historical/toontown-classic.git/panda/direct/leveleditor/AnimMgrBase.py
2024-01-16 11:20:27 -06:00

367 lines
16 KiB
Python

"""
Defines AnimMgrBase
"""
import os, math
from direct.interval.IntervalGlobal import *
from panda3d.core import VBase3
from . import ObjectGlobals as OG
from . import AnimGlobals as AG
class AnimMgrBase:
""" AnimMgr will create, manage, update animations in the scene """
def __init__(self, editor):
self.editor = editor
self.graphEditorCounter = 0
self.keyFramesInfo = {}
self.curveAnimation = {}
#normal properties
self.lerpFuncs={
'H' : self.lerpFuncH,
'P' : self.lerpFuncP,
'R' : self.lerpFuncR,
'SX' : self.lerpFuncSX,
'SY' : self.lerpFuncSY,
'SZ' : self.lerpFuncSZ,
'CR' : self.lerpFuncCR,
'CG' : self.lerpFuncCG,
'CB' : self.lerpFuncCB,
'CA' : self.lerpFuncCA
}
#Properties which has animation curves
self.curveLerpFuncs={
'X' : [ self.lerpFuncX, self.lerpCurveFuncX ],
'Y' : [ self.lerpFuncY, self.lerpCurveFuncY ],
'Z' : [ self.lerpFuncZ, self.lerpCurveFuncZ ]
}
def reset(self):
self.keyFramesInfo = {}
self.curveAnimation = {}
def generateKeyFrames(self):
#generate keyFrame list
self.keyFrames = []
for property in list(self.keyFramesInfo.keys()):
for frameInfo in self.keyFramesInfo[property]:
frame = frameInfo[AG.FRAME]
exist = False
for keyFrame in self.keyFrames:
if frame == keyFrame:
exist = True
break
if exist == False:
self.keyFrames.append(frame)
def generateSlope(self, list):
#generate handler slope of every keyframe for animation curve
listLen = len(list)
if listLen == 2:
slope =[float(list[1][AG.FRAME]-list[0][AG.FRAME]),(float(list[1][AG.VALUE])-float(list[0][AG.VALUE]))]
list[0][AG.INSLOPE] = slope
list[1][AG.INSLOPE] = slope
list[0][AG.OUTSLOPE] = list[0][AG.INSLOPE]
list[1][AG.OUTSLOPE] = list[1][AG.INSLOPE]
return
if listLen >= 3:
list[0][AG.INSLOPE] = [float(list[1][AG.FRAME] - list[0][AG.FRAME]),(float(list[1][AG.VALUE]) - float(list[0][AG.VALUE]))]
list[0][AG.OUTSLOPE] = list[0][AG.INSLOPE]
for i in range(1, listLen-1):
list[i][AG.INSLOPE] = [float(list[i+1][AG.FRAME] - list[i-1][AG.FRAME]),(float(list[i+1][AG.VALUE]) - float(list[i-1][AG.VALUE]))]
list[i][AG.OUTSLOPE] = list[i][AG.INSLOPE]
list[listLen-1][AG.INSLOPE] = [float(list[listLen-1][AG.FRAME] - list[listLen-2][AG.FRAME]),(float(list[listLen-1][AG.VALUE]) - float(list[listLen-2][AG.VALUE]))]
list[listLen-1][AG.OUTSLOPE] = list[listLen-1][AG.INSLOPE]
return
def removeAnimInfo(self, uid):
for property in list(self.keyFramesInfo.keys()):
if property[AG.UID] == uid:
del self.keyFramesInfo[property]
self.generateKeyFrames()
if self.editor.mode == self.editor.ANIM_MODE:
self.editor.ui.animUI.OnPropKey()
def singleCurveAnimation(self, nodePath, curve, time):
rope = curve[OG.OBJ_NP]
self.points = rope.getPoints(time)
self.hprs = []
temp = render.attachNewNode("temp")
temp.setHpr(0,0,0)
for i in range(len(self.points)-1):
temp.setPos(self.points[i])
temp.lookAt(self.points[i+1])
hpr = temp.getHpr()
## self.hprs.append(hpr)
self.hprs.append(VBase3(hpr[0]+180,hpr[1],hpr[2]))
self.hprs.append(self.hprs[len(self.points)-2])
curveSequenceName = str(nodePath[OG.OBJ_UID])+' '+str(curve[OG.OBJ_UID])+' '+str(time)
self.curveSequence = Sequence(name = curveSequenceName)
for i in range(len(self.points)-1):
myLerp = LerpPosHprInterval(nodePath[OG.OBJ_NP], float(1)/float(24), self.points[i+1], self.hprs[i+1], self.points[i], self.hprs[i])
