historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/capstone/arch/X86/X86Disassembler.c
2024-01-16 11:20:27 -06:00

864 lines
25 KiB
C

//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is part of the X86 Disassembler.
// It contains code to translate the data produced by the decoder into
// MCInsts.
// Documentation for the disassembler can be found in X86Disassembler.h.
//
//===----------------------------------------------------------------------===//
/* Capstone Disassembly Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2014 */
#ifdef CAPSTONE_HAS_X86
#include <string.h>
#include "../../cs_priv.h"
#include "X86Disassembler.h"
#include "X86DisassemblerDecoderCommon.h"
#include "X86DisassemblerDecoder.h"
#include "../../MCInst.h"
#include "../../utils.h"
#include "X86Mapping.h"
#define GET_REGINFO_ENUM
#define GET_REGINFO_MC_DESC
#include "X86GenRegisterInfo.inc"
#define GET_INSTRINFO_ENUM
#ifdef CAPSTONE_X86_REDUCE
#include "X86GenInstrInfo_reduce.inc"
#else
#include "X86GenInstrInfo.inc"
#endif
// Fill-ins to make the compiler happy. These constants are never actually
// assigned; they are just filler to make an automatically-generated switch
// statement work.
enum {
X86_BX_SI = 500,
X86_BX_DI = 501,
X86_BP_SI = 502,
X86_BP_DI = 503,
X86_sib = 504,
X86_sib64 = 505
};
//
// Private code that translates from struct InternalInstructions to MCInsts.
//
/// translateRegister - Translates an internal register to the appropriate LLVM
/// register, and appends it as an operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param reg - The Reg to append.
static void translateRegister(MCInst *mcInst, Reg reg)
{
#define ENTRY(x) X86_##x,
static const uint8_t llvmRegnums[] = {
ALL_REGS
0
};
#undef ENTRY
uint8_t llvmRegnum = llvmRegnums[reg];
MCOperand_CreateReg0(mcInst, llvmRegnum);
}
static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
0, // SEG_OVERRIDE_NONE
X86_CS,
X86_SS,
X86_DS,
X86_ES,
X86_FS,
X86_GS
};
/// translateSrcIndex - Appends a source index operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction.
static bool translateSrcIndex(MCInst *mcInst, InternalInstruction *insn)
{
unsigned baseRegNo;
if (insn->mode == MODE_64BIT)
baseRegNo = insn->isPrefix67 ? X86_ESI : X86_RSI;
else if (insn->mode == MODE_32BIT)
baseRegNo = insn->isPrefix67 ? X86_SI : X86_ESI;
else {
// assert(insn->mode == MODE_16BIT);
baseRegNo = insn->isPrefix67 ? X86_ESI : X86_SI;
}
MCOperand_CreateReg0(mcInst, baseRegNo);
MCOperand_CreateReg0(mcInst, segmentRegnums[insn->segmentOverride]);
return false;
}
/// translateDstIndex - Appends a destination index operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction.
static bool translateDstIndex(MCInst *mcInst, InternalInstruction *insn)
{
unsigned baseRegNo;
if (insn->mode == MODE_64BIT)
baseRegNo = insn->isPrefix67 ? X86_EDI : X86_RDI;
else if (insn->mode == MODE_32BIT)
baseRegNo = insn->isPrefix67 ? X86_DI : X86_EDI;
else {
// assert(insn->mode == MODE_16BIT);
baseRegNo = insn->isPrefix67 ? X86_EDI : X86_DI;
}
MCOperand_CreateReg0(mcInst, baseRegNo);
return false;
}
/// translateImmediate - Appends an immediate operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param immediate - The immediate value to append.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The internal instruction.
static void translateImmediate(MCInst *mcInst, uint64_t immediate,
const OperandSpecifier *operand, InternalInstruction *insn)
{
OperandType type;
type = (OperandType)operand->type;
if (type == TYPE_RELv) {
//isBranch = true;
//pcrel = insn->startLocation + insn->immediateOffset + insn->immediateSize;
switch (insn->displacementSize) {
case 1:
if (immediate & 0x80)
immediate |= ~(0xffull);
break;
case 2:
if (immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case 4:
if (immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
case 8:
break;
default:
break;
}
} // By default sign-extend all X86 immediates based on their encoding.
