historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/roms/u-boot/drivers/misc/cros_ec.c
2024-01-16 11:20:27 -06:00

1489 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Chromium OS cros_ec driver
*
* Copyright (c) 2012 The Chromium OS Authors.
*/
/*
* This is the interface to the Chrome OS EC. It provides keyboard functions,
* power control and battery management. Quite a few other functions are
* provided to enable the EC software to be updated, talk to the EC's I2C bus
* and store a small amount of data in a memory which persists while the EC
* is not reset.
*/
#define LOG_CATEGORY UCLASS_CROS_EC
#include <common.h>
#include <command.h>
#include <dm.h>
#include <i2c.h>
#include <cros_ec.h>
#include <fdtdec.h>
#include <malloc.h>
#include <spi.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <asm-generic/gpio.h>
#include <dm/device-internal.h>
#include <dm/of_extra.h>
#include <dm/uclass-internal.h>
#ifdef DEBUG_TRACE
#define debug_trace(fmt, b...) debug(fmt, #b)
#else
#define debug_trace(fmt, b...)
#endif
enum {
/* Timeout waiting for a flash erase command to complete */
CROS_EC_CMD_TIMEOUT_MS = 5000,
/* Timeout waiting for a synchronous hash to be recomputed */
CROS_EC_CMD_HASH_TIMEOUT_MS = 2000,
};
#define INVALID_HCMD 0xFF
/*
* Map UHEPI masks to non UHEPI commands in order to support old EC FW
* which does not support UHEPI command.
*/
static const struct {
u8 set_cmd;
u8 clear_cmd;
u8 get_cmd;
} event_map[] = {
[EC_HOST_EVENT_MAIN] = {
INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR,
INVALID_HCMD,
},
[EC_HOST_EVENT_B] = {
INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR_B,
EC_CMD_HOST_EVENT_GET_B,
},
[EC_HOST_EVENT_SCI_MASK] = {
EC_CMD_HOST_EVENT_SET_SCI_MASK, INVALID_HCMD,
EC_CMD_HOST_EVENT_GET_SCI_MASK,
},
[EC_HOST_EVENT_SMI_MASK] = {
EC_CMD_HOST_EVENT_SET_SMI_MASK, INVALID_HCMD,
EC_CMD_HOST_EVENT_GET_SMI_MASK,
},
[EC_HOST_EVENT_ALWAYS_REPORT_MASK] = {
INVALID_HCMD, INVALID_HCMD, INVALID_HCMD,
},
[EC_HOST_EVENT_ACTIVE_WAKE_MASK] = {
EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
EC_CMD_HOST_EVENT_GET_WAKE_MASK,
},
[EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX] = {
EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
EC_CMD_HOST_EVENT_GET_WAKE_MASK,
},
[EC_HOST_EVENT_LAZY_WAKE_MASK_S3] = {
EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
EC_CMD_HOST_EVENT_GET_WAKE_MASK,
},
[EC_HOST_EVENT_LAZY_WAKE_MASK_S5] = {
EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
EC_CMD_HOST_EVENT_GET_WAKE_MASK,
},
};
void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len)
{
#ifdef DEBUG
int i;
printf("%s: ", name);
if (cmd != -1)
printf("cmd=%#x: ", cmd);
for (i = 0; i < len; i++)
printf("%02x ", data[i]);
printf("\n");
#endif
}
/*
* Calculate a simple 8-bit checksum of a data block
*
* @param data Data block to checksum
* @param size Size of data block in bytes
* @return checksum value (0 to 255)
*/
int cros_ec_calc_checksum(const uint8_t *data, int size)
{
int csum, i;
for (i = csum = 0; i < size; i++)
csum += data[i];
return csum & 0xff;
}
/**
* Create a request packet for protocol version 3.
*
* The packet is stored in the device's internal output buffer.
*
* @param dev CROS-EC device
* @param cmd Command to send (EC_CMD_...)
* @param cmd_version Version of command to send (EC_VER_...)
* @param dout Output data (may be NULL If dout_len=0)
* @param dout_len Size of output data in bytes
* @return packet size in bytes, or <0 if error.
*/
static int create_proto3_request(struct cros_ec_dev *cdev,
int cmd, int cmd_version,
const void *dout, int dout_len)
{
struct ec_host_request *rq = (struct ec_host_request *)cdev->dout;
int out_bytes = dout_len + sizeof(*rq);
/* Fail if output size is too big */
if (out_bytes > (int)sizeof(cdev->dout)) {
debug("%s: Cannot send %d bytes\n", __func__, dout_len);
return -EC_RES_REQUEST_TRUNCATED;
}
/* Fill in request packet */
rq->struct_version = EC_HOST_REQUEST_VERSION;
rq->checksum = 0;
rq->command = cmd;
rq->command_version = cmd_version;
rq->reserved = 0;
rq->data_len = dout_len;
/* Copy data after header */
memcpy(rq + 1, dout, dout_len);
/* Write checksum field so the entire packet sums to 0 */
rq->checksum = (uint8_t)(-cros_ec_calc_checksum(cdev->dout, out_bytes));
cros_ec_dump_data("out", cmd, cdev->dout, out_bytes);
/* Return size of request packet */
return out_bytes;
}
/**
* Prepare the device to receive a protocol version 3 response.
