historical/toontown-classic.git/panda/include/lvector3_src.I
2024-01-16 11:20:27 -06:00

393 lines
9.4 KiB
Text

/**
* PANDA 3D SOFTWARE
* Copyright (c) Carnegie Mellon University. All rights reserved.
*
* All use of this software is subject to the terms of the revised BSD
* license. You should have received a copy of this license along
* with this source code in a file named "LICENSE."
*
* @file lvector3_src.I
* @author drose
* @date 1999-09-24
*/
/**
*
*/
INLINE_LINMATH FLOATNAME(LVector3)::
FLOATNAME(LVector3)(const FLOATNAME(LVecBase3) &copy) : FLOATNAME(LVecBase3)(copy) {
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LVector3)::
FLOATNAME(LVector3)(FLOATTYPE fill_value) :
FLOATNAME(LVecBase3)(fill_value)
{
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LVector3)::
FLOATNAME(LVector3)(FLOATTYPE x, FLOATTYPE y, FLOATTYPE z) :
FLOATNAME(LVecBase3)(x, y, z)
{
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LVector3)::
FLOATNAME(LVector3)(const FLOATNAME(LVecBase2) &copy, FLOATTYPE z) :
FLOATNAME(LVecBase3)(copy, z)
{
}
/**
* Returns a zero-length vector.
*/
INLINE_LINMATH const FLOATNAME(LVector3) &FLOATNAME(LVector3)::
zero() {
return (const FLOATNAME(LVector3) &)FLOATNAME(LVecBase3)::zero();
}
/**
* Returns a unit X vector.
*/
INLINE_LINMATH const FLOATNAME(LVector3) &FLOATNAME(LVector3)::
unit_x() {
return (const FLOATNAME(LVector3) &)FLOATNAME(LVecBase3)::unit_x();
}
/**
* Returns a unit Y vector.
*/
INLINE_LINMATH const FLOATNAME(LVector3) &FLOATNAME(LVector3)::
unit_y() {
return (const FLOATNAME(LVector3) &)FLOATNAME(LVecBase3)::unit_y();
}
/**
* Returns a unit Z vector.
*/
INLINE_LINMATH const FLOATNAME(LVector3) &FLOATNAME(LVector3)::
unit_z() {
return (const FLOATNAME(LVector3) &)FLOATNAME(LVecBase3)::unit_z();
}
/**
* Returns a 2-component vector that shares just the first two components of
* this vector.
*/
INLINE_LINMATH FLOATNAME(LVector2) FLOATNAME(LVector3)::
get_xy() const {
return FLOATNAME(LVector2)(_v(0), _v(1));
}
/**
* Returns a 2-component vector that shares just the first and last components
* of this vector.
*/
INLINE_LINMATH FLOATNAME(LVector2) FLOATNAME(LVector3)::
get_xz() const {
return FLOATNAME(LVector2)(_v(0), _v(2));
}
/**
* Returns a 2-component vector that shares just the last two components of
* this vector.
*/
INLINE_LINMATH FLOATNAME(LVector2) FLOATNAME(LVector3)::
get_yz() const {
return FLOATNAME(LVector2)(_v(1), _v(2));
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
operator - () const {
return FLOATNAME(LVecBase3)::operator - ();
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LVecBase3) FLOATNAME(LVector3)::
operator + (const FLOATNAME(LVecBase3) &other) const {
return FLOATNAME(LVecBase3)::operator + (other);
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
operator + (const FLOATNAME(LVector3) &other) const {
return FLOATNAME(LVecBase3)::operator + (other);
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LVecBase3) FLOATNAME(LVector3)::
operator - (const FLOATNAME(LVecBase3) &other) const {
return FLOATNAME(LVecBase3)::operator - (other);
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
operator - (const FLOATNAME(LVector3) &other) const {
return FLOATNAME(LVecBase3)::operator - (other);
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
cross(const FLOATNAME(LVecBase3) &other) const {
return FLOATNAME(LVecBase3)::cross(other);
}
#ifndef FLOATTYPE_IS_INT
/**
* Normalizes the vector and returns the normalized vector as a copy. If the
* vector was a zero-length vector, a zero length vector will be returned.
*/
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
normalized() const {
return FLOATNAME(LVecBase3)::normalized();
}
/**
* Returns a new vector representing the projection of this vector onto
* another one. The resulting vector will be a scalar multiple of onto.
*/
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
project(const FLOATNAME(LVecBase3) &onto) const {
return FLOATNAME(LVecBase3)::project(onto);
}
/**
* Returns the unsigned angle between this vector and the other one, expressed
* in radians. Both vectors should be initially normalized.
*/
INLINE_LINMATH FLOATTYPE FLOATNAME(LVector3)::
angle_rad(const FLOATNAME(LVector3) &other) const {
// This algorithm yields better results than acos(dot(other)), which behaves
// poorly as dot(other) approaches 1.0.
if (dot(other) < 0.0f) {
FLOATTYPE a = ((*this)+other).length() / 2.0f;
return MathNumbers::cpi((FLOATTYPE)0.0f) - 2.0f * casin(std::min(a, (FLOATTYPE)1.0));
} else {
FLOATTYPE a = ((*this)-other).length() / 2.0f;
return 2.0f * casin(std::min(a, (FLOATTYPE)1.0));
}
}
/**
* Returns the angle between this vector and the other one, expressed in
* degrees. Both vectors should be initially normalized.