else if (type == TYPE_IMM8 || type == TYPE_IMM16 || type == TYPE_IMM32 ||
type == TYPE_IMM64 || type == TYPE_IMMv) {
uint32_t Opcode = MCInst_getOpcode(mcInst);
bool check_opcode;
switch (operand->encoding) {
default:
break;
case ENCODING_IB:
// Special case those X86 instructions that use the imm8 as a set of
// bits, bit count, etc. and are not sign-extend.
check_opcode = (Opcode != X86_INT);
#ifndef CAPSTONE_X86_REDUCE
check_opcode = ((Opcode != X86_BLENDPSrri &&
Opcode != X86_BLENDPDrri &&
Opcode != X86_PBLENDWrri &&
Opcode != X86_MPSADBWrri &&
Opcode != X86_DPPSrri &&
Opcode != X86_DPPDrri &&
Opcode != X86_INSERTPSrr &&
Opcode != X86_VBLENDPSYrri &&
Opcode != X86_VBLENDPSYrmi &&
Opcode != X86_VBLENDPDYrri &&
Opcode != X86_VBLENDPDYrmi &&
Opcode != X86_VPBLENDWrri &&
Opcode != X86_VMPSADBWrri &&
Opcode != X86_VDPPSYrri &&
Opcode != X86_VDPPSYrmi &&
Opcode != X86_VDPPDrri &&
Opcode != X86_VINSERTPSrr) && check_opcode);
#endif
if (check_opcode)
if(immediate & 0x80)
immediate |= ~(0xffull);
break;
case ENCODING_IW:
if(immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case ENCODING_ID:
if(immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
case ENCODING_IO:
break;
}
} else if (type == TYPE_IMM3) {
#ifndef CAPSTONE_X86_REDUCE
// Check for immediates that printSSECC can't handle.
if (immediate >= 8) {
unsigned NewOpc = 0;
switch (MCInst_getOpcode(mcInst)) {
default: break; // never reach
case X86_CMPPDrmi: NewOpc = X86_CMPPDrmi_alt; break;
case X86_CMPPDrri: NewOpc = X86_CMPPDrri_alt; break;
case X86_CMPPSrmi: NewOpc = X86_CMPPSrmi_alt; break;
case X86_CMPPSrri: NewOpc = X86_CMPPSrri_alt; break;
case X86_CMPSDrm: NewOpc = X86_CMPSDrm_alt; break;
case X86_CMPSDrr: NewOpc = X86_CMPSDrr_alt; break;
case X86_CMPSSrm: NewOpc = X86_CMPSSrm_alt; break;
case X86_CMPSSrr: NewOpc = X86_CMPSSrr_alt; break;
}
// Switch opcode to the one that doesn't get special printing.
if (NewOpc != 0) {
MCInst_setOpcode(mcInst, NewOpc);
}
}
#endif
} else if (type == TYPE_IMM5) {
#ifndef CAPSTONE_X86_REDUCE
// Check for immediates that printAVXCC can't handle.