*
* @param dev CROS-EC device
* @param din_len Maximum size of response in bytes
* @return maximum expected number of bytes in response, or <0 if error.
*/
static int prepare_proto3_response_buffer(struct cros_ec_dev *cdev, int din_len)
{
int in_bytes = din_len + sizeof(struct ec_host_response);
/* Fail if input size is too big */
if (in_bytes > (int)sizeof(cdev->din)) {
debug("%s: Cannot receive %d bytes\n", __func__, din_len);
return -EC_RES_RESPONSE_TOO_BIG;
}
/* Return expected size of response packet */
return in_bytes;
}
/**
* Handle a protocol version 3 response packet.
*
* The packet must already be stored in the device's internal input buffer.
*
* @param dev CROS-EC device
* @param dinp Returns pointer to response data
* @param din_len Maximum size of response in bytes
* @return number of bytes of response data, or <0 if error. Note that error
* codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they
* overlap!)
*/
static int handle_proto3_response(struct cros_ec_dev *dev,
uint8_t **dinp, int din_len)
{
struct ec_host_response *rs = (struct ec_host_response *)dev->din;
int in_bytes;
int csum;
cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs));
/* Check input data */
if (rs->struct_version != EC_HOST_RESPONSE_VERSION) {
debug("%s: EC response version mismatch\n", __func__);
return -EC_RES_INVALID_RESPONSE;
}
if (rs->reserved) {
debug("%s: EC response reserved != 0\n", __func__);
return -EC_RES_INVALID_RESPONSE;
}
if (rs->data_len > din_len) {
debug("%s: EC returned too much data\n", __func__);
return -EC_RES_RESPONSE_TOO_BIG;
}
cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len);
/* Update in_bytes to actual data size */
in_bytes = sizeof(*rs) + rs->data_len;
/* Verify checksum */
csum = cros_ec_calc_checksum(dev->din, in_bytes);
if (csum) {
debug("%s: EC response checksum invalid: 0x%02x\n", __func__,
csum);
return -EC_RES_INVALID_CHECKSUM;
}
/* Return error result, if any */
if (rs->result)
return -(int)rs->result;
/* If we're still here, set response data pointer and return length */
*dinp = (uint8_t *)(rs + 1);
return rs->data_len;
}
static int send_command_proto3(struct cros_ec_dev *cdev,
int cmd, int cmd_version,
const void *dout, int dout_len,
uint8_t **dinp, int din_len)
{
struct dm_cros_ec_ops *ops;
int out_bytes, in_bytes;
int rv;
/* Create request packet */
out_bytes = create_proto3_request(cdev, cmd, cmd_version,
dout, dout_len);
if (out_bytes < 0)
return out_bytes;
/* Prepare response buffer */
in_bytes = prepare_proto3_response_buffer(cdev, din_len);
if (in_bytes < 0)
return in_bytes;
ops = dm_cros_ec_get_ops(cdev->dev);
rv = ops->packet ? ops->packet(cdev->dev, out_bytes, in_bytes) :
-ENOSYS;
if (rv < 0)
return rv;
/* Process the response */
return handle_proto3_response(cdev, dinp, din_len);
}
static int send_command(struct cros_ec_dev *dev, uint cmd, int cmd_version,
const void *dout, int dout_len,
uint8_t **dinp, int din_len)
{
struct dm_cros_ec_ops *ops;
int ret = -1;
/* Handle protocol version 3 support */
if (dev->protocol_version == 3) {
return send_command_proto3(dev, cmd, cmd_version,
dout, dout_len, dinp, din_len);
}
ops = dm_cros_ec_get_ops(dev->dev);
ret = ops->command(dev->dev, cmd, cmd_version,
(const uint8_t *)dout, dout_len, dinp, din_len);
return ret;
}
/**
* Send a command to the CROS-EC device and return the reply.
*
* The device's internal input/output buffers are used.
*
* @param dev CROS-EC device
* @param cmd Command to send (EC_CMD_...)
* @param cmd_version Version of command to send (EC_VER_...)
* @param dout Output data (may be NULL If dout_len=0)
* @param dout_len Size of output data in bytes
* @param dinp Response data (may be NULL If din_len=0).
