historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/roms/u-boot/board/vscom/baltos/board.c
2024-01-16 11:20:27 -06:00

488 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* board.c
*
* Board functions for TI AM335X based boards
*
* Copyright (C) 2011, Texas Instruments, Incorporated - http://www.ti.com/
*/
#include <common.h>
#include <errno.h>
#include <linux/libfdt.h>
#include <spl.h>
#include <asm/arch/cpu.h>
#include <asm/arch/hardware.h>
#include <asm/arch/omap.h>
#include <asm/arch/ddr_defs.h>
#include <asm/arch/clock.h>
#include <asm/arch/gpio.h>
#include <asm/arch/mmc_host_def.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/mem.h>
#include <asm/arch/mux.h>
#include <asm/io.h>
#include <asm/emif.h>
#include <asm/gpio.h>
#include <i2c.h>
#include <miiphy.h>
#include <cpsw.h>
#include <power/tps65910.h>
#include <environment.h>
#include <watchdog.h>
#include "board.h"
DECLARE_GLOBAL_DATA_PTR;
/* GPIO that controls DIP switch and mPCIe slot */
#define DIP_S1 44
#define MPCIE_SW 100
static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE;
static int baltos_set_console(void)
{
int val, i, dips = 0;
char buf[7];
for (i = 0; i < 4; i++) {
sprintf(buf, "dip_s%d", i + 1);
if (gpio_request(DIP_S1 + i, buf)) {
printf("failed to export GPIO %d\n", DIP_S1 + i);
return 0;
}
if (gpio_direction_input(DIP_S1 + i)) {
printf("failed to set GPIO %d direction\n", DIP_S1 + i);
return 0;
}
val = gpio_get_value(DIP_S1 + i);
dips |= val << i;
}
printf("DIPs: 0x%1x\n", (~dips) & 0xf);
if ((dips & 0xf) == 0xe)
env_set("console", "ttyUSB0,115200n8");
return 0;
}
static int read_eeprom(BSP_VS_HWPARAM *header)
{
i2c_set_bus_num(1);
/* Check if baseboard eeprom is available */
if (i2c_probe(CONFIG_SYS_I2C_EEPROM_ADDR)) {
puts("Could not probe the EEPROM; something fundamentally "
"wrong on the I2C bus.\n");
return -ENODEV;
}
/* read the eeprom using i2c */
if (i2c_read(CONFIG_SYS_I2C_EEPROM_ADDR, 0, 1, (uchar *)header,
sizeof(BSP_VS_HWPARAM))) {
puts("Could not read the EEPROM; something fundamentally"
" wrong on the I2C bus.\n");
return -EIO;
}
if (header->Magic != 0xDEADBEEF) {
printf("Incorrect magic number (0x%x) in EEPROM\n",
header->Magic);
/* fill default values */
header->SystemId = 211;
header->MAC1[0] = 0x00;
header->MAC1[1] = 0x00;
header->MAC1[2] = 0x00;
header->MAC1[3] = 0x00;
header->MAC1[4] = 0x00;
header->MAC1[5] = 0x01;
header->MAC2[0] = 0x00;
header->MAC2[1] = 0x00;
header->MAC2[2] = 0x00;
header->MAC2[3] = 0x00;
header->MAC2[4] = 0x00;
header->MAC2[5] = 0x02;
header->MAC3[0] = 0x00;
header->MAC3[1] = 0x00;
header->MAC3[2] = 0x00;
header->MAC3[3] = 0x00;
header->MAC3[4] = 0x00;
header->MAC3[5] = 0x03;
}
return 0;
}
#if defined(CONFIG_SPL_BUILD) || defined(CONFIG_NOR_BOOT)
static const struct ddr_data ddr3_baltos_data = {
.datardsratio0 = MT41K256M16HA125E_RD_DQS,
.datawdsratio0 = MT41K256M16HA125E_WR_DQS,
.datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE,
.datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA,
};
static const struct cmd_control ddr3_baltos_cmd_ctrl_data = {
.cmd0csratio = MT41K256M16HA125E_RATIO,
.cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
.cmd1csratio = MT41K256M16HA125E_RATIO,
.cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
.cmd2csratio = MT41K256M16HA125E_RATIO,
.cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
};
static struct emif_regs ddr3_baltos_emif_reg_data = {
.sdram_config = MT41K256M16HA125E_EMIF_SDCFG,
.ref_ctrl = MT41K256M16HA125E_EMIF_SDREF,
.sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1,
.sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2,
.sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3,
.zq_config = MT41K256M16HA125E_ZQ_CFG,
.emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY,
};
#ifdef CONFIG_SPL_OS_BOOT
int spl_start_uboot(void)
{
/* break into full u-boot on 'c' */
return (serial_tstc() && serial_getc() == 'c');
}
#endif
#define OSC (V_OSCK/1000000)
const struct dpll_params dpll_ddr = {
266, OSC-1, 1, -1, -1, -1, -1};
const struct dpll_params dpll_ddr_evm_sk = {
303, OSC-1, 1, -1, -1, -1, -1};
const struct dpll_params dpll_ddr_baltos = {
400, OSC-1, 1, -1, -1, -1, -1};
void am33xx_spl_board_init(void)
{
int mpu_vdd;
int sil_rev;
/* Get the frequency */
dpll_mpu_opp100.m = am335x_get_efuse_mpu_max_freq(cdev);
/*
* The GP EVM, IDK and EVM SK use a TPS65910 PMIC. For all
* MPU frequencies we support we use a CORE voltage of
* 1.1375V. For MPU voltage we need to switch based on
* the frequency we are running at.