if (immediate >= 32) {
unsigned NewOpc = 0;
switch (MCInst_getOpcode(mcInst)) {
default: break; // unexpected opcode
case X86_VCMPPDrmi: NewOpc = X86_VCMPPDrmi_alt; break;
case X86_VCMPPDrri: NewOpc = X86_VCMPPDrri_alt; break;
case X86_VCMPPSrmi: NewOpc = X86_VCMPPSrmi_alt; break;
case X86_VCMPPSrri: NewOpc = X86_VCMPPSrri_alt; break;
case X86_VCMPSDrm: NewOpc = X86_VCMPSDrm_alt; break;
case X86_VCMPSDrr: NewOpc = X86_VCMPSDrr_alt; break;
case X86_VCMPSSrm: NewOpc = X86_VCMPSSrm_alt; break;
case X86_VCMPSSrr: NewOpc = X86_VCMPSSrr_alt; break;
case X86_VCMPPDYrmi: NewOpc = X86_VCMPPDYrmi_alt; break;
case X86_VCMPPDYrri: NewOpc = X86_VCMPPDYrri_alt; break;
case X86_VCMPPSYrmi: NewOpc = X86_VCMPPSYrmi_alt; break;
case X86_VCMPPSYrri: NewOpc = X86_VCMPPSYrri_alt; break;
case X86_VCMPPDZrmi: NewOpc = X86_VCMPPDZrmi_alt; break;
case X86_VCMPPDZrri: NewOpc = X86_VCMPPDZrri_alt; break;
case X86_VCMPPSZrmi: NewOpc = X86_VCMPPSZrmi_alt; break;
case X86_VCMPPSZrri: NewOpc = X86_VCMPPSZrri_alt; break;
case X86_VCMPSDZrm: NewOpc = X86_VCMPSDZrmi_alt; break;
case X86_VCMPSDZrr: NewOpc = X86_VCMPSDZrri_alt; break;
case X86_VCMPSSZrm: NewOpc = X86_VCMPSSZrmi_alt; break;
case X86_VCMPSSZrr: NewOpc = X86_VCMPSSZrri_alt; break;
}
// Switch opcode to the one that doesn't get special printing.
if (NewOpc != 0) {
MCInst_setOpcode(mcInst, NewOpc);
}
}
#endif
}
switch (type) {
case TYPE_XMM32:
case TYPE_XMM64:
case TYPE_XMM128:
MCOperand_CreateReg0(mcInst, X86_XMM0 + ((uint32_t)immediate >> 4));
return;
case TYPE_XMM256:
MCOperand_CreateReg0(mcInst, X86_YMM0 + ((uint32_t)immediate >> 4));
return;
case TYPE_XMM512:
MCOperand_CreateReg0(mcInst, X86_ZMM0 + ((uint32_t)immediate >> 4));
return;
case TYPE_REL8:
if(immediate & 0x80)
immediate |= ~(0xffull);
break;
case TYPE_REL32:
case TYPE_REL64:
if(immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
default:
// operand is 64 bits wide. Do nothing.
break;
}
MCOperand_CreateImm0(mcInst, immediate);
if (type == TYPE_MOFFS8 || type == TYPE_MOFFS16 ||
type == TYPE_MOFFS32 || type == TYPE_MOFFS64) {
MCOperand_CreateReg0(mcInst, segmentRegnums[insn->segmentOverride]);
}
}
/// translateRMRegister - Translates a register stored in the R/M field of the
/// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction to extract the R/M field
/// from.
/// @return - 0 on success; -1 otherwise
static bool translateRMRegister(MCInst *mcInst, InternalInstruction *insn)
{
if (insn->eaBase == EA_BASE_sib || insn->eaBase == EA_BASE_sib64) {
//debug("A R/M register operand may not have a SIB byte");
return true;
}
switch (insn->eaBase) {
case EA_BASE_NONE:
//debug("EA_BASE_NONE for ModR/M base");
return true;
#define ENTRY(x) case EA_BASE_##x:
ALL_EA_BASES
#undef ENTRY
//debug("A R/M register operand may not have a base; "
// "the operand must be a register.");
return true;
#define ENTRY(x) \
case EA_REG_##x: \
MCOperand_CreateReg0(mcInst, X86_##x); break;
ALL_REGS
#undef ENTRY
default:
//debug("Unexpected EA base register");
return true;
}
return false;
}
/// translateRMMemory - Translates a memory operand stored in the Mod and R/M
/// fields of an internal instruction (and possibly its SIB byte) to a memory
/// operand in LLVM's format, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The instruction to extract Mod, R/M, and SIB fields
/// from.
