209 lines
7.2 KiB
C
209 lines
7.2 KiB
C
/*
|
|
* QEMU fw_cfg helpers (X86 specific)
|
|
*
|
|
* Copyright (c) 2019 Red Hat, Inc.
|
|
*
|
|
* Author:
|
|
* Philippe Mathieu-Daudé <philmd@redhat.com>
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "sysemu/numa.h"
|
|
#include "hw/acpi/acpi.h"
|
|
#include "hw/acpi/aml-build.h"
|
|
#include "hw/firmware/smbios.h"
|
|
#include "hw/i386/fw_cfg.h"
|
|
#include "hw/timer/hpet.h"
|
|
#include "hw/nvram/fw_cfg.h"
|
|
#include "e820_memory_layout.h"
|
|
#include "kvm_i386.h"
|
|
#include "config-devices.h"
|
|
|
|
struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
|
|
|
|
const char *fw_cfg_arch_key_name(uint16_t key)
|
|
{
|
|
static const struct {
|
|
uint16_t key;
|
|
const char *name;
|
|
} fw_cfg_arch_wellknown_keys[] = {
|
|
{FW_CFG_ACPI_TABLES, "acpi_tables"},
|
|
{FW_CFG_SMBIOS_ENTRIES, "smbios_entries"},
|
|
{FW_CFG_IRQ0_OVERRIDE, "irq0_override"},
|
|
{FW_CFG_E820_TABLE, "e820_table"},
|
|
{FW_CFG_HPET, "hpet"},
|
|
};
|
|
|
|
for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) {
|
|
if (fw_cfg_arch_wellknown_keys[i].key == key) {
|
|
return fw_cfg_arch_wellknown_keys[i].name;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void fw_cfg_build_smbios(MachineState *ms, FWCfgState *fw_cfg)
|
|
{
|
|
#ifdef CONFIG_SMBIOS
|
|
uint8_t *smbios_tables, *smbios_anchor;
|
|
size_t smbios_tables_len, smbios_anchor_len;
|
|
struct smbios_phys_mem_area *mem_array;
|
|
unsigned i, array_count;
|
|
X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
|
|
|
|
/* tell smbios about cpuid version and features */
|
|
smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
|
|
|
|
smbios_tables = smbios_get_table_legacy(ms, &smbios_tables_len);
|
|
if (smbios_tables) {
|
|
fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
|
|
smbios_tables, smbios_tables_len);
|
|
}
|
|
|
|
/* build the array of physical mem area from e820 table */
|
|
mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
|
|
for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
|
|
uint64_t addr, len;
|
|
|
|
if (e820_get_entry(i, E820_RAM, &addr, &len)) {
|
|
mem_array[array_count].address = addr;
|
|
mem_array[array_count].length = len;
|
|
array_count++;
|
|
}
|
|
}
|
|
smbios_get_tables(ms, mem_array, array_count,
|
|
&smbios_tables, &smbios_tables_len,
|
|
&smbios_anchor, &smbios_anchor_len);
|
|
g_free(mem_array);
|
|
|
|
if (smbios_anchor) {
|
|
fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
|
|
smbios_tables, smbios_tables_len);
|
|
fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
|
|
smbios_anchor, smbios_anchor_len);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
FWCfgState *fw_cfg_arch_create(MachineState *ms,
|
|
uint16_t boot_cpus,
|
|
uint16_t apic_id_limit)
|
|
{
|
|
FWCfgState *fw_cfg;
|
|
uint64_t *numa_fw_cfg;
|
|
int i;
|
|
MachineClass *mc = MACHINE_GET_CLASS(ms);
|
|
const CPUArchIdList *cpus = mc->possible_cpu_arch_ids(ms);
|
|
int nb_numa_nodes = ms->numa_state->num_nodes;
|
|
|
|
fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4,
|
|
&address_space_memory);
|
|
fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, boot_cpus);
|
|
|
|
/* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
|
|
*
|
|
* For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
|
|
* building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
|
|
* that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
|
|
* for CPU hotplug also uses APIC ID and not "CPU index".