*/
i2c_set_bus_num(1);
printf("I2C speed: %d Hz\n", CONFIG_SYS_OMAP24_I2C_SPEED);
if (i2c_probe(TPS65910_CTRL_I2C_ADDR)) {
puts("i2c: cannot access TPS65910\n");
return;
}
/*
* Depending on MPU clock and PG we will need a different
* VDD to drive at that speed.
*/
sil_rev = readl(&cdev->deviceid) >> 28;
mpu_vdd = am335x_get_tps65910_mpu_vdd(sil_rev,
dpll_mpu_opp100.m);
/* Tell the TPS65910 to use i2c */
tps65910_set_i2c_control();
/* First update MPU voltage. */
if (tps65910_voltage_update(MPU, mpu_vdd))
return;
/* Second, update the CORE voltage. */
if (tps65910_voltage_update(CORE, TPS65910_OP_REG_SEL_1_1_3))
return;
/* Set CORE Frequencies to OPP100 */
do_setup_dpll(&dpll_core_regs, &dpll_core_opp100);
/* Set MPU Frequency to what we detected now that voltages are set */
do_setup_dpll(&dpll_mpu_regs, &dpll_mpu_opp100);
writel(0x000010ff, PRM_DEVICE_INST + 4);
}
const struct dpll_params *get_dpll_ddr_params(void)
{
enable_i2c1_pin_mux();
i2c_set_bus_num(1);
return &dpll_ddr_baltos;
}
void set_uart_mux_conf(void)
{
enable_uart0_pin_mux();
}
void set_mux_conf_regs(void)
{
enable_board_pin_mux();
}
const struct ctrl_ioregs ioregs_baltos = {
.cm0ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.cm1ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.cm2ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.dt0ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.dt1ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
};
void sdram_init(void)
{
config_ddr(400, &ioregs_baltos,
&ddr3_baltos_data,
&ddr3_baltos_cmd_ctrl_data,
&ddr3_baltos_emif_reg_data, 0);
}
#endif
/*
* Basic board specific setup. Pinmux has been handled already.
*/
int board_init(void)
{
#if defined(CONFIG_HW_WATCHDOG)
hw_watchdog_init();
#endif
gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100;
#if defined(CONFIG_NOR) || defined(CONFIG_NAND)
gpmc_init();
#endif
return 0;
}
int ft_board_setup(void *blob, bd_t *bd)
{
int node, ret;
unsigned char mac_addr[6];
BSP_VS_HWPARAM header;
/* get production data */
if (read_eeprom(&header))
return 0;
/* setup MAC1 */
mac_addr[0] = header.MAC1[0];
mac_addr[1] = header.MAC1[1];
mac_addr[2] = header.MAC1[2];
mac_addr[3] = header.MAC1[3];
mac_addr[4] = header.MAC1[4];
mac_addr[5] = header.MAC1[5];
node = fdt_path_offset(blob, "/ocp/ethernet/slave@4a100200");
if (node < 0) {
printf("no /soc/fman/ethernet path offset\n");
return -ENODEV;
}
ret = fdt_setprop(blob, node, "mac-address", &mac_addr, 6);
if (ret) {
printf("error setting local-mac-address property\n");
return -ENODEV;
}
/* setup MAC2 */
mac_addr[0] = header.MAC2[0];
mac_addr[1] = header.MAC2[1];
mac_addr[2] = header.MAC2[2];
mac_addr[3] = header.MAC2[3];
mac_addr[4] = header.MAC2[4];
mac_addr[5] = header.MAC2[5];
node = fdt_path_offset(blob, "/ocp/ethernet/slave@4a100300");
if (node < 0) {
printf("no /soc/fman/ethernet path offset\n");
return -ENODEV;
}
ret = fdt_setprop(blob, node, "mac-address", &mac_addr, 6);
if (ret) {
printf("error setting local-mac-address property\n");
return -ENODEV;
}
printf("\nFDT was successfully setup\n");
return 0;
}
static struct module_pin_mux pcie_sw_pin_mux[] = {
{OFFSET(mii1_rxdv), (MODE(7) | PULLUDEN )}, /* GPIO3_4 */
{-1},
};
static struct module_pin_mux dip_pin_mux[] = {
{OFFSET(gpmc_ad12), (MODE(7) | RXACTIVE )}, /* GPIO1_12 */
{OFFSET(gpmc_ad13), (MODE(7) | RXACTIVE )}, /* GPIO1_13 */
{OFFSET(gpmc_ad14), (MODE(7) | RXACTIVE )}, /* GPIO1_14 */
{OFFSET(gpmc_ad15), (MODE(7) | RXACTIVE )}, /* GPIO1_15 */
