historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/capstone/arch/X86/X86IntelInstPrinter.c
2024-01-16 11:20:27 -06:00

866 lines
27 KiB
C

//===-- X86IntelInstPrinter.cpp - Intel assembly instruction printing -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file includes code for rendering MCInst instances as Intel-style
// assembly.
//
//===----------------------------------------------------------------------===//
/* Capstone Disassembly Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2014 */
#ifdef CAPSTONE_HAS_X86
#if !defined(CAPSTONE_HAS_OSXKERNEL)
#include <ctype.h>
#endif
#include <platform.h>
#if defined(CAPSTONE_HAS_OSXKERNEL)
#include <libkern/libkern.h>
#else
#include <stdio.h>
#include <stdlib.h>
#endif
#include <string.h>
#include "../../utils.h"
#include "../../MCInst.h"
#include "../../SStream.h"
#include "../../MCRegisterInfo.h"
#include "X86Mapping.h"
#define GET_INSTRINFO_ENUM
#ifdef CAPSTONE_X86_REDUCE
#include "X86GenInstrInfo_reduce.inc"
#else
#include "X86GenInstrInfo.inc"
#endif
#include "X86BaseInfo.h"
static void printMemReference(MCInst *MI, unsigned Op, SStream *O);
static void printOperand(MCInst *MI, unsigned OpNo, SStream *O);
static void set_mem_access(MCInst *MI, bool status)
{
if (MI->csh->detail != CS_OPT_ON)
return;
MI->csh->doing_mem = status;
if (!status)
// done, create the next operand slot
MI->flat_insn->detail->x86.op_count++;
}
static void printopaquemem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "ptr ");
switch(MI->csh->mode) {
case CS_MODE_16:
if (MI->flat_insn->id == X86_INS_LJMP || MI->flat_insn->id == X86_INS_LCALL)
MI->x86opsize = 4;
else
MI->x86opsize = 2;
break;
case CS_MODE_32:
if (MI->flat_insn->id == X86_INS_LJMP || MI->flat_insn->id == X86_INS_LCALL)
MI->x86opsize = 6;
else
MI->x86opsize = 4;
break;
case CS_MODE_64:
if (MI->flat_insn->id == X86_INS_LJMP || MI->flat_insn->id == X86_INS_LCALL)
MI->x86opsize = 10;
else
MI->x86opsize = 8;
break;
default: // never reach
break;
}
printMemReference(MI, OpNo, O);
}
static void printi8mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "byte ptr ");
MI->x86opsize = 1;
printMemReference(MI, OpNo, O);
}
static void printi16mem(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 2;
SStream_concat0(O, "word ptr ");
printMemReference(MI, OpNo, O);
}
static void printi32mem(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 4;
SStream_concat0(O, "dword ptr ");
printMemReference(MI, OpNo, O);
}
static void printi64mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "qword ptr ");
MI->x86opsize = 8;
printMemReference(MI, OpNo, O);
}
static void printi128mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "xmmword ptr ");
MI->x86opsize = 16;
printMemReference(MI, OpNo, O);
}
#ifndef CAPSTONE_X86_REDUCE
static void printi256mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "ymmword ptr ");
MI->x86opsize = 32;
printMemReference(MI, OpNo, O);
}
static void printi512mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "zmmword ptr ");
