Ebx, Mtc);
PRINT_BIT_FIELD (Ebx, PTWrite);
PRINT_BIT_FIELD (Ebx, PowerEventTrace);
PRINT_BIT_FIELD (Ecx, RTIT);
PRINT_BIT_FIELD (Ecx, ToPA);
PRINT_BIT_FIELD (Ecx, SingleRangeOutput);
PRINT_BIT_FIELD (Ecx, TraceTransportSubsystem);
PRINT_BIT_FIELD (Ecx, LIP);
CpuidIntelProcessorTraceSubLeaf (Eax);
}
/**
Display CPUID_TIME_STAMP_COUNTER leaf.
**/
VOID
CpuidTimeStampCounter (
VOID
)
{
UINT32 Eax;
UINT32 Ebx;
UINT32 Ecx;
if (CPUID_TIME_STAMP_COUNTER > gMaximumBasicFunction) {
return;
}
AsmCpuid (CPUID_TIME_STAMP_COUNTER, &Eax, &Ebx, &Ecx, NULL);
Print (L"CPUID_TIME_STAMP_COUNTER (Leaf %08x)\n", CPUID_TIME_STAMP_COUNTER);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax, Ebx, Ecx, 0);
}
/**
Display CPUID_PROCESSOR_FREQUENCY leaf.
**/
VOID
CpuidProcessorFrequency (
VOID
)
{
CPUID_PROCESSOR_FREQUENCY_EAX Eax;
CPUID_PROCESSOR_FREQUENCY_EBX Ebx;
CPUID_PROCESSOR_FREQUENCY_ECX Ecx;
if (CPUID_PROCESSOR_FREQUENCY > gMaximumBasicFunction) {
return;
}
AsmCpuid (CPUID_PROCESSOR_FREQUENCY, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, NULL);
Print (L"CPUID_PROCESSOR_FREQUENCY (Leaf %08x)\n", CPUID_PROCESSOR_FREQUENCY);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx.Uint32, Ecx.Uint32, 0);
PRINT_BIT_FIELD (Eax, ProcessorBaseFrequency);
PRINT_BIT_FIELD (Ebx, MaximumFrequency);
PRINT_BIT_FIELD (Ecx, BusFrequency);
}
/**
Display CPUID_SOC_VENDOR sub-leafs that contain the SoC Vendor Brand String.
Also display these sub-leafs as a single SoC Vendor Brand String.
**/
VOID
CpuidSocVendorBrandString (
VOID
)
{
CPUID_SOC_VENDOR_BRAND_STRING_DATA Eax;
CPUID_SOC_VENDOR_BRAND_STRING_DATA Ebx;
CPUID_SOC_VENDOR_BRAND_STRING_DATA Ecx;
CPUID_SOC_VENDOR_BRAND_STRING_DATA Edx;
//
// Array to store brand string from 3 brand string leafs with
// 4 32-bit brand string values per leaf and an extra value to
// null terminate the string.
//
UINT32 BrandString[3 * 4 + 1];
AsmCpuidEx (
CPUID_SOC_VENDOR, CPUID_SOC_VENDOR_BRAND_STRING1,
&Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32
);
Print (L"CPUID_SOC_VENDOR (Leaf %08x, Sub-Leaf %08x)\n", CPUID_SOC_VENDOR, CPUID_SOC_VENDOR_BRAND_STRING1);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx.Uint32, Ecx.Uint32, Edx.Uint32);
BrandString[0] = Eax.Uint32;
BrandString[1] = Ebx.Uint32;
BrandString[2] = Ecx.Uint32;
BrandString[3] = Edx.Uint32;
AsmCpuidEx (
CPUID_SOC_VENDOR, CPUID_SOC_VENDOR_BRAND_STRING2,
&Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32
);
Print (L"CPUID_SOC_VENDOR (Leaf %08x, Sub-Leaf %08x)\n", CPUID_SOC_VENDOR, CPUID_SOC_VENDOR_BRAND_STRING2);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx.Uint32, Ecx.Uint32, Edx.Uint32);
BrandString[4] = Eax.Uint32;
BrandString[5] = Ebx.Uint32;
BrandString[6] = Ecx.Uint32;
BrandString[7] = Edx.Uint32;
AsmCpuidEx (
CPUID_SOC_VENDOR, CPUID_SOC_VENDOR_BRAND_STRING3,
&Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32
);
Print (L"CPUID_SOC_VENDOR (Leaf %08x, Sub-Leaf %08x)\n", CPUID_SOC_VENDOR, CPUID_SOC_VENDOR_BRAND_STRING3);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx.Uint32, Ecx.Uint32, Edx.Uint32);
BrandString[8] = Eax.Uint32;
BrandString[9] = Ebx.Uint32;
BrandString[10] = Ecx.Uint32;
BrandString[11] = Edx.Uint32;
BrandString[12] = 0;
Print (L"Vendor Brand String = %a\n", (CHAR8 *)BrandString);
}
/**
Display CPUID_SOC_VENDOR main leaf and sub-leafs.