* If not NULL, it will be updated to point to the data
* and will always be double word aligned (64-bits)
* @param din_len Maximum size of response in bytes
* @return number of bytes in response, or -ve on error
*/
static int ec_command_inptr(struct udevice *dev, uint8_t cmd,
int cmd_version, const void *dout, int dout_len,
uint8_t **dinp, int din_len)
{
struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
uint8_t *din = NULL;
int len;
len = send_command(cdev, cmd, cmd_version, dout, dout_len, &din,
din_len);
/* If the command doesn't complete, wait a while */
if (len == -EC_RES_IN_PROGRESS) {
struct ec_response_get_comms_status *resp = NULL;
ulong start;
/* Wait for command to complete */
start = get_timer(0);
do {
int ret;
mdelay(50); /* Insert some reasonable delay */
ret = send_command(cdev, EC_CMD_GET_COMMS_STATUS, 0,
NULL, 0,
(uint8_t **)&resp, sizeof(*resp));
if (ret < 0)
return ret;
if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) {
debug("%s: Command %#02x timeout\n",
__func__, cmd);
return -EC_RES_TIMEOUT;
}
} while (resp->flags & EC_COMMS_STATUS_PROCESSING);
/* OK it completed, so read the status response */
/* not sure why it was 0 for the last argument */
len = send_command(cdev, EC_CMD_RESEND_RESPONSE, 0, NULL, 0,
&din, din_len);
}
debug("%s: len=%d, din=%p\n", __func__, len, din);
if (dinp) {
/* If we have any data to return, it must be 64bit-aligned */
assert(len <= 0 || !((uintptr_t)din & 7));
*dinp = din;
}
return len;
}
/**
* Send a command to the CROS-EC device and return the reply.
*
* The device's internal input/output buffers are used.
*
* @param dev CROS-EC device
* @param cmd Command to send (EC_CMD_...)
* @param cmd_version Version of command to send (EC_VER_...)
* @param dout Output data (may be NULL If dout_len=0)
* @param dout_len Size of output data in bytes
* @param din Response data (may be NULL If din_len=0).
* It not NULL, it is a place for ec_command() to copy the
* data to.
* @param din_len Maximum size of response in bytes
* @return number of bytes in response, or -ve on error
*/
static int ec_command(struct udevice *dev, uint cmd, int cmd_version,
const void *dout, int dout_len,
void *din, int din_len)
{
uint8_t *in_buffer;
int len;
assert((din_len == 0) || din);
len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len,
&in_buffer, din_len);
if (len > 0) {
/*
* If we were asked to put it somewhere, do so, otherwise just
* disregard the result.
*/
if (din && in_buffer) {
assert(len <= din_len);
memmove(din, in_buffer, len);
}
}
return len;
}
int cros_ec_scan_keyboard(struct udevice *dev, struct mbkp_keyscan *scan)
{
if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan,
sizeof(scan->data)) != sizeof(scan->data))
return -1;
return 0;
}
int cros_ec_read_id(struct udevice *dev, char *id, int maxlen)
{
struct ec_response_get_version *r;
int ret;
ret = ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
(uint8_t **)&r, sizeof(*r));
if (ret != sizeof(*r)) {
log_err("Got rc %d, expected %u\n", ret, (uint)sizeof(*r));
return -1;
}
if (maxlen > (int)sizeof(r->version_string_ro))
maxlen = sizeof(r->version_string_ro);
switch (r->current_image) {
case EC_IMAGE_RO:
memcpy(id, r->version_string_ro, maxlen);
break;
case EC_IMAGE_RW:
memcpy(id, r->version_string_rw, maxlen);
break;
default:
log_err("Invalid EC image %d\n", r->current_image);
return -1;
}
id[maxlen - 1] = '\0';
return 0;
}
int cros_ec_read_version(struct udevice *dev,
struct ec_response_get_version **versionp)
{
if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
(uint8_t **)versionp, sizeof(**versionp))
!= sizeof(**versionp))
return -1;
return 0;
}
int cros_ec_read_build_info(struct udevice *dev, char **strp)
{
if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0,
(uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0)
return -1;
return 0;
}
int cros_ec_read_current_image(struct udevice *dev,
enum ec_current_image *image)
{
struct ec_response_get_version *r;
if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
(uint8_t **)&r, sizeof(*r)) != sizeof(*r))
return -1;
*image = r->current_image;
return 0;
}
static int cros_ec_wait_on_hash_done(struct udevice *dev,
struct ec_response_vboot_hash *hash)
{
struct ec_params_vboot_hash p;
ulong start;
start = get_timer(0);
while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) {
mdelay(50); /* Insert some reasonable delay */
p.cmd = EC_VBOOT_HASH_GET;
if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
hash, sizeof(*hash)) < 0)
return -1;
if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) {
debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__);
return -EC_RES_TIMEOUT;
}
}
return 0;
}
int cros_ec_read_hash(struct udevice *dev, uint hash_offset,
struct ec_response_vboot_hash *hash)
{
struct ec_params_vboot_hash p;
int rv;
p.cmd = EC_VBOOT_HASH_GET;
p.offset = hash_offset;
if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
hash, sizeof(*hash)) < 0)
return -1;
/* If the EC is busy calculating the hash, fidget until it's done. */
rv = cros_ec_wait_on_hash_done(dev, hash);
if (rv)
return rv;
/* If the hash is valid, we're done. Otherwise, we have to kick it off
* again and wait for it to complete. Note that we explicitly assume
* that hashing zero bytes is always wrong, even though that would
* produce a valid hash value. */
if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size)
return 0;
debug("%s: No valid hash (status=%d size=%d). Compute one...\n",
__func__, hash->status, hash->size);
p.cmd = EC_VBOOT_HASH_START;
p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
p.nonce_size = 0;
p.offset = hash_offset;
if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
hash, sizeof(*hash)) < 0)
return -1;
rv = cros_ec_wait_on_hash_done(dev, hash);
if (rv)
return rv;
debug("%s: hash done\n", __func__);
return 0;
}
static int cros_ec_invalidate_hash(struct udevice *dev)
{
struct ec_params_vboot_hash p;
struct ec_response_vboot_hash *hash;
/* We don't have an explict command for the EC to discard its current
* hash value, so we'll just tell it to calculate one that we know is
* wrong (we claim that hashing zero bytes is always invalid).
