historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/roms/skiboot/hw/vas.c
2024-01-16 11:20:27 -06:00

498 lines
13 KiB
C

/* Copyright 2013-2016 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <skiboot.h>
#include <chip.h>
#include <phys-map.h>
#include <xscom.h>
#include <io.h>
#include <vas.h>
#define vas_err(__fmt,...) prlog(PR_ERR,"VAS: " __fmt, ##__VA_ARGS__)
#ifdef VAS_VERBOSE_DEBUG
#define vas_vdbg(__x,__fmt,...) prlog(PR_DEBUG,"VAS: " __fmt, ##__VA_ARGS__)
#else
#define vas_vdbg(__x,__fmt,...) do { } while (0)
#endif
static int vas_initialized;
struct vas {
uint32_t chip_id;
uint32_t vas_id;
uint64_t xscom_base;
uint64_t wcbs;
uint32_t vas_irq;
};
static inline void get_hvwc_mmio_bar(int chipid, uint64_t *start, uint64_t *len)
{
phys_map_get(chipid, VAS_HYP_WIN, 0, start, len);
}
static inline void get_uwc_mmio_bar(int chipid, uint64_t *start, uint64_t *len)
{
phys_map_get(chipid, VAS_USER_WIN, 0, start, len);
}
static inline uint64_t compute_vas_scom_addr(struct vas *vas, uint64_t reg)
{
return vas->xscom_base + reg;
}
static int vas_scom_write(struct proc_chip *chip, uint64_t reg, uint64_t val)
{
int rc;
uint64_t addr;
addr = compute_vas_scom_addr(chip->vas, reg);
rc = xscom_write(chip->id, addr, val);
if (rc != OPAL_SUCCESS) {
vas_err("Error writing 0x%llx to 0x%llx, rc %d\n", val, addr,
rc);
}
return rc;
}
/*
* Return true if NX crypto/compression is enabled on this processor.
*
* On POWER8, NX-842 crypto and compression are allowed, but they do not
* use VAS (return true).
*
* On POWER9, NX 842 and GZIP compressions use VAS but the PASTE instruction
* and hence VAS is not enabled in following revisions:
*
* - Nimbus DD1.X, DD2.01, DD2.1
* - Cumulus DD1.0
*
* Return false for these revisions. Return true otherwise.
*/
__attrconst inline bool vas_nx_enabled(void)
{
uint32_t pvr;
int major, minor;
struct proc_chip *chip;
chip = next_chip(NULL);
pvr = mfspr(SPR_PVR);
major = PVR_VERS_MAJ(pvr);
minor = PVR_VERS_MIN(pvr);
switch (chip->type) {
case PROC_CHIP_P9_NIMBUS:
return (major > 2 || (major == 2 && minor > 1));
case PROC_CHIP_P9_CUMULUS:
return (major > 1 || minor > 0);
default:
return true;
}
}
/* Interface for NX - make sure VAS is fully initialized first */
__attrconst inline uint64_t vas_get_hvwc_mmio_bar(const int chipid)
{
uint64_t addr;
if (!vas_initialized)
return 0ULL;
get_hvwc_mmio_bar(chipid, &addr, NULL);
return addr;
}
/* Interface for NX - make sure VAS is fully initialized first */
__attrconst uint64_t vas_get_wcbs_bar(int chipid)
{
struct proc_chip *chip;
if (!vas_initialized)
return 0ULL;
chip = get_chip(chipid);
if (!chip)
return 0ULL;
return chip->vas->wcbs;
}
static int init_north_ctl(struct proc_chip *chip)
{
uint64_t val = 0ULL;
val = SETFIELD(VAS_64K_MODE_MASK, val, true);
val = SETFIELD(VAS_ACCEPT_PASTE_MASK, val, true);
val = SETFIELD(VAS_ENABLE_WC_MMIO_BAR, val, true);
val = SETFIELD(VAS_ENABLE_UWC_MMIO_BAR, val, true);
val = SETFIELD(VAS_ENABLE_RMA_MMIO_BAR, val, true);
return vas_scom_write(chip, VAS_MISC_N_CTL, val);
}
/*
* Ensure paste instructions are not accepted and MMIO BARs are disabled.