/// @return - 0 on success; nonzero otherwise
static bool translateRMMemory(MCInst *mcInst, InternalInstruction *insn)
{
// Addresses in an MCInst are represented as five operands:
// 1. basereg (register) The R/M base, or (if there is a SIB) the
// SIB base
// 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
// scale amount
// 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
// the index (which is multiplied by the
// scale amount)
// 4. displacement (immediate) 0, or the displacement if there is one
// 5. segmentreg (register) x86_registerNONE for now, but could be set
// if we have segment overrides
bool IndexIs512, IndexIs128, IndexIs256;
int scaleAmount, indexReg;
#ifndef CAPSTONE_X86_REDUCE
uint32_t Opcode;
#endif
if (insn->eaBase == EA_BASE_sib || insn->eaBase == EA_BASE_sib64) {
if (insn->sibBase != SIB_BASE_NONE) {
switch (insn->sibBase) {
#define ENTRY(x) \
case SIB_BASE_##x: \
MCOperand_CreateReg0(mcInst, X86_##x); break;
ALL_SIB_BASES
#undef ENTRY
default:
//debug("Unexpected sibBase");
return true;
}
} else {
MCOperand_CreateReg0(mcInst, 0);
}
// Check whether we are handling VSIB addressing mode for GATHER.
// If sibIndex was set to SIB_INDEX_NONE, index offset is 4 and
// we should use SIB_INDEX_XMM4|YMM4 for VSIB.
// I don't see a way to get the correct IndexReg in readSIB:
// We can tell whether it is VSIB or SIB after instruction ID is decoded,
// but instruction ID may not be decoded yet when calling readSIB.
#ifndef CAPSTONE_X86_REDUCE
Opcode = MCInst_getOpcode(mcInst);
#endif
IndexIs128 = (
#ifndef CAPSTONE_X86_REDUCE
Opcode == X86_VGATHERDPDrm ||
Opcode == X86_VGATHERDPDYrm ||
Opcode == X86_VGATHERQPDrm ||
Opcode == X86_VGATHERDPSrm ||
Opcode == X86_VGATHERQPSrm ||
Opcode == X86_VPGATHERDQrm ||
Opcode == X86_VPGATHERDQYrm ||
Opcode == X86_VPGATHERQQrm ||
Opcode == X86_VPGATHERDDrm ||
Opcode == X86_VPGATHERQDrm ||
#endif
false
);
IndexIs256 = (
#ifndef CAPSTONE_X86_REDUCE
Opcode == X86_VGATHERQPDYrm ||
Opcode == X86_VGATHERDPSYrm ||
Opcode == X86_VGATHERQPSYrm ||
Opcode == X86_VGATHERDPDZrm ||
Opcode == X86_VPGATHERDQZrm ||
Opcode == X86_VPGATHERQQYrm ||
Opcode == X86_VPGATHERDDYrm ||
Opcode == X86_VPGATHERQDYrm ||
#endif
false
);
IndexIs512 = (
#ifndef CAPSTONE_X86_REDUCE
Opcode == X86_VGATHERQPDZrm ||
Opcode == X86_VGATHERDPSZrm ||
Opcode == X86_VGATHERQPSZrm ||
Opcode == X86_VPGATHERQQZrm ||
Opcode == X86_VPGATHERDDZrm ||
Opcode == X86_VPGATHERQDZrm ||
#endif
false
);
if (IndexIs128 || IndexIs256 || IndexIs512) {
unsigned IndexOffset = insn->sibIndex -
(insn->addressSize == 8 ? SIB_INDEX_RAX:SIB_INDEX_EAX);
SIBIndex IndexBase = IndexIs512 ? SIB_INDEX_ZMM0 :
IndexIs256 ? SIB_INDEX_YMM0 : SIB_INDEX_XMM0;
insn->sibIndex = (SIBIndex)(IndexBase + (insn->sibIndex == SIB_INDEX_NONE ? 4 : IndexOffset));
}
if (insn->sibIndex != SIB_INDEX_NONE) {
switch (insn->sibIndex) {
default:
//debug("Unexpected sibIndex");
return true;
#define ENTRY(x) \
case SIB_INDEX_##x: \
indexReg = X86_##x; break;
EA_BASES_32BIT
EA_BASES_64BIT
REGS_XMM
REGS_YMM
REGS_ZMM
#undef ENTRY
}
} else {
indexReg = 0;
}
scaleAmount = insn->sibScale;
} else {
switch (insn->eaBase) {
case EA_BASE_NONE:
if (insn->eaDisplacement == EA_DISP_NONE) {
//debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
return true;
}
if (insn->mode == MODE_64BIT) {
if (insn->prefix3 == 0x67) // address-size prefix overrides RIP relative addressing
MCOperand_CreateReg0(mcInst, X86_EIP);
else
MCOperand_CreateReg0(mcInst, X86_RIP); // Section 2.2.1.6
} else {
MCOperand_CreateReg0(mcInst, 0);
}
indexReg = 0;
break;
case EA_BASE_BX_SI:
MCOperand_CreateReg0(mcInst, X86_BX);
indexReg = X86_SI;
break;
case EA_BASE_BX_DI:
MCOperand_CreateReg0(mcInst, X86_BX);
indexReg = X86_DI;
break;
case EA_BASE_BP_SI:
MCOperand_CreateReg0(mcInst, X86_BP);
indexReg = X86_SI;
break;
case EA_BASE_BP_DI:
MCOperand_CreateReg0(mcInst, X86_BP);
indexReg = X86_DI;
break;
default:
indexReg = 0;
switch (insn->eaBase) {
default:
//debug("Unexpected eaBase");
return true;
// Here, we will use the fill-ins defined above. However,
// BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
// sib and sib64 were handled in the top-level if, so they're only
// placeholders to keep the compiler happy.
#define ENTRY(x) \
case EA_BASE_##x: \
MCOperand_CreateReg0(mcInst, X86_##x); break;
ALL_EA_BASES
#undef ENTRY
#define ENTRY(x) case EA_REG_##x:
ALL_REGS
#undef ENTRY
//debug("A R/M memory operand may not be a register; "
// "the base field must be a base.");
return true;
}
}
scaleAmount = 1;
}
MCOperand_CreateImm0(mcInst, scaleAmount);
MCOperand_CreateReg0(mcInst, indexReg);
MCOperand_CreateImm0(mcInst, insn->displacement);
MCOperand_CreateReg0(mcInst, segmentRegnums[insn->segmentOverride]);
return false;
}
/// translateRM - Translates an operand stored in the R/M (and possibly SIB)
/// byte of an instruction to LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The instruction to extract Mod, R/M, and SIB fields
/// from.
/// @return - 0 on success; nonzero otherwise
static bool translateRM(MCInst *mcInst, const OperandSpecifier *operand,
InternalInstruction *insn)
{
switch (operand->type) {
case TYPE_R8:
case TYPE_R16:
case TYPE_R32:
case TYPE_R64:
case TYPE_Rv:
case TYPE_MM:
case TYPE_MM32:
case TYPE_MM64:
case TYPE_XMM:
case TYPE_XMM32:
case TYPE_XMM64:
case TYPE_XMM128:
case TYPE_XMM256:
case TYPE_XMM512:
case TYPE_VK1:
case TYPE_VK8:
case TYPE_VK16:
case TYPE_DEBUGREG:
case TYPE_CONTROLREG:
return translateRMRegister(mcInst, insn);
case TYPE_M:
case TYPE_M8:
case TYPE_M16:
case TYPE_M32:
case TYPE_M64:
case TYPE_M128:
case TYPE_M256:
case TYPE_M512:
case TYPE_Mv:
case TYPE_M32FP:
case TYPE_M64FP:
case TYPE_M80FP:
case TYPE_M16INT:
case TYPE_M32INT:
case TYPE_M64INT:
case TYPE_M1616:
case TYPE_M1632:
case TYPE_M1664:
case TYPE_LEA:
return translateRMMemory(mcInst, insn);
default:
//debug("Unexpected type for a R/M operand");
return true;
}
}
/// translateFPRegister - Translates a stack position on the FPU stack to its
/// LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param stackPos - The stack position to translate.
static void translateFPRegister(MCInst *mcInst, uint8_t stackPos)
{
MCOperand_CreateReg0(mcInst, X86_ST0 + stackPos);
}
/// translateMaskRegister - Translates a 3-bit mask register number to
/// LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param maskRegNum - Number of mask register from 0 to 7.