*/
p.cmd = EC_VBOOT_HASH_RECALC;
p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
p.nonce_size = 0;
p.offset = 0;
p.size = 0;
debug("%s:\n", __func__);
if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
(uint8_t **)&hash, sizeof(*hash)) < 0)
return -1;
/* No need to wait for it to finish */
return 0;
}
int cros_ec_reboot(struct udevice *dev, enum ec_reboot_cmd cmd, uint8_t flags)
{
struct ec_params_reboot_ec p;
p.cmd = cmd;
p.flags = flags;
if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0)
< 0)
return -1;
if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) {
/*
* EC reboot will take place immediately so delay to allow it
* to complete. Note that some reboot types (EC_REBOOT_COLD)
* will reboot the AP as well, in which case we won't actually
* get to this point.
*/
/*
* TODO(rspangler@chromium.org): Would be nice if we had a
* better way to determine when the reboot is complete. Could
* we poll a memory-mapped LPC value?
*/
udelay(50000);
}
return 0;
}
int cros_ec_interrupt_pending(struct udevice *dev)
{
struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
/* no interrupt support : always poll */
if (!dm_gpio_is_valid(&cdev->ec_int))
return -ENOENT;
return dm_gpio_get_value(&cdev->ec_int);
}
int cros_ec_info(struct udevice *dev, struct ec_response_mkbp_info *info)
{
if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info,
sizeof(*info)) != sizeof(*info))
return -1;
return 0;
}
int cros_ec_get_event_mask(struct udevice *dev, uint type, uint32_t *mask)
{
struct ec_response_host_event_mask rsp;
int ret;
ret = ec_command(dev, type, 0, NULL, 0, &rsp, sizeof(rsp));
if (ret < 0)
return ret;
else if (ret != sizeof(rsp))
return -EINVAL;
*mask = rsp.mask;
return 0;
}
int cros_ec_set_event_mask(struct udevice *dev, uint type, uint32_t mask)
{
struct ec_params_host_event_mask req;
int ret;
req.mask = mask;
ret = ec_command(dev, type, 0, &req, sizeof(req), NULL, 0);
if (ret < 0)
return ret;
return 0;
}
int cros_ec_get_host_events(struct udevice *dev, uint32_t *events_ptr)
{
struct ec_response_host_event_mask *resp;
/*
* Use the B copy of the event flags, because the main copy is already
* used by ACPI/SMI.
*/
if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0,
(uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp))
return -1;
if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID))
return -1;
*events_ptr = resp->mask;
return 0;
}
int cros_ec_clear_host_events(struct udevice *dev, uint32_t events)
{
struct ec_params_host_event_mask params;
params.mask = events;
/*
* Use the B copy of the event flags, so it affects the data returned
* by cros_ec_get_host_events().
*/
if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0,
&params, sizeof(params), NULL, 0) < 0)
return -1;
return 0;
}
int cros_ec_flash_protect(struct udevice *dev, uint32_t set_mask,
uint32_t set_flags,
struct ec_response_flash_protect *resp)
{
struct ec_params_flash_protect params;
params.mask = set_mask;
params.flags = set_flags;
if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
&params, sizeof(params),
resp, sizeof(*resp)) != sizeof(*resp))
return -1;
return 0;
}
int cros_ec_entering_mode(struct udevice *dev, int mode)
{
int rc;
rc = ec_command(dev, EC_CMD_ENTERING_MODE, 0, &mode, sizeof(mode),
NULL, 0);
if (rc)
return -1;
return 0;
}
static int cros_ec_check_version(struct udevice *dev)
{
struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
struct ec_params_hello req;
struct ec_response_hello *resp;
struct dm_cros_ec_ops *ops;
int ret;
ops = dm_cros_ec_get_ops(dev);
if (ops->check_version) {
ret = ops->check_version(dev);
if (ret)
return ret;
}
/*
* TODO(sjg@chromium.org).
* There is a strange oddity here with the EC. We could just ignore
* the response, i.e. pass the last two parameters as NULL and 0.
* In this case we won't read back very many bytes from the EC.
* On the I2C bus the EC gets upset about this and will try to send
* the bytes anyway. This means that we will have to wait for that
* to complete before continuing with a new EC command.
*
* This problem is probably unique to the I2C bus.
*
* So for now, just read all the data anyway.