self.curveSequence.append(myLerp)
return self.curveSequence
def createParallel(self, startFrame, endFrame):
self.parallel = []
self.parallel = Parallel(name="Current Parallel")
self.createCurveAnimation(self.parallel)
self.createActorAnimation(self.parallel, startFrame, endFrame)
self.createKeyFrameAnimation(self.parallel, startFrame, endFrame)
self.createCurveKeyFrameAnimation(self.parallel, startFrame, endFrame)
return self.parallel
def createCurveAnimation(self, parallel):
for key in self.curveAnimation:
curveInfo = self.curveAnimation[key]
nodePath = self.editor.objectMgr.findObjectById(curveInfo[AG.NODE])
curve = self.editor.objectMgr.findObjectById(curveInfo[AG.CURVE])
time = curveInfo[AG.TIME]
sequence = self.singleCurveAnimation(nodePath, curve, time)
parallel.append(sequence)
def createActorAnimation(self, parallel, startFrame, endFrame):
self.editor.objectMgr.findActors(render)
for actor in self.editor.objectMgr.Actor:
actorAnim = os.path.basename(actor[OG.OBJ_ANIM])
myInterval = ActorInterval(actor[OG.OBJ_NP], actorAnim, loop=1, duration = float(endFrame-startFrame+1)/float(24))
parallel.append(myInterval)
def createKeyFrameAnimation(self, parallel, startFrame, endFrame):
#generate key frame animation for normal property
self.editor.objectMgr.findNodes(render)
for node in self.editor.objectMgr.Nodes:
for property in list(self.keyFramesInfo.keys()):
if property[AG.UID] == node[OG.OBJ_UID] and property[AG.PROP_NAME] != 'X' and property[AG.PROP_NAME] != 'Y' and property[AG.PROP_NAME] != 'Z':
mysequence = Sequence(name = node[OG.OBJ_UID])
keyFramesInfo = self.keyFramesInfo[property]
if len(keyFramesInfo) == 1:
myLerp = LerpFunc(self.lerpFuncs[property[AG.PROP_NAME]],fromData=float(keyFramesInfo[0][AG.VALUE]),toData=float(keyFramesInfo[0][AG.VALUE]),duration = float(endFrame-startFrame)/float(24),blendType = 'noBlend',extraArgs = [node[OG.OBJ_NP]])
mysequence.append(myLerp)
parallel.append(mysequence)
if len(keyFramesInfo) != 1:
myLerp = LerpFunc(self.lerpFuncs[property[AG.PROP_NAME]],fromData=float(keyFramesInfo[0][AG.VALUE]),toData=float(keyFramesInfo[0][AG.VALUE]),duration = float(keyFramesInfo[0][AG.FRAME]-startFrame)/float(24),blendType = 'noBlend',extraArgs = [node[OG.OBJ_NP]])
mysequence.append(myLerp)
for key in range(0,len(keyFramesInfo)-1):
myLerp = LerpFunc(self.lerpFuncs[property[AG.PROP_NAME]],fromData=float(keyFramesInfo[key][AG.VALUE]),toData=float(keyFramesInfo[key+1][AG.VALUE]),duration = float(keyFramesInfo[key+1][AG.FRAME]-keyFramesInfo[key][AG.FRAME])/float(24),blendType = 'noBlend',extraArgs = [node[OG.OBJ_NP]])
mysequence.append(myLerp)
myLerp = LerpFunc(self.lerpFuncs[property[AG.PROP_NAME]],fromData=float(keyFramesInfo[len(keyFramesInfo)-1][AG.VALUE]),toData=float(keyFramesInfo[len(keyFramesInfo)-1][AG.VALUE]),duration = float(endFrame-keyFramesInfo[len(keyFramesInfo)-1][AG.FRAME])/float(24),blendType = 'noBlend',extraArgs = [node[OG.OBJ_NP]])
mysequence.append(myLerp)
parallel.append(mysequence)
def createCurveKeyFrameAnimation(self, parallel, startFrame, endFrame):
#generate key frame animation for the property which is controled by animation curve
self.editor.objectMgr.findNodes(render)
for node in self.editor.objectMgr.Nodes:
for property in list(self.keyFramesInfo.keys()):
if property[AG.UID] == node[OG.OBJ_UID]:
if property[AG.PROP_NAME] == 'X' or property[AG.PROP_NAME] == 'Y' or property[AG.PROP_NAME] == 'Z':
mysequence = Sequence(name = node[OG.OBJ_UID])
keyFramesInfo = self.keyFramesInfo[property]
if len(keyFramesInfo) == 1:
myLerp = LerpFunc(self.curveLerpFuncs[property[AG.PROP_NAME]][0],fromData=float(keyFramesInfo[0][AG.VALUE]),toData=float(keyFramesInfo[0][AG.VALUE]),duration = float(endFrame-startFrame)/float(24),blendType = 'noBlend',extraArgs = [node[OG.OBJ_NP]])
mysequence.append(myLerp)
parallel.append(mysequence)
if len(keyFramesInfo) == 2:
myLerp = LerpFunc(self.curveLerpFuncs[property[AG.PROP_NAME]][0],fromData=float(keyFramesInfo[0][AG.VALUE]),toData=float(keyFramesInfo[0][AG.VALUE]),duration = float(keyFramesInfo[0][AG.FRAME]-startFrame)/float(24),blendType = 'noBlend',extraArgs = [node[OG.OBJ_NP]])
mysequence.append(myLerp)
for key in range(0,len(keyFramesInfo)-1):
self.keyFrameInfoForSingleLerp = keyFramesInfo
self.keyInfoForSingleLerp = key
myLerp = LerpFunc(self.curveLerpFuncs[property[AG.PROP_NAME]][0],fromData=float(keyFramesInfo[key][AG.VALUE]),toData=float(keyFramesInfo[key+1][AG.VALUE]),duration = float(keyFramesInfo[key+1][AG.FRAME]-keyFramesInfo[key][AG.FRAME])/float(24),blendType = 'noBlend',extraArgs = [node[OG.OBJ_NP]])
mysequence.append(myLerp)
myLerp = LerpFunc(self.curveLerpFuncs[property[AG.PROP_NAME]][0],fromData=float(keyFramesInfo[len(keyFramesInfo)-1][AG.VALUE]),toData=float(keyFramesInfo[len(keyFramesInfo)-1][AG.VALUE]),duration = float(endFrame-keyFramesInfo[len(keyFramesInfo)-1][AG.FRAME])/float(24),blendType = 'noBlend',extraArgs = [node[OG.OBJ_NP]])
mysequence.append(myLerp)
parallel.append(mysequence)
if len(keyFramesInfo) > 2:
myLerp = LerpFunc(self.curveLerpFuncs[property[AG.PROP_NAME]][0],fromData=float(keyFramesInfo[0][AG.VALUE]),toData=float(keyFramesInfo[0][1]),duration = float(keyFramesInfo[0][AG.FRAME]-startFrame)/float(24),blendType = 'noBlend',extraArgs = [node[OG.OBJ_NP]])
mysequence.append(myLerp)
for key in range(0,len(keyFramesInfo)-1):
myLerp = LerpFunc(self.curveLerpFuncs[property[AG.PROP_NAME]][1],fromData=float(keyFramesInfo[key][AG.FRAME]),toData=float(keyFramesInfo[key+1][AG.FRAME]),duration = float(keyFramesInfo[key+1][AG.FRAME]-keyFramesInfo[key][AG.FRAME])/float(24),blendType = 'noBlend',extraArgs = [[node[OG.OBJ_NP], keyFramesInfo, key]])
mysequence.append(myLerp)
myLerp = LerpFunc(self.curveLerpFuncs[property[AG.PROP_NAME]][0],fromData=float(keyFramesInfo[len(keyFramesInfo)-1][AG.VALUE]),toData=float(keyFramesInfo[len(keyFramesInfo)-1][AG.VALUE]),duration = float(endFrame-keyFramesInfo[len(keyFramesInfo)-1][AG.FRAME])/float(24),blendType = 'noBlend',extraArgs = [node[OG.OBJ_NP]])
mysequence.append(myLerp)
parallel.append(mysequence)
def getPos(self, x, list, i):
#get the value from animation curve
x1 = float(list[i][AG.FRAME])
y1 = float(list[i][AG.VALUE])
x4 = float(list[i+1][AG.FRAME])
y4 = float(list[i+1][AG.VALUE])
t1x = list[i][AG.OUTSLOPE][0]
t1y = list[i][AG.OUTSLOPE][1]
t2x = list[i+1][AG.INSLOPE][0]
t2y = list[i+1][AG.INSLOPE][1]
x2 = x1 + (x4 - x1) / float(3)
scale1 = (x2 - x1) / t1x
y2 = y1 + t1y * scale1
x3 = x4 - (x4 - x1) / float(3)
scale2 = (x4 - x3) / t2x
y3 = y4 - t2y * scale2
ax = - float(1) * x1 + float(3) * x2 - float(3) * x3 + float(1) * x4
bx = float(3) * x1 - float(6) * x2 + float(3) * x3 + float(0) * x4