MI->x86opsize = 64;
printMemReference(MI, OpNo, O);
}
static void printf32mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "dword ptr ");
MI->x86opsize = 4;
printMemReference(MI, OpNo, O);
}
static void printf64mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "qword ptr ");
MI->x86opsize = 8;
printMemReference(MI, OpNo, O);
}
static void printf80mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "xword ptr ");
MI->x86opsize = 10;
printMemReference(MI, OpNo, O);
}
static void printf128mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "xmmword ptr ");
MI->x86opsize = 16;
printMemReference(MI, OpNo, O);
}
static void printf256mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "ymmword ptr ");
MI->x86opsize = 32;
printMemReference(MI, OpNo, O);
}
static void printf512mem(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "zmmword ptr ");
MI->x86opsize = 64;
printMemReference(MI, OpNo, O);
}
static void printSSECC(MCInst *MI, unsigned Op, SStream *OS)
{
int64_t Imm = MCOperand_getImm(MCInst_getOperand(MI, Op)) & 7;
switch (Imm) {
default: break; // never reach
case 0: SStream_concat0(OS, "eq"); op_addSseCC(MI, X86_SSE_CC_EQ); break;
case 1: SStream_concat0(OS, "lt"); op_addSseCC(MI, X86_SSE_CC_LT); break;
case 2: SStream_concat0(OS, "le"); op_addSseCC(MI, X86_SSE_CC_LE); break;
case 3: SStream_concat0(OS, "unord"); op_addSseCC(MI, X86_SSE_CC_UNORD); break;
case 4: SStream_concat0(OS, "neq"); op_addSseCC(MI, X86_SSE_CC_NEQ); break;
case 5: SStream_concat0(OS, "nlt"); op_addSseCC(MI, X86_SSE_CC_NLT); break;
case 6: SStream_concat0(OS, "nle"); op_addSseCC(MI, X86_SSE_CC_NLE); break;
case 7: SStream_concat0(OS, "ord"); op_addSseCC(MI, X86_SSE_CC_ORD); break;
case 8: SStream_concat0(OS, "eq_uq"); op_addSseCC(MI, X86_SSE_CC_EQ_UQ); break;
case 9: SStream_concat0(OS, "nge"); op_addSseCC(MI, X86_SSE_CC_NGE); break;
case 0xa: SStream_concat0(OS, "ngt"); op_addSseCC(MI, X86_SSE_CC_NGT); break;
case 0xb: SStream_concat0(OS, "false"); op_addSseCC(MI, X86_SSE_CC_FALSE); break;
case 0xc: SStream_concat0(OS, "neq_oq"); op_addSseCC(MI, X86_SSE_CC_NEQ_OQ); break;
case 0xd: SStream_concat0(OS, "ge"); op_addSseCC(MI, X86_SSE_CC_GE); break;
case 0xe: SStream_concat0(OS, "gt"); op_addSseCC(MI, X86_SSE_CC_GT); break;
case 0xf: SStream_concat0(OS, "true"); op_addSseCC(MI, X86_SSE_CC_TRUE); break;
}
}
static void printAVXCC(MCInst *MI, unsigned Op, SStream *O)
{
int64_t Imm = MCOperand_getImm(MCInst_getOperand(MI, Op)) & 0x1f;
switch (Imm) {
default: break;//printf("Invalid avxcc argument!\n"); break;
case 0: SStream_concat0(O, "eq"); op_addAvxCC(MI, X86_AVX_CC_EQ); break;
case 1: SStream_concat0(O, "lt"); op_addAvxCC(MI, X86_AVX_CC_LT); break;
case 2: SStream_concat0(O, "le"); op_addAvxCC(MI, X86_AVX_CC_LE); break;
case 3: SStream_concat0(O, "unord"); op_addAvxCC(MI, X86_AVX_CC_UNORD); break;
case 4: SStream_concat0(O, "neq"); op_addAvxCC(MI, X86_AVX_CC_NEQ); break;
case 5: SStream_concat0(O, "nlt"); op_addAvxCC(MI, X86_AVX_CC_NLT); break;