*/
/* Try sending a version 3 packet */
cdev->protocol_version = 3;
req.in_data = 0;
if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
(uint8_t **)&resp, sizeof(*resp)) > 0)
return 0;
/* Try sending a version 2 packet */
cdev->protocol_version = 2;
if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
(uint8_t **)&resp, sizeof(*resp)) > 0)
return 0;
/*
* Fail if we're still here, since the EC doesn't understand any
* protcol version we speak. Version 1 interface without command
* version is no longer supported, and we don't know about any new
* protocol versions.
*/
cdev->protocol_version = 0;
printf("%s: ERROR: old EC interface not supported\n", __func__);
return -1;
}
int cros_ec_test(struct udevice *dev)
{
struct ec_params_hello req;
struct ec_response_hello *resp;
req.in_data = 0x12345678;
if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
(uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) {
printf("ec_command_inptr() returned error\n");
return -1;
}
if (resp->out_data != req.in_data + 0x01020304) {
printf("Received invalid handshake %x\n", resp->out_data);
return -1;
}
return 0;
}
int cros_ec_flash_offset(struct udevice *dev, enum ec_flash_region region,
uint32_t *offset, uint32_t *size)
{
struct ec_params_flash_region_info p;
struct ec_response_flash_region_info *r;
int ret;
p.region = region;
ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO,
EC_VER_FLASH_REGION_INFO,
&p, sizeof(p), (uint8_t **)&r, sizeof(*r));
if (ret != sizeof(*r))
return -1;
if (offset)
*offset = r->offset;
if (size)
*size = r->size;
return 0;
}
int cros_ec_flash_erase(struct udevice *dev, uint32_t offset, uint32_t size)
{
struct ec_params_flash_erase p;
p.offset = offset;
p.size = size;
return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p),
NULL, 0);
}
/**
* Write a single block to the flash
*
* Write a block of data to the EC flash. The size must not exceed the flash
* write block size which you can obtain from cros_ec_flash_write_burst_size().
*
* The offset starts at 0. You can obtain the region information from
* cros_ec_flash_offset() to find out where to write for a particular region.
*
* Attempting to write to the region where the EC is currently running from
* will result in an error.
*
* @param dev CROS-EC device
* @param data Pointer to data buffer to write
* @param offset Offset within flash to write to.
* @param size Number of bytes to write
* @return 0 if ok, -1 on error
*/
static int cros_ec_flash_write_block(struct udevice *dev, const uint8_t *data,
uint32_t offset, uint32_t size)
{
struct ec_params_flash_write *p;
int ret;
p = malloc(sizeof(*p) + size);
if (!p)
return -ENOMEM;
p->offset = offset;
p->size = size;
assert(data && p->size <= EC_FLASH_WRITE_VER0_SIZE);
memcpy(p + 1, data, p->size);
ret = ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0,
p, sizeof(*p) + size, NULL, 0) >= 0 ? 0 : -1;
free(p);
return ret;
}
/**
* Return optimal flash write burst size
*/
static int cros_ec_flash_write_burst_size(struct udevice *dev)
{
return EC_FLASH_WRITE_VER0_SIZE;
}
/**
* Check if a block of data is erased (all 0xff)
*
* This function is useful when dealing with flash, for checking whether a
* data block is erased and thus does not need to be programmed.
*
* @param data Pointer to data to check (must be word-aligned)
* @param size Number of bytes to check (must be word-aligned)
* @return 0 if erased, non-zero if any word is not erased
*/
static int cros_ec_data_is_erased(const uint32_t *data, int size)
{
assert(!(size & 3));
size /= sizeof(uint32_t);
for (; size > 0; size -= 4, data++)
if (*data != -1U)
return 0;
return 1;
}
/**
* Read back flash parameters
*
* This function reads back parameters of the flash as reported by the EC
*
* @param dev Pointer to device
* @param info Pointer to output flash info struct
*/
int cros_ec_read_flashinfo(struct udevice *dev,
struct ec_response_flash_info *info)
{
int ret;
ret = ec_command(dev, EC_CMD_FLASH_INFO, 0,
NULL, 0, info, sizeof(*info));
if (ret < 0)
return ret;
return ret < sizeof(*info) ? -1 : 0;
}
int cros_ec_flash_write(struct udevice *dev, const uint8_t *data,
uint32_t offset, uint32_t size)
{
struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
uint32_t burst = cros_ec_flash_write_burst_size(dev);
uint32_t end, off;
int ret;
if (!burst)
return -EINVAL;
/*
* TODO: round up to the nearest multiple of write size. Can get away
* without that on link right now because its write size is 4 bytes.
*/
end = offset + size;
for (off = offset; off < end; off += burst, data += burst) {
uint32_t todo;
/* If the data is empty, there is no point in programming it */
todo = min(end - off, burst);
if (cdev->optimise_flash_write &&
cros_ec_data_is_erased((uint32_t *)data, todo))
continue;
ret = cros_ec_flash_write_block(dev, data, off, todo);
if (ret)
return ret;
}
return 0;
}
/**
* Run verification on a slot
*
* @param me CrosEc instance
* @param region Region to run verification on
* @return 0 if success or not applicable. Non-zero if verification failed.