cx = - float(3) * x1 + float(3) * x2 + float(0) * x3 + float(0) * x4
dx = float(1) * x1 + float(0) * x2 - float(0) * x3 + float(0) * x4
ay = - float(1) * y1 + float(3) * y2 - float(3) * y3 + float(1) * y4
by = float(3) * y1 - float(6) * y2 + float(3) * y3 + float(0) * y4
cy = - float(3) * y1 + float(3) * y2 + float(0) * y3 + float(0) * y4
dy = float(1) * y1 + float(0) * y2 - float(0) * y3 + float(0) * y4
if ax == 0 and bx == 0 and cx == 0:
return 0
if ax == 0 and bx == 0 and cx != 0:
a = cx
b = dx-x
t = -b/a
y = ay * t*t*t + by * t*t + cy * t + dy
return y
if ax == 0 and bx!= 0:
a=bx
b=cx
c=dx-x
t=(-b+math.sqrt(b**2-4.0*a*c))/2*a
if t>=0 and t<=1:
y = ay * t*t*t + by * t*t + cy * t + dy
return y
else:
t=(-b-math.sqrt(b**2-4.0*a*c))/2*a
y = ay * t*t*t + by * t*t + cy * t + dy
return y
if ax != 0:
a = ax
b = bx
c = cx
d = dx - float(x)
t = self.calculateT(a, b, c, d, x)
y = ay * t*t*t + by * t*t + cy * t + dy
return y
def calculateT(self, a, b, c, d, x):
#Newton EQUATION
t = float(1)
t2 = t
t -= (a*t*t*t+b*t*t+c*t+d)/(float(3)*a*t*t+float(2)*b*t+c)
if abs(t-t2) <= 0.000001:
return t
else:
while abs(t - t2) > 0.000001:
t2 = t
t -= (a*t*t*t+b*t*t+c*t+d)/(float(3)*a*t*t+float(2)*b*t+c)
return t
def lerpFuncX(self,pos,np):
np.setX(pos)
def lerpFuncY(self,pos,np):
np.setY(pos)
def lerpFuncZ(self,pos,np):
np.setZ(pos)
def lerpCurveFuncX(self,t,extraArgs):
np = extraArgs[0]
pos = self.getPos(t, extraArgs[1], extraArgs[2])
np.setX(pos)
def lerpCurveFuncY(self,t,extraArgs):
np = extraArgs[0]
pos = self.getPos(t, extraArgs[1], extraArgs[2])
np.setY(pos)
def lerpCurveFuncZ(self,t,extraArgs):
np = extraArgs[0]
pos = self.getPos(t, extraArgs[1], extraArgs[2])
np.setZ(pos)
def lerpFuncH(self,angle,np):
np.setH(angle)
def lerpFuncP(self,angle,np):
np.setP(angle)
def lerpFuncR(self,angle,np):
np.setR(angle)
def lerpFuncSX(self,scale,np):
np.setSx(scale)
def lerpFuncSY(self,scale,np):
np.setSy(scale)
def lerpFuncSZ(self,scale,np):
np.setSz(scale)
def lerpFuncCR(self,R,np):
obj = self.editor.objectMgr.findObjectByNodePath(np)
r = obj[OG.OBJ_RGBA][0]
g = obj[OG.OBJ_RGBA][1]
b = obj[OG.OBJ_RGBA][2]
a = obj[OG.OBJ_RGBA][3]
self.colorUpdate(R,g,b,a,np)
def lerpFuncCG(self,G,np):
obj = self.editor.objectMgr.findObjectByNodePath(np)
r = obj[OG.OBJ_RGBA][0]
g = obj[OG.OBJ_RGBA][1]
b = obj[OG.OBJ_RGBA][2]
a = obj[OG.OBJ_RGBA][3]
self.colorUpdate(r,G,b,a,np)
def lerpFuncCB(self,B,np):
obj = self.editor.objectMgr.findObjectByNodePath(np)
r = obj[OG.OBJ_RGBA][0]
g = obj[OG.OBJ_RGBA][1]
b = obj[OG.OBJ_RGBA][2]
a = obj[OG.OBJ_RGBA][3]
self.colorUpdate(r,g,B,a,np)
def lerpFuncCA(self,A,np):
obj = self.editor.objectMgr.findObjectByNodePath(np)
r = obj[OG.OBJ_RGBA][0]
g = obj[OG.OBJ_RGBA][1]
b = obj[OG.OBJ_RGBA][2]
a = obj[OG.OBJ_RGBA][3]
self.colorUpdate(r,g,b,A,np)
def colorUpdate(self, r, g, b, a, np):
if base.direct.selected.last == None:
self.editor.objectMgr.updateObjectColor(r, g, b, a, np)
elif self.editor.objectMgr.findObjectByNodePath(np) == self.editor.objectMgr.findObjectByNodePath(base.direct.selected.last):
self.editor.ui.objectPropertyUI.propCR.setValue(r)
self.editor.ui.objectPropertyUI.propCG.setValue(g)
self.editor.ui.objectPropertyUI.propCB.setValue(b)
self.editor.ui.objectPropertyUI.propCA.setValue(a)
self.editor.objectMgr.updateObjectColor(r, g, b, a, np)
else:
self.editor.objectMgr.updateObjectColor(r, g, b, a, np)