*/
static inline int reset_north_ctl(struct proc_chip *chip)
{
return vas_scom_write(chip, VAS_MISC_N_CTL, 0ULL);
}
static void reset_fir(struct proc_chip *chip)
{
vas_scom_write(chip, VAS_FIR0, 0x0000000000000000ULL);
/* From VAS workbook */
vas_scom_write(chip, VAS_FIR_MASK, 0x000001000001ffffULL);
vas_scom_write(chip, VAS_FIR_ACTION0, 0xf800fdfc0001ffffull);
vas_scom_write(chip, VAS_FIR_ACTION1, 0xf8fffefffffc8000ull);
}
#define RMA_LSMP_64K_SYS_ID PPC_BITMASK(8, 12)
#define RMA_LSMP_64K_NODE_ID PPC_BITMASK(15, 18)
#define RMA_LSMP_64K_CHIP_ID PPC_BITMASK(19, 21)
#define RMA_LSMP_WINID_START_BIT 32
#define RMA_LSMP_WINID_NUM_BITS 16
/*
* Initialize RMA BAR on this chip to correspond to its node/chip id.
* This will cause VAS to accept paste commands to targeted for this chip.
* Initialize RMA Base Address Mask Register (BAMR) to its default value.
*/
static int init_rma(struct proc_chip *chip)
{
int rc;
uint64_t val;
val = 0ULL;
val = SETFIELD(RMA_LSMP_64K_SYS_ID, val, 1);
val = SETFIELD(RMA_LSMP_64K_NODE_ID, val, P9_GCID2NODEID(chip->id));
val = SETFIELD(RMA_LSMP_64K_CHIP_ID, val, P9_GCID2CHIPID(chip->id));
rc = vas_scom_write(chip, VAS_RMA_BAR, val);
if (rc)
return rc;
val = SETFIELD(VAS_RMA_BAMR_ADDR_MASK, 0ULL, 0xFFFC0000000ULL);
return vas_scom_write(chip, VAS_RMA_BAMR, val);
}
/*
* get_paste_bar():
*
* Compute and return the "paste base address region" for @chipid. This
* BAR contains the "paste" addreses for all windows on the chip. Linux
* uses this paste BAR to compute the hardware paste address of a (send)
* window using:
*
* paste_addr = base + (winid << shift)
*
* where winid is the window index and shift is computed as:
*
* start = RMA_LSMP_WINID_START_BIT;
* nbits = RMA_LSMP_WINID_NUM_BITS;
* shift = 63 - (start + nbits - 1);
*
* See also get_paste_bitfield() below, which is used to export the 'start'
* and 'nbits' to Linux through the DT.
*
* Each chip supports VAS_WINDOWS_PER_CHIP (64K on Power9) windows. To
* provide proper isolation, the paste address for each window is on a
* separate page. Thus with a page size of 64K, the length of the paste
* BAR for a chip is VAS_WINDOWS_PER_CHIP times 64K (or 4GB for Power9).
*
* The start/base of the paste BAR is computed using the tables 1.1 through
* 1.4 in Section 1.3.3.1 (Send Message w/Paste Commands (cl_rma_w)) of VAS
* P9 Workbook.
*
* With 64K mode and Large SMP Mode the bits are used as follows:
*
* Bits Values Comments
* --------------------------------------
* 0:7 0b 0000_0000 Reserved
* 8:12 0b 0000_1 System id/Foreign Index 0:4
* 13:14 0b 00 Foreign Index 5:6
*
* 15:18 0 throuh 15 Node id (0 through 15)
* 19:21 0 through 7 Chip id (0 throuh 7)
* 22:23 0b 00 Unused, Foreign index 7:8
*
* 24:31 0b 0000_0000 RPN 0:7, Reserved
* 32:47 0 through 64K Send Window Id
* 48:51 0b 0000 Spare
*
* 52 0b 0 Reserved
* 53 0b 1 Report Enable (Set to 1 for NX).