/// @return - false on success; true otherwise.
static bool translateMaskRegister(MCInst *mcInst, uint8_t maskRegNum)
{
if (maskRegNum >= 8) {
// debug("Invalid mask register number");
return true;
}
MCOperand_CreateReg0(mcInst, X86_K0 + maskRegNum);
return false;
}
/// translateOperand - Translates an operand stored in an internal instruction
/// to LLVM's format and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The internal instruction.
/// @return - false on success; true otherwise.
static bool translateOperand(MCInst *mcInst, const OperandSpecifier *operand, InternalInstruction *insn)
{
switch (operand->encoding) {
case ENCODING_REG:
translateRegister(mcInst, insn->reg);
return false;
case ENCODING_WRITEMASK:
return translateMaskRegister(mcInst, insn->writemask);
CASE_ENCODING_RM:
return translateRM(mcInst, operand, insn);
case ENCODING_CB:
case ENCODING_CW:
case ENCODING_CD:
case ENCODING_CP:
case ENCODING_CO:
case ENCODING_CT:
//debug("Translation of code offsets isn't supported.");
return true;
case ENCODING_IB:
case ENCODING_IW:
case ENCODING_ID:
case ENCODING_IO:
case ENCODING_Iv:
case ENCODING_Ia:
translateImmediate(mcInst, insn->immediates[insn->numImmediatesTranslated++], operand, insn);
return false;
case ENCODING_SI:
return translateSrcIndex(mcInst, insn);
case ENCODING_DI:
return translateDstIndex(mcInst, insn);
case ENCODING_RB:
case ENCODING_RW:
case ENCODING_RD:
case ENCODING_RO:
case ENCODING_Rv:
translateRegister(mcInst, insn->opcodeRegister);
return false;
case ENCODING_FP:
translateFPRegister(mcInst, insn->modRM & 7);
return false;
case ENCODING_VVVV:
translateRegister(mcInst, insn->vvvv);
return false;
case ENCODING_DUP:
return translateOperand(mcInst, &insn->operands[operand->type - TYPE_DUP0], insn);
default:
//debug("Unhandled operand encoding during translation");
return true;
}
}
static bool translateInstruction(MCInst *mcInst, InternalInstruction *insn)
{
int index;
if (!insn->spec) {
//debug("Instruction has no specification");
return true;
}
MCInst_setOpcode(mcInst, insn->instructionID);
// If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
// prefix bytes should be disassembled as xrelease and xacquire then set the
// opcode to those instead of the rep and repne opcodes.
#ifndef CAPSTONE_X86_REDUCE
if (insn->xAcquireRelease) {
if (MCInst_getOpcode(mcInst) == X86_REP_PREFIX)
MCInst_setOpcode(mcInst, X86_XRELEASE_PREFIX);
else if (MCInst_getOpcode(mcInst) == X86_REPNE_PREFIX)
MCInst_setOpcode(mcInst, X86_XACQUIRE_PREFIX);
}
#endif
insn->numImmediatesTranslated = 0;
for (index = 0; index < X86_MAX_OPERANDS; ++index) {
if (insn->operands[index].encoding != ENCODING_NONE) {
if (translateOperand(mcInst, &insn->operands[index], insn)) {
return true;
}
}
}
return false;
}
static int reader(const struct reader_info *info, uint8_t *byte, uint64_t address)
{
if (address - info->offset >= info->size)
// out of buffer range
return -1;
*byte = info->code[address - info->offset];
return 0;
}
// copy x86 detail information from internal structure to public structure
static void update_pub_insn(cs_insn *pub, InternalInstruction *inter, uint8_t *prefixes)
{
prefixes[0] = inter->prefix0;
prefixes[1] = inter->prefix1;
prefixes[2] = inter->prefix2;
prefixes[3] = inter->prefix3;
if (inter->vectorExtensionType != 0)