**/
VOID
CpuidSocVendor (
VOID
)
{
UINT32 Eax;
CPUID_SOC_VENDOR_MAIN_LEAF_EBX Ebx;
UINT32 Ecx;
UINT32 Edx;
if (CPUID_SOC_VENDOR > gMaximumBasicFunction) {
return;
}
AsmCpuidEx (
CPUID_SOC_VENDOR, CPUID_SOC_VENDOR_MAIN_LEAF,
&Eax, &Ebx.Uint32, &Ecx, &Edx
);
Print (L"CPUID_SOC_VENDOR (Leaf %08x, Sub-Leaf %08x)\n", CPUID_SOC_VENDOR, CPUID_SOC_VENDOR_MAIN_LEAF);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax, Ebx.Uint32, Ecx, Edx);
if (Eax < 3) {
Print (L" Not Supported\n");
return;
}
PRINT_VALUE (Eax, MaxSOCID_Index);
PRINT_BIT_FIELD (Ebx, SocVendorId);
PRINT_BIT_FIELD (Ebx, IsVendorScheme);
PRINT_VALUE (Ecx, ProjectID);
PRINT_VALUE (Edx, SteppingID);
CpuidSocVendorBrandString ();
}
/**
Display CPUID_DETERMINISTIC_ADDRESS_TRANSLATION_PARAMETERS main leaf and sub-leafs.
**/
VOID
CpuidDeterministicAddressTranslationParameters (
VOID
)
{
UINT32 Eax;
CPUID_DETERMINISTIC_ADDRESS_TRANSLATION_PARAMETERS_EBX Ebx;
UINT32 Ecx;
CPUID_DETERMINISTIC_ADDRESS_TRANSLATION_PARAMETERS_EDX Edx;
if (CPUID_DETERMINISTIC_ADDRESS_TRANSLATION_PARAMETERS > gMaximumBasicFunction) {
return;
}
AsmCpuidEx (
CPUID_DETERMINISTIC_ADDRESS_TRANSLATION_PARAMETERS,
CPUID_DETERMINISTIC_ADDRESS_TRANSLATION_PARAMETERS_MAIN_LEAF,
&Eax, &Ebx.Uint32, &Ecx, &Edx.Uint32
);
Print (L"CPUID_DETERMINISTIC_ADDRESS_TRANSLATION_PARAMETERS (Leaf %08x, Sub-Leaf %08x)\n", CPUID_DETERMINISTIC_ADDRESS_TRANSLATION_PARAMETERS, CPUID_DETERMINISTIC_ADDRESS_TRANSLATION_PARAMETERS_MAIN_LEAF);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax, Ebx.Uint32, Ecx, Edx.Uint32);
PRINT_VALUE (Eax, MaxID_Index);
PRINT_BIT_FIELD (Ebx, Page4K);
PRINT_BIT_FIELD (Ebx, Page2M);
PRINT_BIT_FIELD (Ebx, Page4M);
PRINT_BIT_FIELD (Ebx, Page1G);
PRINT_BIT_FIELD (Ebx, Partitioning);
PRINT_BIT_FIELD (Ebx, Way);
PRINT_VALUE (Ecx, NumberOfSets);
PRINT_BIT_FIELD (Edx, TranslationCacheType);
PRINT_BIT_FIELD (Edx, TranslationCacheLevel);
PRINT_BIT_FIELD (Edx, FullyAssociative);
PRINT_BIT_FIELD (Edx, MaximumNum);
}
/**
Display CPUID_EXTENDED_FUNCTION leaf.