* 54 0b 0 Reserved
*
* 55:56 0b 00 Snoop Bus
* 57:63 0b 0000_000 Reserved
*
* Except for a few bits, the small SMP mode computation is similar.
*
* TODO: Detect and compute address for small SMP mode.
*
* Example: For Node 0, Chip 0, Window id 4, Report Enable 1:
*
* Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7
* 00000000 00001000 00000000 00000000 00000000 00000100 00000100 00000000
* | || | | | |
* +-+-++++ +-------+-------+ v
* | | | Report Enable
* v v v
* Node Chip Window id 4
*
* Thus the paste address for window id 4 is 0x00080000_00040400 and
* the _base_ paste address for Node 0 Chip 0 is 0x00080000_00000000.
*/
#define VAS_PASTE_BAR_LEN (1ULL << 32) /* 4GB - see above */
static inline void get_paste_bar(int chipid, uint64_t *start, uint64_t *len)
{
uint64_t val;
val = 0ULL;
val = SETFIELD(RMA_LSMP_64K_SYS_ID, val, 1);
val = SETFIELD(RMA_LSMP_64K_NODE_ID, val, P9_GCID2NODEID(chipid));
val = SETFIELD(RMA_LSMP_64K_CHIP_ID, val, P9_GCID2CHIPID(chipid));
*start = val;
*len = VAS_PASTE_BAR_LEN;
}
/*
* get_paste_bitfield():
*
* As explained in the function header for get_paste_bar(), the window
* id is encoded in bits 32:47 of the paste address. Export this bitfield
* to Linux via the device tree as a reg property (with start bit and
* number of bits).
*/
static inline void get_paste_bitfield(uint64_t *start, uint64_t *n_bits)
{
*start = (uint64_t)RMA_LSMP_WINID_START_BIT;
*n_bits = (uint64_t)RMA_LSMP_WINID_NUM_BITS;
}
/*
* Window Context MMIO (WCM) Region for each chip is assigned in the P9
* MMIO MAP spreadsheet. Write this value to the SCOM address associated
* with WCM_BAR.
*/
static int init_wcm(struct proc_chip *chip)
{
uint64_t wcmbar;
get_hvwc_mmio_bar(chip->id, &wcmbar, NULL);
/*
* Write the entire WCMBAR address to the SCOM address. VAS will
* extract bits that it thinks are relevant i.e bits 8..38
*/
return vas_scom_write(chip, VAS_WCM_BAR, wcmbar);
}
/*
* OS/User Window Context MMIO (UWCM) Region for each is assigned in the
* P9 MMIO MAP spreadsheet. Write this value to the SCOM address associated
* with UWCM_BAR.
*/
static int init_uwcm(struct proc_chip *chip)
{
uint64_t uwcmbar;
get_uwc_mmio_bar(chip->id, &uwcmbar, NULL);
/*
* Write the entire UWCMBAR address to the SCOM address. VAS will
* extract bits that it thinks are relevant i.e bits 8..35.
*/
return vas_scom_write(chip, VAS_UWCM_BAR, uwcmbar);
}
static inline void free_wcbs(struct proc_chip *chip)
{
if (chip->vas->wcbs) {
free((void *)chip->vas->wcbs);
chip->vas->wcbs = 0ULL;
}
}
/*
* VAS needs a backing store for the 64K window contexts on a chip.
* (64K times 512 = 8MB). This region needs to be contiguous, so
* allocate during early boot. Then write the allocated address to
* the SCOM address for the Backing store BAR.