memcpy(pub->detail->x86.opcode, inter->vectorExtensionPrefix, sizeof(pub->detail->x86.opcode));
else {
if (inter->twoByteEscape) {
if (inter->threeByteEscape) {
pub->detail->x86.opcode[0] = inter->twoByteEscape;
pub->detail->x86.opcode[1] = inter->threeByteEscape;
pub->detail->x86.opcode[2] = inter->opcode;
} else {
pub->detail->x86.opcode[0] = inter->twoByteEscape;
pub->detail->x86.opcode[1] = inter->opcode;
}
} else {
pub->detail->x86.opcode[0] = inter->opcode;
}
}
pub->detail->x86.rex = inter->rexPrefix;
pub->detail->x86.addr_size = inter->addressSize;
pub->detail->x86.modrm = inter->orgModRM;
pub->detail->x86.sib = inter->sib;
pub->detail->x86.disp = inter->displacement;
pub->detail->x86.sib_index = x86_map_sib_index(inter->sibIndex);
pub->detail->x86.sib_scale = inter->sibScale;
pub->detail->x86.sib_base = x86_map_sib_base(inter->sibBase);
}
void X86_init(MCRegisterInfo *MRI)
{
/*
InitMCRegisterInfo(X86RegDesc, 234,
RA, PC,
X86MCRegisterClasses, 79,
X86RegUnitRoots, 119, X86RegDiffLists, X86RegStrings,
X86SubRegIdxLists, 7,
X86SubRegIdxRanges, X86RegEncodingTable);
*/
MCRegisterInfo_InitMCRegisterInfo(MRI, X86RegDesc, 234,
0, 0,
X86MCRegisterClasses, 79,
0, 0, X86RegDiffLists, 0,
X86SubRegIdxLists, 7,
0);
}
// Public interface for the disassembler
bool X86_getInstruction(csh ud, const uint8_t *code, size_t code_len,
MCInst *instr, uint16_t *size, uint64_t address, void *_info)
{
cs_struct *handle = (cs_struct *)(uintptr_t)ud;
InternalInstruction insn;
struct reader_info info;
int ret;
bool result;
info.code = code;
info.size = code_len;
info.offset = address;
memset(&insn, 0, offsetof(InternalInstruction, reader));
if (instr->flat_insn->detail) {
instr->flat_insn->detail->x86.op_count = 0;
instr->flat_insn->detail->x86.sse_cc = X86_SSE_CC_INVALID;
instr->flat_insn->detail->x86.avx_cc = X86_AVX_CC_INVALID;
instr->flat_insn->detail->x86.avx_sae = false;
instr->flat_insn->detail->x86.avx_rm = X86_AVX_RM_INVALID;
memset(instr->flat_insn->detail->x86.prefix, 0, sizeof(instr->flat_insn->detail->x86.prefix));
memset(instr->flat_insn->detail->x86.opcode, 0, sizeof(instr->flat_insn->detail->x86.opcode));
memset(instr->flat_insn->detail->x86.operands, 0, sizeof(instr->flat_insn->detail->x86.operands));
}
if (handle->mode & CS_MODE_16)
ret = decodeInstruction(&insn,
reader, &info,
address,
MODE_16BIT);
else if (handle->mode & CS_MODE_32)
ret = decodeInstruction(&insn,
reader, &info,
address,
MODE_32BIT);
else
ret = decodeInstruction(&insn,
reader, &info,
address,
MODE_64BIT);
if (ret) {
*size = (uint16_t)(insn.readerCursor - address);
return false;
} else {
*size = (uint16_t)insn.length;
result = (!translateInstruction(instr, &insn)) ? true : false;
if (result) {
// quick fix for #904. TODO: fix this properly in the next update
if (handle->mode & CS_MODE_64) {
if (instr->Opcode == X86_LES16rm || instr->Opcode == X86_LES32rm)
// LES is invalid in x64
return false;
if (instr->Opcode == X86_LDS16rm || instr->Opcode == X86_LDS32rm)
// LDS is invalid in x64
return false;
}
instr->imm_size = insn.immSize;
if (handle->detail) {
update_pub_insn(instr->flat_insn, &insn, instr->x86_prefix);
} else {
// still copy all prefixes
instr->x86_prefix[0] = insn.prefix0;
instr->x86_prefix[1] = insn.prefix1;
instr->x86_prefix[2] = insn.prefix2;
instr->x86_prefix[3] = insn.prefix3;
}
}
return result;
}
}
#endif