*/
int cros_ec_efs_verify(struct udevice *dev, enum ec_flash_region region)
{
struct ec_params_efs_verify p;
int rv;
log_info("EFS: EC is verifying updated image...\n");
p.region = region;
rv = ec_command(dev, EC_CMD_EFS_VERIFY, 0, &p, sizeof(p), NULL, 0);
if (rv >= 0) {
log_info("EFS: Verification success\n");
return 0;
}
if (rv == -EC_RES_INVALID_COMMAND) {
log_info("EFS: EC doesn't support EFS_VERIFY command\n");
return 0;
}
log_info("EFS: Verification failed\n");
return rv;
}
/**
* Read a single block from the flash
*
* Read a block of data from the EC flash. The size must not exceed the flash
* write block size which you can obtain from cros_ec_flash_write_burst_size().
*
* The offset starts at 0. You can obtain the region information from
* cros_ec_flash_offset() to find out where to read for a particular region.
*
* @param dev CROS-EC device
* @param data Pointer to data buffer to read into
* @param offset Offset within flash to read from
* @param size Number of bytes to read
* @return 0 if ok, -1 on error
*/
static int cros_ec_flash_read_block(struct udevice *dev, uint8_t *data,
uint32_t offset, uint32_t size)
{
struct ec_params_flash_read p;
p.offset = offset;
p.size = size;
return ec_command(dev, EC_CMD_FLASH_READ, 0,
&p, sizeof(p), data, size) >= 0 ? 0 : -1;
}
int cros_ec_flash_read(struct udevice *dev, uint8_t *data, uint32_t offset,
uint32_t size)
{
uint32_t burst = cros_ec_flash_write_burst_size(dev);
uint32_t end, off;
int ret;
end = offset + size;
for (off = offset; off < end; off += burst, data += burst) {
ret = cros_ec_flash_read_block(dev, data, off,
min(end - off, burst));
if (ret)
return ret;
}
return 0;
}
int cros_ec_flash_update_rw(struct udevice *dev, const uint8_t *image,
int image_size)
{
uint32_t rw_offset, rw_size;
int ret;
if (cros_ec_flash_offset(dev, EC_FLASH_REGION_ACTIVE, &rw_offset,
&rw_size))
return -1;
if (image_size > (int)rw_size)
return -1;
/* Invalidate the existing hash, just in case the AP reboots
* unexpectedly during the update. If that happened, the EC RW firmware
* would be invalid, but the EC would still have the original hash.
*/
ret = cros_ec_invalidate_hash(dev);
if (ret)
return ret;
/*
* Erase the entire RW section, so that the EC doesn't see any garbage
* past the new image if it's smaller than the current image.
*
* TODO: could optimize this to erase just the current image, since
* presumably everything past that is 0xff's. But would still need to
* round up to the nearest multiple of erase size.
*/
ret = cros_ec_flash_erase(dev, rw_offset, rw_size);
if (ret)
return ret;
/* Write the image */
ret = cros_ec_flash_write(dev, image, rw_offset, image_size);
if (ret)
return ret;
return 0;
}
int cros_ec_read_nvdata(struct udevice *dev, uint8_t *block, int size)
{
struct ec_params_vbnvcontext p;
int len;
if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2)
return -EINVAL;
p.op = EC_VBNV_CONTEXT_OP_READ;
len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
&p, sizeof(uint32_t) + size, block, size);
if (len != size) {
log_err("Expected %d bytes, got %d\n", size, len);
return -EIO;
}
return 0;
}
int cros_ec_write_nvdata(struct udevice *dev, const uint8_t *block, int size)
{
struct ec_params_vbnvcontext p;
int len;
if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2)
return -EINVAL;
p.op = EC_VBNV_CONTEXT_OP_WRITE;
memcpy(p.block, block, size);
len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
&p, sizeof(uint32_t) + size, NULL, 0);
if (len < 0)
return -1;
return 0;
}
int cros_ec_battery_cutoff(struct udevice *dev, uint8_t flags)
{
struct ec_params_battery_cutoff p;
int len;
p.flags = flags;
len = ec_command(dev, EC_CMD_BATTERY_CUT_OFF, 1, &p, sizeof(p),
NULL, 0);
if (len < 0)
return -1;
return 0;
}
int cros_ec_set_ldo(struct udevice *dev, uint8_t index, uint8_t state)
{
struct ec_params_ldo_set params;
params.index = index;
params.state = state;
if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0, &params, sizeof(params),
NULL, 0))
return -1;
return 0;
}
int cros_ec_get_ldo(struct udevice *dev, uint8_t index, uint8_t *state)
{