*/
static int alloc_init_wcbs(struct proc_chip *chip)
{
int rc;
uint64_t wcbs;
size_t size;
/* align to the backing store size */
size = (size_t)VAS_WCBS_SIZE;
wcbs = (uint64_t)local_alloc(chip->id, size, size);
if (!wcbs) {
vas_err("Unable to allocate memory for backing store\n");
return -ENOMEM;
}
memset((void *)wcbs, 0ULL, size);
/*
* Write entire WCBS_BAR address to the SCOM address. VAS will extract
* relevant bits.
*/
rc = vas_scom_write(chip, VAS_WCBS_BAR, wcbs);
if (rc != OPAL_SUCCESS)
goto out;
chip->vas->wcbs = wcbs;
return OPAL_SUCCESS;
out:
free((void *)wcbs);
return rc;
}
static struct vas *alloc_vas(uint32_t chip_id, uint32_t vas_id, uint64_t base)
{
struct vas *vas;
vas = zalloc(sizeof(struct vas));
assert(vas);
vas->chip_id = chip_id;
vas->vas_id = vas_id;
vas->xscom_base = base;
return vas;
}
static void create_mm_dt_node(struct proc_chip *chip)
{
int gcid;
struct dt_node *dn;
struct vas *vas;
uint64_t hvwc_start, hvwc_len;
uint64_t uwc_start, uwc_len;
uint64_t pbar_start, pbar_len;
uint64_t pbf_start, pbf_nbits;
vas = chip->vas;
gcid = chip->id;
get_hvwc_mmio_bar(chip->id, &hvwc_start, &hvwc_len);
get_uwc_mmio_bar(chip->id, &uwc_start, &uwc_len);
get_paste_bar(chip->id, &pbar_start, &pbar_len);
get_paste_bitfield(&pbf_start, &pbf_nbits);
dn = dt_new_addr(dt_root, "vas", hvwc_start);
dt_add_property_strings(dn, "compatible", "ibm,power9-vas",
"ibm,vas");
dt_add_property_u64s(dn, "reg", hvwc_start, hvwc_len,
uwc_start, uwc_len,
pbar_start, pbar_len,
pbf_start, pbf_nbits);
dt_add_property(dn, "ibm,vas-id", &vas->vas_id, sizeof(vas->vas_id));
dt_add_property(dn, "ibm,chip-id", &gcid, sizeof(gcid));
}
/*
* Disable one VAS instance.
*
* Free memory and ensure chip does not accept paste instructions.
*/
static void disable_vas_inst(struct dt_node *np)
{
struct proc_chip *chip;
chip = get_chip(dt_get_chip_id(np));
if (!chip->vas)
return;
free_wcbs(chip);
reset_north_ctl(chip);
}
/*
* Initialize one VAS instance and enable it if @enable is true.
*/
static int init_vas_inst(struct dt_node *np, bool enable)
{
uint32_t vas_id;
uint64_t xscom_base;
struct proc_chip *chip;
chip = get_chip(dt_get_chip_id(np));
vas_id = dt_prop_get_u32(np, "ibm,vas-id");
xscom_base = dt_get_address(np, 0, NULL);
chip->vas = alloc_vas(chip->id, vas_id, xscom_base);
if (!enable) {
reset_north_ctl(chip);
return 0;
}
if (alloc_init_wcbs(chip))
return -1;
reset_fir(chip);
if (init_wcm(chip) || init_uwcm(chip) || init_north_ctl(chip) ||
init_rma(chip))
return -1;
create_mm_dt_node(chip);
prlog(PR_INFO, "VAS: Initialized chip %d\n", chip->id);
return 0;
}
void vas_init()
{
bool enabled;
struct dt_node *np;
if (proc_gen != proc_gen_p9)
return;
enabled = vas_nx_enabled();
dt_for_each_compatible(dt_root, np, "ibm,power9-vas-x") {
if (init_vas_inst(np, enabled))
goto out;
}
vas_initialized = enabled;
return;
out:
dt_for_each_compatible(dt_root, np, "ibm,power9-vas-x")
disable_vas_inst(np);
vas_err("Disabled (failed initialization)\n");
return;
}