**/
VOID
CpuidExtendedFunction (
VOID
)
{
UINT32 Eax;
AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);
Print (L"CPUID_EXTENDED_FUNCTION (Leaf %08x)\n", CPUID_EXTENDED_FUNCTION);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax, 0, 0, 0);
PRINT_VALUE (Eax, MaximumExtendedFunction);
gMaximumExtendedFunction = Eax;
}
/**
Display CPUID_EXTENDED_CPU_SIG leaf.
**/
VOID
CpuidExtendedCpuSig (
VOID
)
{
UINT32 Eax;
CPUID_EXTENDED_CPU_SIG_ECX Ecx;
CPUID_EXTENDED_CPU_SIG_EDX Edx;
if (CPUID_EXTENDED_CPU_SIG > gMaximumExtendedFunction) {
return;
}
AsmCpuid (CPUID_EXTENDED_CPU_SIG, &Eax, NULL, &Ecx.Uint32, &Edx.Uint32);
Print (L"CPUID_EXTENDED_CPU_SIG (Leaf %08x)\n", CPUID_EXTENDED_CPU_SIG);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax, 0, Ecx.Uint32, Edx.Uint32);
PRINT_BIT_FIELD (Ecx, LAHF_SAHF);
PRINT_BIT_FIELD (Ecx, LZCNT);
PRINT_BIT_FIELD (Ecx, PREFETCHW);
PRINT_BIT_FIELD (Edx, SYSCALL_SYSRET);
PRINT_BIT_FIELD (Edx, NX);
PRINT_BIT_FIELD (Edx, Page1GB);
PRINT_BIT_FIELD (Edx, RDTSCP);
PRINT_BIT_FIELD (Edx, LM);
}
/**
Display CPUID_BRAND_STRING1, CPUID_BRAND_STRING2 and CPUID_BRAND_STRING3
leafs. Also display these three leafs as a single brand string.
**/
VOID
CpuidProcessorBrandString (
VOID
)
{
CPUID_BRAND_STRING_DATA Eax;
CPUID_BRAND_STRING_DATA Ebx;
CPUID_BRAND_STRING_DATA Ecx;
CPUID_BRAND_STRING_DATA Edx;
//
// Array to store brand string from 3 brand string leafs with
// 4 32-bit brand string values per leaf and an extra value to
// null terminate the string.
//
UINT32 BrandString[3 * 4 + 1];
if (CPUID_BRAND_STRING1 <= gMaximumExtendedFunction) {
AsmCpuid (CPUID_BRAND_STRING1, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32);
Print (L"CPUID_BRAND_STRING1 (Leaf %08x)\n", CPUID_BRAND_STRING1);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx.Uint32, Ecx.Uint32, Edx.Uint32);
BrandString[0] = Eax.Uint32;
BrandString[1] = Ebx.Uint32;
BrandString[2] = Ecx.Uint32;
BrandString[3] = Edx.Uint32;
}
if (CPUID_BRAND_STRING2 <= gMaximumExtendedFunction) {
AsmCpuid (CPUID_BRAND_STRING2, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32);
Print (L"CPUID_BRAND_STRING2 (Leaf %08x)\n", CPUID_BRAND_STRING2);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx.Uint32, Ecx.Uint32, Edx.Uint32);
BrandString[4] = Eax.Uint32;
BrandString[5] = Ebx.Uint32;
BrandString[6] = Ecx.Uint32;
BrandString[7] = Edx.Uint32;
}
if (CPUID_BRAND_STRING3 <= gMaximumExtendedFunction) {
AsmCpuid (CPUID_BRAND_STRING3, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32);
Print (L"CPUID_BRAND_STRING3 (Leaf %08x)\n", CPUID_BRAND_STRING3);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, Ebx.Uint32, Ecx.Uint32, Edx.Uint32);
BrandString[8] = Eax.Uint32;
BrandString[9] = Ebx.Uint32;
BrandString[10] = Ecx.Uint32;
BrandString[11] = Edx.Uint32;
}
BrandString[12] = 0;
Print (L"Brand String = %a\n", (CHAR8 *)BrandString);
}
/**
Display CPUID_EXTENDED_CACHE_INFO leaf.