struct ec_params_ldo_get params;
struct ec_response_ldo_get *resp;
params.index = index;
if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0, &params, sizeof(params),
(uint8_t **)&resp, sizeof(*resp)) !=
sizeof(*resp))
return -1;
*state = resp->state;
return 0;
}
int cros_ec_register(struct udevice *dev)
{
struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
char id[MSG_BYTES];
cdev->dev = dev;
gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int,
GPIOD_IS_IN);
cdev->optimise_flash_write = dev_read_bool(dev, "optimise-flash-write");
if (cros_ec_check_version(dev)) {
debug("%s: Could not detect CROS-EC version\n", __func__);
return -CROS_EC_ERR_CHECK_VERSION;
}
if (cros_ec_read_id(dev, id, sizeof(id))) {
debug("%s: Could not read KBC ID\n", __func__);
return -CROS_EC_ERR_READ_ID;
}
/* Remember this device for use by the cros_ec command */
debug("Google Chrome EC v%d CROS-EC driver ready, id '%s'\n",
cdev->protocol_version, id);
return 0;
}
int cros_ec_decode_ec_flash(struct udevice *dev, struct fdt_cros_ec *config)
{
ofnode flash_node, node;
flash_node = dev_read_subnode(dev, "flash");
if (!ofnode_valid(flash_node)) {
debug("Failed to find flash node\n");
return -1;
}
if (ofnode_read_fmap_entry(flash_node, &config->flash)) {
debug("Failed to decode flash node in chrome-ec\n");
return -1;
}
config->flash_erase_value = ofnode_read_s32_default(flash_node,
"erase-value", -1);
ofnode_for_each_subnode(node, flash_node) {
const char *name = ofnode_get_name(node);
enum ec_flash_region region;
if (0 == strcmp(name, "ro")) {
region = EC_FLASH_REGION_RO;
} else if (0 == strcmp(name, "rw")) {
region = EC_FLASH_REGION_ACTIVE;
} else if (0 == strcmp(name, "wp-ro")) {
region = EC_FLASH_REGION_WP_RO;
} else {
debug("Unknown EC flash region name '%s'\n", name);
return -1;
}
if (ofnode_read_fmap_entry(node, &config->region[region])) {
debug("Failed to decode flash region in chrome-ec'\n");
return -1;
}
}
return 0;
}
int cros_ec_i2c_tunnel(struct udevice *dev, int port, struct i2c_msg *in,
int nmsgs)
{
union {
struct ec_params_i2c_passthru p;
uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE];
} params;
union {
struct ec_response_i2c_passthru r;
uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE];
} response;
struct ec_params_i2c_passthru *p = &params.p;
struct ec_response_i2c_passthru *r = &response.r;
struct ec_params_i2c_passthru_msg *msg;
uint8_t *pdata, *read_ptr = NULL;
int read_len;
int size;
int rv;
int i;
p->port = port;
p->num_msgs = nmsgs;
size = sizeof(*p) + p->num_msgs * sizeof(*msg);
/* Create a message to write the register address and optional data */
pdata = (uint8_t *)p + size;
read_len = 0;
for (i = 0, msg = p->msg; i < nmsgs; i++, msg++, in++) {
bool is_read = in->flags & I2C_M_RD;
msg->addr_flags = in->addr;
msg->len = in->len;
if (is_read) {
msg->addr_flags |= EC_I2C_FLAG_READ;
read_len += in->len;
read_ptr = in->buf;
if (sizeof(*r) + read_len > sizeof(response)) {
puts("Read length too big for buffer\n");
return -1;
}
} else {
if (pdata - (uint8_t *)p + in->len > sizeof(params)) {
puts("Params too large for buffer\n");
return -1;
}
memcpy(pdata, in->buf, in->len);
pdata += in->len;
}
}
rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, pdata - (uint8_t *)p,
r, sizeof(*r) + read_len);
if (rv < 0)
return rv;
/* Parse response */
if (r->i2c_status & EC_I2C_STATUS_ERROR) {
printf("Transfer failed with status=0x%x\n", r->i2c_status);
return -1;
}
if (rv < sizeof(*r) + read_len) {
puts("Truncated read response\n");
return -1;
}
/* We only support a single read message for each transfer */
if (read_len)
memcpy(read_ptr, r->data, read_len);
return 0;
}
int cros_ec_check_feature(struct udevice *dev, int feature)
{
struct ec_response_get_features r;
int rv;
rv = ec_command(dev, EC_CMD_GET_FEATURES, 0, &r, sizeof(r), NULL, 0);
if (rv)
return rv;
if (feature >= 8 * sizeof(r.flags))
return -1;
return r.flags[feature / 32] & EC_FEATURE_MASK_0(feature);
}
/*
* Query the EC for specified mask indicating enabled events.
* The EC maintains separate event masks for SMI, SCI and WAKE.
