historical/toontown-classic.git/panda/direct/directtools/DirectGeometry.py
2024-01-16 11:20:27 -06:00

243 lines
8.4 KiB
Python

from panda3d.core import *
from .DirectGlobals import *
from .DirectUtil import *
import math
class LineNodePath(NodePath):
def __init__(self, parent = None, name = None,
thickness = 1.0, colorVec = VBase4(1)):
# Initialize the superclass
NodePath.__init__(self)
if parent is None:
parent = hidden
# Attach a geomNode to the parent and set self to be
# the resulting node path
self.lineNode = GeomNode("lineNode")
self.assign(parent.attachNewNode(self.lineNode))
if name:
self.setName(name)
# Create a lineSegs object to hold the line
ls = self.lineSegs = LineSegs()
# Initialize the lineSegs parameters
ls.setThickness(thickness)
ls.setColor(colorVec)
def moveTo(self, *_args):
self.lineSegs.moveTo(*_args)
def drawTo(self, *_args):
self.lineSegs.drawTo(*_args)
def create(self, frameAccurate = 0):
self.lineSegs.create(self.lineNode, frameAccurate)
def reset(self):
self.lineSegs.reset()
self.lineNode.removeAllGeoms()
def isEmpty(self):
return self.lineSegs.isEmpty()
def setThickness(self, thickness):
self.lineSegs.setThickness(thickness)
def setColor(self, *_args):
self.lineSegs.setColor(*_args)
def setVertex(self, *_args):
self.lineSegs.setVertex(*_args)
def setVertexColor(self, vertex, *_args):
self.lineSegs.setVertexColor(*(vertex,) + _args)
def getCurrentPosition(self):
return self.lineSegs.getCurrentPosition()
def getNumVertices(self):
return self.lineSegs.getNumVertices()
def getVertex(self, index):
return self.lineSegs.getVertex(index)
def getVertexColor(self):
return self.lineSegs.getVertexColor()
def drawArrow(self, sv, ev, arrowAngle, arrowLength):
"""
Do the work of moving the cursor around to draw an arrow from
sv to ev. Hack: the arrows take the z value of the end point
"""
self.moveTo(sv)
self.drawTo(ev)
v = sv - ev
# Find the angle of the line
angle = math.atan2(v[1], v[0])
# Get the arrow angles
a1 = angle + deg2Rad(arrowAngle)
a2 = angle - deg2Rad(arrowAngle)
# Get the arrow points
a1x = arrowLength * math.cos(a1)
a1y = arrowLength * math.sin(a1)
a2x = arrowLength * math.cos(a2)
a2y = arrowLength * math.sin(a2)
z = ev[2]
self.moveTo(ev)
self.drawTo(Point3(ev + Point3(a1x, a1y, z)))
self.moveTo(ev)
self.drawTo(Point3(ev + Point3(a2x, a2y, z)))
def drawArrow2d(self, sv, ev, arrowAngle, arrowLength):
"""
Do the work of moving the cursor around to draw an arrow from
sv to ev. Hack: the arrows take the z value of the end point
"""
self.moveTo(sv)
self.drawTo(ev)
v = sv - ev
# Find the angle of the line
angle = math.atan2(v[2], v[0])
# Get the arrow angles
a1 = angle + deg2Rad(arrowAngle)
a2 = angle - deg2Rad(arrowAngle)
# Get the arrow points
a1x = arrowLength * math.cos(a1)
a1y = arrowLength * math.sin(a1)
a2x = arrowLength * math.cos(a2)
a2y = arrowLength * math.sin(a2)
self.moveTo(ev)
self.drawTo(Point3(ev + Point3(a1x, 0.0, a1y)))
self.moveTo(ev)
self.drawTo(Point3(ev + Point3(a2x, 0.0, a2y)))
def drawLines(self, lineList):
"""
Given a list of lists of points, draw a separate line for each list
"""
for pointList in lineList:
self.moveTo(*pointList[0])
for point in pointList[1:]:
self.drawTo(*point)
##
## Given a point in space, and a direction, find the point of intersection
## of that ray with a plane at the specified origin, with the specified normal
def planeIntersect (lineOrigin, lineDir, planeOrigin, normal):
t = 0
offset = planeOrigin - lineOrigin
t = offset.dot(normal) / lineDir.dot(normal)
hitPt = lineDir * t
return hitPt + lineOrigin
def getNearProjectionPoint(nodePath):
# Find the position of the projection of the specified node path
# on the near plane
origin = nodePath.getPos(base.direct.camera)
# project this onto near plane
if origin[1] != 0.0:
return origin * (base.direct.dr.near / origin[1])
else:
# Object is coplaner with camera, just return something reasonable
return Point3(0, base.direct.dr.near, 0)
def getScreenXY(nodePath):
# Where does the node path's projection fall on the near plane
nearVec = getNearProjectionPoint(nodePath)
# Clamp these coordinates to visible screen
nearX = CLAMP(nearVec[0], base.direct.dr.left, base.direct.dr.right)
nearY = CLAMP(nearVec[2], base.direct.dr.bottom, base.direct.dr.top)