|
|
* This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
|
|
* but the "limit to the APIC ID values SeaBIOS may see".
|
|
*
|
|
* So for compatibility reasons with old BIOSes we are stuck with
|
|
* "etc/max-cpus" actually being apic_id_limit
|
|
*/
|
|
fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, apic_id_limit);
|
|
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
|
|
#ifdef CONFIG_ACPI
|
|
fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
|
|
acpi_tables, acpi_tables_len);
|
|
#endif
|
|
fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
|
|
|
|
fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
|
|
&e820_reserve, sizeof(e820_reserve));
|
|
fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
|
|
sizeof(struct e820_entry) * e820_get_num_entries());
|
|
|
|
fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
|
|
/* allocate memory for the NUMA channel: one (64bit) word for the number
|
|
* of nodes, one word for each VCPU->node and one word for each node to
|
|
* hold the amount of memory.
|
|
*/
|
|
numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
|
|
numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
|
|
for (i = 0; i < cpus->len; i++) {
|
|
unsigned int apic_id = cpus->cpus[i].arch_id;
|
|
assert(apic_id < apic_id_limit);
|
|
numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
|
|
}
|
|
for (i = 0; i < nb_numa_nodes; i++) {
|
|
numa_fw_cfg[apic_id_limit + 1 + i] =
|
|
cpu_to_le64(ms->numa_state->nodes[i].node_mem);
|
|
}
|
|
fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
|
|
(1 + apic_id_limit + nb_numa_nodes) *
|
|
sizeof(*numa_fw_cfg));
|
|
|
|
return fw_cfg;
|
|
}
|
|
|
|
void fw_cfg_build_feature_control(MachineState *ms, FWCfgState *fw_cfg)
|
|
{
|
|
X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
|
|
CPUX86State *env = &cpu->env;
|
|
uint32_t unused, ecx, edx;
|
|
uint64_t feature_control_bits = 0;
|
|
uint64_t *val;
|
|
|
|
cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
|
|
if (ecx & CPUID_EXT_VMX) {
|
|
feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
|
|
}
|
|
|
|
if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
|
|
(CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
|
|
(env->mcg_cap & MCG_LMCE_P)) {
|
|
feature_control_bits |= FEATURE_CONTROL_LMCE;
|
|
}
|
|
|
|
if (!feature_control_bits) {
|
|
return;
|
|
}
|
|
|
|
val = g_malloc(sizeof(*val));
|
|
*val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
|
|
fw_cfg_add_file(fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
|
|
}
|
|
|
|
void fw_cfg_add_acpi_dsdt(Aml *scope, FWCfgState *fw_cfg)
|
|
{
|
|
/*
|
|
* when using port i/o, the 8-bit data register *always* overlaps
|
|
* with half of the 16-bit control register. Hence, the total size
|
|
* of the i/o region used is FW_CFG_CTL_SIZE; when using DMA, the
|
|
* DMA control register is located at FW_CFG_DMA_IO_BASE + 4
|
|
*/
|
|
Object *obj = OBJECT(fw_cfg);
|
|
uint8_t io_size = object_property_get_bool(obj, "dma_enabled", NULL) ?
|
|
ROUND_UP(FW_CFG_CTL_SIZE, 4) + sizeof(dma_addr_t) :
|
|
FW_CFG_CTL_SIZE;
|
|
Aml *dev = aml_device("FWCF");
|
|
Aml *crs = aml_resource_template();
|
|
|
|
aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002")));
|
|
|
|
/* device present, functioning, decoding, not shown in UI */
|
|
aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
|
|
|
|
aml_append(crs,
|
|
aml_io(AML_DECODE16, FW_CFG_IO_BASE, FW_CFG_IO_BASE, 0x01, io_size));
|
|
|
|
aml_append(dev, aml_name_decl("_CRS", crs));
|
|
aml_append(scope, dev);
|
|
}
|