{-1},
};
#ifdef CONFIG_BOARD_LATE_INIT
int board_late_init(void)
{
#ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
BSP_VS_HWPARAM header;
char model[4];
/* get production data */
if (read_eeprom(&header)) {
strcpy(model, "211");
} else {
sprintf(model, "%d", header.SystemId);
if (header.SystemId == 215) {
configure_module_pin_mux(dip_pin_mux);
baltos_set_console();
}
}
/* turn power for the mPCIe slot */
configure_module_pin_mux(pcie_sw_pin_mux);
if (gpio_request(MPCIE_SW, "mpcie_sw")) {
printf("failed to export GPIO %d\n", MPCIE_SW);
return -ENODEV;
}
if (gpio_direction_output(MPCIE_SW, 1)) {
printf("failed to set GPIO %d direction\n", MPCIE_SW);
return -ENODEV;
}
env_set("board_name", model);
#endif
return 0;
}
#endif
#if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
static void cpsw_control(int enabled)
{
/* VTP can be added here */
return;
}
static struct cpsw_slave_data cpsw_slaves[] = {
{
.slave_reg_ofs = 0x208,
.sliver_reg_ofs = 0xd80,
.phy_addr = 0,
},
{
.slave_reg_ofs = 0x308,
.sliver_reg_ofs = 0xdc0,
.phy_addr = 7,
},
};
static struct cpsw_platform_data cpsw_data = {
.mdio_base = CPSW_MDIO_BASE,
.cpsw_base = CPSW_BASE,
.mdio_div = 0xff,
.channels = 8,
.cpdma_reg_ofs = 0x800,
.slaves = 2,
.slave_data = cpsw_slaves,
.active_slave = 1,
.ale_reg_ofs = 0xd00,
.ale_entries = 1024,
.host_port_reg_ofs = 0x108,
.hw_stats_reg_ofs = 0x900,
.bd_ram_ofs = 0x2000,
.mac_control = (1 << 5),
.control = cpsw_control,
.host_port_num = 0,
.version = CPSW_CTRL_VERSION_2,
};
#endif
#if ((defined(CONFIG_SPL_ETH_SUPPORT) || defined(CONFIG_SPL_USB_ETHER)) \
&& defined(CONFIG_SPL_BUILD)) || \
((defined(CONFIG_DRIVER_TI_CPSW) || \
defined(CONFIG_USB_ETHER) && defined(CONFIG_USB_MUSB_GADGET)) && \
!defined(CONFIG_SPL_BUILD))
int board_eth_init(bd_t *bis)
{
int rv, n = 0;
uint8_t mac_addr[6];
uint32_t mac_hi, mac_lo;
/*
* Note here that we're using CPSW1 since that has a 1Gbit PHY while
* CSPW0 has a 100Mbit PHY.
*
* On product, CPSW1 maps to port labeled WAN.
*/
/* try reading mac address from efuse */
mac_lo = readl(&cdev->macid1l);
mac_hi = readl(&cdev->macid1h);
mac_addr[0] = mac_hi & 0xFF;
mac_addr[1] = (mac_hi & 0xFF00) >> 8;
mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
mac_addr[4] = mac_lo & 0xFF;
mac_addr[5] = (mac_lo & 0xFF00) >> 8;
#if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
if (!env_get("ethaddr")) {
printf("<ethaddr> not set. Validating first E-fuse MAC\n");
if (is_valid_ethaddr(mac_addr))
eth_env_set_enetaddr("ethaddr", mac_addr);
}
#ifdef CONFIG_DRIVER_TI_CPSW
writel((GMII1_SEL_RMII | GMII2_SEL_RGMII | RGMII2_IDMODE), &cdev->miisel);
cpsw_slaves[1].phy_if = PHY_INTERFACE_MODE_RGMII;
rv = cpsw_register(&cpsw_data);
if (rv < 0)
printf("Error %d registering CPSW switch\n", rv);
else
n += rv;
#endif
/*
*
* CPSW RGMII Internal Delay Mode is not supported in all PVT
* operating points. So we must set the TX clock delay feature
* in the AR8051 PHY. Since we only support a single ethernet
* device in U-Boot, we only do this for the first instance.
*/
#define AR8051_PHY_DEBUG_ADDR_REG 0x1d
#define AR8051_PHY_DEBUG_DATA_REG 0x1e
#define AR8051_DEBUG_RGMII_CLK_DLY_REG 0x5
#define AR8051_RGMII_TX_CLK_DLY 0x100
const char *devname;
devname = miiphy_get_current_dev();
miiphy_write(devname, 0x7, AR8051_PHY_DEBUG_ADDR_REG,
AR8051_DEBUG_RGMII_CLK_DLY_REG);
miiphy_write(devname, 0x7, AR8051_PHY_DEBUG_DATA_REG,
AR8051_RGMII_TX_CLK_DLY);
#endif
return n;
}
#endif