# What percentage of the distance across the screen is this?
percentX = (nearX - base.direct.dr.left)/base.direct.dr.nearWidth
percentY = (nearY - base.direct.dr.bottom)/base.direct.dr.nearHeight
# Map this percentage to the same -1 to 1 space as the mouse
screenXY = Vec3((2 * percentX) - 1.0, nearVec[1], (2 * percentY) - 1.0)
# Return the resulting value
return screenXY
def getCrankAngle(center):
# Used to compute current angle of mouse (relative to the coa's
# origin) in screen space
x = base.direct.dr.mouseX - center[0]
y = base.direct.dr.mouseY - center[2]
return (180 + rad2Deg(math.atan2(y, x)))
def relHpr(nodePath, base, h, p, r):
# Compute nodePath2newNodePath relative to base coordinate system
# nodePath2base
mNodePath2Base = nodePath.getMat(base)
# delta scale, orientation, and position matrix
mBase2NewBase = Mat4(Mat4.identMat()) # [gjeon] fixed to give required argument
composeMatrix(mBase2NewBase, UNIT_VEC, VBase3(h, p, r), ZERO_VEC,
CSDefault)
# base2nodePath
mBase2NodePath = base.getMat(nodePath)
# nodePath2 Parent
mNodePath2Parent = nodePath.getMat()
# Compose the result
resultMat = mNodePath2Base * mBase2NewBase
resultMat = resultMat * mBase2NodePath
resultMat = resultMat * mNodePath2Parent
# Extract and apply the hpr
hpr = Vec3(0)
decomposeMatrix(resultMat, VBase3(), hpr, VBase3(),
CSDefault)
nodePath.setHpr(hpr)
# Quaternion interpolation
def qSlerp(startQuat, endQuat, t):
startQ = Quat(startQuat)
destQuat = Quat(Quat.identQuat())
# Calc dot product
cosOmega = (startQ.getI() * endQuat.getI() +
startQ.getJ() * endQuat.getJ() +
startQ.getK() * endQuat.getK() +
startQ.getR() * endQuat.getR())
# If the above dot product is negative, it would be better to
# go between the negative of the initial and the final, so that
# we take the shorter path.
if cosOmega < 0.0:
cosOmega *= -1
startQ.setI(-1 * startQ.getI())
startQ.setJ(-1 * startQ.getJ())
startQ.setK(-1 * startQ.getK())
startQ.setR(-1 * startQ.getR())
if ((1.0 + cosOmega) > Q_EPSILON):
# usual case
if ((1.0 - cosOmega) > Q_EPSILON):
# usual case
omega = math.acos(cosOmega)
sinOmega = math.sin(omega)
startScale = math.sin((1.0 - t) * omega)/sinOmega
endScale = math.sin(t * omega)/sinOmega
else:
# ends very close
startScale = 1.0 - t
endScale = t
destQuat.setI(startScale * startQ.getI() +
endScale * endQuat.getI())
destQuat.setJ(startScale * startQ.getJ() +
endScale * endQuat.getJ())
destQuat.setK(startScale * startQ.getK() +
endScale * endQuat.getK())
destQuat.setR(startScale * startQ.getR() +
endScale * endQuat.getR())
else:
# ends nearly opposite
destQuat.setI(-startQ.getJ())
destQuat.setJ(startQ.getI())
destQuat.setK(-startQ.getR())
destQuat.setR(startQ.getK())
startScale = math.sin((0.5 - t) * math.pi)
endScale = math.sin(t * math.pi)
destQuat.setI(startScale * startQ.getI() +
endScale * endQuat.getI())
destQuat.setJ(startScale * startQ.getJ() +
endScale * endQuat.getJ())
destQuat.setK(startScale * startQ.getK() +
endScale * endQuat.getK())
return destQuat