*/
static int cros_ec_uhepi_cmd(struct udevice *dev, uint mask, uint action,
uint64_t *value)
{
int ret;
struct ec_params_host_event req;
struct ec_response_host_event rsp;
req.action = action;
req.mask_type = mask;
if (action != EC_HOST_EVENT_GET)
req.value = *value;
else
*value = 0;
ret = ec_command(dev, EC_CMD_HOST_EVENT, 0, &req, sizeof(req), &rsp,
sizeof(rsp));
if (action != EC_HOST_EVENT_GET)
return ret;
if (ret == 0)
*value = rsp.value;
return ret;
}
static int cros_ec_handle_non_uhepi_cmd(struct udevice *dev, uint hcmd,
uint action, uint64_t *value)
{
int ret = -1;
struct ec_params_host_event_mask req;
struct ec_response_host_event_mask rsp;
if (hcmd == INVALID_HCMD)
return ret;
if (action != EC_HOST_EVENT_GET)
req.mask = (uint32_t)*value;
else
*value = 0;
ret = ec_command(dev, hcmd, 0, &req, sizeof(req), &rsp, sizeof(rsp));
if (action != EC_HOST_EVENT_GET)
return ret;
if (ret == 0)
*value = rsp.mask;
return ret;
}
bool cros_ec_is_uhepi_supported(struct udevice *dev)
{
#define UHEPI_SUPPORTED 1
#define UHEPI_NOT_SUPPORTED 2
static int uhepi_support;
if (!uhepi_support) {
uhepi_support = cros_ec_check_feature(dev,
EC_FEATURE_UNIFIED_WAKE_MASKS) > 0 ? UHEPI_SUPPORTED :
UHEPI_NOT_SUPPORTED;
log_debug("Chrome EC: UHEPI %s\n",
uhepi_support == UHEPI_SUPPORTED ? "supported" :
"not supported");
}
return uhepi_support == UHEPI_SUPPORTED;
}
static int cros_ec_get_mask(struct udevice *dev, uint type)
{
u64 value = 0;
if (cros_ec_is_uhepi_supported(dev)) {
cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_GET, &value);
} else {
assert(type < ARRAY_SIZE(event_map));
cros_ec_handle_non_uhepi_cmd(dev, event_map[type].get_cmd,
EC_HOST_EVENT_GET, &value);
}
return value;
}
static int cros_ec_clear_mask(struct udevice *dev, uint type, u64 mask)
{
if (cros_ec_is_uhepi_supported(dev))
return cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_CLEAR, &mask);
assert(type < ARRAY_SIZE(event_map));
return cros_ec_handle_non_uhepi_cmd(dev, event_map[type].clear_cmd,
EC_HOST_EVENT_CLEAR, &mask);
}
uint64_t cros_ec_get_events_b(struct udevice *dev)
{
return cros_ec_get_mask(dev, EC_HOST_EVENT_B);
}
int cros_ec_clear_events_b(struct udevice *dev, uint64_t mask)
{
log_debug("Chrome EC: clear events_b mask to 0x%016llx\n", mask);
return cros_ec_clear_mask(dev, EC_HOST_EVENT_B, mask);
}
int cros_ec_read_limit_power(struct udevice *dev, int *limit_powerp)
{
struct ec_params_charge_state p;
struct ec_response_charge_state r;
int ret;
p.cmd = CHARGE_STATE_CMD_GET_PARAM;
p.get_param.param = CS_PARAM_LIMIT_POWER;
ret = ec_command(dev, EC_CMD_CHARGE_STATE, 0, &p, sizeof(p),
&r, sizeof(r));
/*
* If our EC doesn't support the LIMIT_POWER parameter, assume that
* LIMIT_POWER is not requested.
*/
if (ret == -EC_RES_INVALID_PARAM || ret == -EC_RES_INVALID_COMMAND) {
log_warning("PARAM_LIMIT_POWER not supported by EC\n");
return -ENOSYS;
}
if (ret != sizeof(r.get_param))
return -EINVAL;
*limit_powerp = r.get_param.value;
return 0;
}
int cros_ec_config_powerbtn(struct udevice *dev, uint32_t flags)
{
struct ec_params_config_power_button params;
int ret;
params.flags = flags;
ret = ec_command(dev, EC_CMD_CONFIG_POWER_BUTTON, 0,
&params, sizeof(params), NULL, 0);
if (ret < 0)
return ret;
return 0;
}
int cros_ec_get_lid_shutdown_mask(struct udevice *dev)
{
u32 mask;
int ret;
ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK,
&mask);
if (ret < 0)
return ret;
return !!(mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED));
}
int cros_ec_set_lid_shutdown_mask(struct udevice *dev, int enable)
{
u32 mask;
int ret;
ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK,
&mask);
if (ret < 0)
return ret;
/* Set lid close event state in the EC SMI event mask */
if (enable)
mask |= EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED);
else
mask &= ~EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED);
ret = cros_ec_set_event_mask(dev, EC_CMD_HOST_EVENT_SET_SMI_MASK, mask);
if (ret < 0)
return ret;
printf("EC: %sabled lid close event\n", enable ? "en" : "dis");
return 0;
}
UCLASS_DRIVER(cros_ec) = {
.id = UCLASS_CROS_EC,
.name = "cros_ec",
.per_device_auto_alloc_size = sizeof(struct cros_ec_dev),
.post_bind = dm_scan_fdt_dev,
.flags = DM_UC_FLAG_ALLOC_PRIV_DMA,
};