*/
INLINE_LINMATH FLOATTYPE FLOATNAME(LVector3)::
angle_deg(const FLOATNAME(LVector3) &other) const {
return rad_2_deg(angle_rad(other));
}
/**
* returns the signed angle between two vectors. The angle is positive if the
* rotation from this vector to other is clockwise when looking in the
* direction of the ref vector.
*
* Vectors (except the ref vector) should be initially normalized.
*/
INLINE_LINMATH FLOATTYPE FLOATNAME(LVector3)::
signed_angle_rad(const FLOATNAME(LVector3) &other,
const FLOATNAME(LVector3) &ref) const {
FLOATTYPE angle = angle_rad(other);
if (cross(other).dot(ref) < 0.0f) {
angle = -angle;
}
return angle;
}
/**
* Returns the signed angle between two vectors. The angle is positive if the
* rotation from this vector to other is clockwise when looking in the
* direction of the ref vector.
*
* Vectors (except the ref vector) should be initially normalized.
*/
INLINE_LINMATH FLOATTYPE FLOATNAME(LVector3)::
signed_angle_deg(const FLOATNAME(LVector3) &other,
const FLOATNAME(LVector3) &ref) const {
return rad_2_deg(signed_angle_rad(other, ref));
}
/**
* This method is deprecated. Do not use.
*/
INLINE_LINMATH FLOATTYPE FLOATNAME(LVector3)::
relative_angle_rad(const FLOATNAME(LVector3) &other) const {
return atan2((_v(0)*other._v(1))-(_v(1)*other._v(0)), dot(other));
}
/**
* This method is deprecated. Do not use.
*/
INLINE_LINMATH FLOATTYPE FLOATNAME(LVector3)::
relative_angle_deg(const FLOATNAME(LVector3) &other) const {
return relative_angle_rad(other) * FLOATCONST(180.0) / FLOATCONST(3.1415926535);
}
#endif // FLOATTYPE_IS_INT
/**
*
*/
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
operator * (FLOATTYPE scalar) const {
return FLOATNAME(LVector3)(FLOATNAME(LVecBase3)::operator * (scalar));
}
/**
*
*/
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
operator / (FLOATTYPE scalar) const {
return FLOATNAME(LVector3)(FLOATNAME(LVecBase3)::operator / (scalar));
}
/**
* Returns the up vector for the given coordinate system.
*/
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
up(CoordinateSystem cs) {
if (cs == CS_default) {
cs = get_default_coordinate_system();
}
switch (cs) {
case CS_zup_right:
case CS_zup_left:
return FLOATNAME(LVector3)(0, 0, 1);
case CS_yup_right:
case CS_yup_left:
return FLOATNAME(LVector3)(0, 1, 0);
default:
linmath_cat.error()
<< "Invalid coordinate system!\n";
return FLOATNAME(LVector3)(0, 0, 0);
}
}
/**
* Returns the right vector for the given coordinate system.
*/
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
right(CoordinateSystem) {
return FLOATNAME(LVector3)(1, 0, 0);
}
/**
* Returns the forward vector for the given coordinate system.
*/
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
forward(CoordinateSystem cs) {
if (cs == CS_default) {
cs = get_default_coordinate_system();
}
switch (cs) {
case CS_zup_right:
return FLOATNAME(LVector3)(0, 1, 0);
case CS_zup_left:
return FLOATNAME(LVector3)(0, -1, 0);
case CS_yup_right:
return FLOATNAME(LVector3)(0, 0, -1);
case CS_yup_left:
return FLOATNAME(LVector3)(0, 0, 1);
default:
linmath_cat.error()
<< "Invalid coordinate system!\n";
return FLOATNAME(LVector3)(0, 0, 0);
}
}
/**
* Returns the down vector for the given coordinate system.
*/
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
down(CoordinateSystem cs) {
return -up(cs);
}
/**
* Returns the left vector for the given coordinate system.
*/
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
left(CoordinateSystem cs) {
return -right(cs);
}
/**
* Returns the back vector for the given coordinate system.
*/
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
back(CoordinateSystem cs) {
return -forward(cs);
}
/**
* Returns a vector that is described by its right, forward, and up
* components, in whatever way the coordinate system represents that vector.
*/
INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3)::
rfu(FLOATTYPE right_v, FLOATTYPE fwd_v, FLOATTYPE up_v,
CoordinateSystem cs) {
/* return forward(cs) * fwd_v + up(cs) * up_v + right(cs) * right_v; */
// fast implementation of above for axis-aligned coordinate systems
if (cs == CS_default) {
cs = get_default_coordinate_system();
}
FLOATTYPE vy, vz;
switch(cs) {
case CS_yup_right:
vz = -fwd_v;
vy = up_v;
break;
case CS_yup_left:
vz = fwd_v;
vy = up_v;
break;
case CS_zup_right:
vy = fwd_v;
vz = up_v;
break;
case CS_zup_left:
vy = -fwd_v;
vz = up_v;
break;
default:
linmath_cat.error()
<< "Invalid coordinate system!\n";
return FLOATNAME(LVector3)(0);
}
return FLOATNAME(LVector3)(right_v, vy, vz);
}