**/
VOID
CpuidExtendedCacheInfo (
VOID
)
{
CPUID_EXTENDED_CACHE_INFO_ECX Ecx;
if (CPUID_EXTENDED_CACHE_INFO > gMaximumExtendedFunction) {
return;
}
AsmCpuid (CPUID_EXTENDED_CACHE_INFO, NULL, NULL, &Ecx.Uint32, NULL);
Print (L"CPUID_EXTENDED_CACHE_INFO (Leaf %08x)\n", CPUID_EXTENDED_CACHE_INFO);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", 0, 0, Ecx.Uint32, 0);
PRINT_BIT_FIELD (Ecx, CacheLineSize);
PRINT_BIT_FIELD (Ecx, L2Associativity);
PRINT_BIT_FIELD (Ecx, CacheSize);
}
/**
Display CPUID_EXTENDED_TIME_STAMP_COUNTER leaf.
**/
VOID
CpuidExtendedTimeStampCounter (
VOID
)
{
CPUID_EXTENDED_TIME_STAMP_COUNTER_EDX Edx;
if (CPUID_EXTENDED_TIME_STAMP_COUNTER > gMaximumExtendedFunction) {
return;
}
AsmCpuid (CPUID_EXTENDED_TIME_STAMP_COUNTER, NULL, NULL, NULL, &Edx.Uint32);
Print (L"CPUID_EXTENDED_TIME_STAMP_COUNTER (Leaf %08x)\n", CPUID_EXTENDED_TIME_STAMP_COUNTER);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", 0, 0, 0, Edx.Uint32);
PRINT_BIT_FIELD (Edx, InvariantTsc);
}
/**
Display CPUID_VIR_PHY_ADDRESS_SIZE leaf.
**/
VOID
CpuidVirPhyAddressSize (
VOID
)
{
CPUID_VIR_PHY_ADDRESS_SIZE_EAX Eax;
if (CPUID_VIR_PHY_ADDRESS_SIZE > gMaximumExtendedFunction) {
return;
}
AsmCpuid (CPUID_VIR_PHY_ADDRESS_SIZE, &Eax.Uint32, NULL, NULL, NULL);
Print (L"CPUID_VIR_PHY_ADDRESS_SIZE (Leaf %08x)\n", CPUID_VIR_PHY_ADDRESS_SIZE);
Print (L" EAX:%08x EBX:%08x ECX:%08x EDX:%08x\n", Eax.Uint32, 0, 0, 0);
PRINT_BIT_FIELD (Eax, PhysicalAddressBits);
PRINT_BIT_FIELD (Eax, LinearAddressBits);
}
/**
The user Entry Point for Application. The user code starts with this function
as the real entry point for the application.
@param[in] ImageHandle The firmware allocated handle for the EFI image.
@param[in] SystemTable A pointer to the EFI System Table.
@retval EFI_SUCCESS The entry point is executed successfully.
@retval other Some error occurs when executing this entry point.
**/
EFI_STATUS
EFIAPI
UefiMain (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
Print (L"UEFI CPUID Version 0.5\n");
CpuidSignature ();
CpuidVersionInfo ();
CpuidCacheInfo ();
CpuidSerialNumber ();
CpuidCacheParams();
CpuidMonitorMwait ();
CpuidThermalPowerManagement ();
CpuidStructuredExtendedFeatureFlags ();
CpuidDirectCacheAccessInfo();
CpuidArchitecturalPerformanceMonitoring ();
CpuidExtendedTopology (CPUID_EXTENDED_TOPOLOGY);
CpuidExtendedStateMainLeaf ();
CpuidIntelRdtMonitoringEnumerationSubLeaf ();
CpuidIntelRdtMonitoringL3CacheCapabilitySubLeaf ();
CpuidIntelRdtAllocationMainLeaf ();
CpuidEnumerationOfIntelSgx ();
CpuidIntelProcessorTraceMainLeaf ();
CpuidTimeStampCounter ();
CpuidProcessorFrequency ();
CpuidSocVendor ();
CpuidDeterministicAddressTranslationParameters ();
CpuidExtendedTopology (CPUID_V2_EXTENDED_TOPOLOGY);
CpuidExtendedFunction ();
CpuidExtendedCpuSig ();
CpuidProcessorBrandString ();
CpuidExtendedCacheInfo ();
CpuidExtendedTimeStampCounter ();
CpuidVirPhyAddressSize ();
return EFI_SUCCESS;
}