case 6: SStream_concat0(O, "nle"); op_addAvxCC(MI, X86_AVX_CC_NLE); break;
case 7: SStream_concat0(O, "ord"); op_addAvxCC(MI, X86_AVX_CC_ORD); break;
case 8: SStream_concat0(O, "eq_uq"); op_addAvxCC(MI, X86_AVX_CC_EQ_UQ); break;
case 9: SStream_concat0(O, "nge"); op_addAvxCC(MI, X86_AVX_CC_NGE); break;
case 0xa: SStream_concat0(O, "ngt"); op_addAvxCC(MI, X86_AVX_CC_NGT); break;
case 0xb: SStream_concat0(O, "false"); op_addAvxCC(MI, X86_AVX_CC_FALSE); break;
case 0xc: SStream_concat0(O, "neq_oq"); op_addAvxCC(MI, X86_AVX_CC_NEQ_OQ); break;
case 0xd: SStream_concat0(O, "ge"); op_addAvxCC(MI, X86_AVX_CC_GE); break;
case 0xe: SStream_concat0(O, "gt"); op_addAvxCC(MI, X86_AVX_CC_GT); break;
case 0xf: SStream_concat0(O, "true"); op_addAvxCC(MI, X86_AVX_CC_TRUE); break;
case 0x10: SStream_concat0(O, "eq_os"); op_addAvxCC(MI, X86_AVX_CC_EQ_OS); break;
case 0x11: SStream_concat0(O, "lt_oq"); op_addAvxCC(MI, X86_AVX_CC_LT_OQ); break;
case 0x12: SStream_concat0(O, "le_oq"); op_addAvxCC(MI, X86_AVX_CC_LE_OQ); break;
case 0x13: SStream_concat0(O, "unord_s"); op_addAvxCC(MI, X86_AVX_CC_UNORD_S); break;
case 0x14: SStream_concat0(O, "neq_us"); op_addAvxCC(MI, X86_AVX_CC_NEQ_US); break;
case 0x15: SStream_concat0(O, "nlt_uq"); op_addAvxCC(MI, X86_AVX_CC_NLT_UQ); break;
case 0x16: SStream_concat0(O, "nle_uq"); op_addAvxCC(MI, X86_AVX_CC_NLE_UQ); break;
case 0x17: SStream_concat0(O, "ord_s"); op_addAvxCC(MI, X86_AVX_CC_ORD_S); break;
case 0x18: SStream_concat0(O, "eq_us"); op_addAvxCC(MI, X86_AVX_CC_EQ_US); break;
case 0x19: SStream_concat0(O, "nge_uq"); op_addAvxCC(MI, X86_AVX_CC_NGE_UQ); break;
case 0x1a: SStream_concat0(O, "ngt_uq"); op_addAvxCC(MI, X86_AVX_CC_NGT_UQ); break;
case 0x1b: SStream_concat0(O, "false_os"); op_addAvxCC(MI, X86_AVX_CC_FALSE_OS); break;
case 0x1c: SStream_concat0(O, "neq_os"); op_addAvxCC(MI, X86_AVX_CC_NEQ_OS); break;
case 0x1d: SStream_concat0(O, "ge_oq"); op_addAvxCC(MI, X86_AVX_CC_GE_OQ); break;
case 0x1e: SStream_concat0(O, "gt_oq"); op_addAvxCC(MI, X86_AVX_CC_GT_OQ); break;
case 0x1f: SStream_concat0(O, "true_us"); op_addAvxCC(MI, X86_AVX_CC_TRUE_US); break;
}
}
static void printRoundingControl(MCInst *MI, unsigned Op, SStream *O)
{
int64_t Imm = MCOperand_getImm(MCInst_getOperand(MI, Op)) & 0x3;
switch (Imm) {
case 0: SStream_concat0(O, "{rn-sae}"); op_addAvxSae(MI); op_addAvxRoundingMode(MI, X86_AVX_RM_RN); break;
case 1: SStream_concat0(O, "{rd-sae}"); op_addAvxSae(MI); op_addAvxRoundingMode(MI, X86_AVX_RM_RD); break;
case 2: SStream_concat0(O, "{ru-sae}"); op_addAvxSae(MI); op_addAvxRoundingMode(MI, X86_AVX_RM_RU); break;
case 3: SStream_concat0(O, "{rz-sae}"); op_addAvxSae(MI); op_addAvxRoundingMode(MI, X86_AVX_RM_RZ); break;
default: break; // never reach
}
}
#endif
static const char *getRegisterName(unsigned RegNo);
static void printRegName(SStream *OS, unsigned RegNo)
{
SStream_concat0(OS, getRegisterName(RegNo));
}
// local printOperand, without updating public operands
static void _printOperand(MCInst *MI, unsigned OpNo, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNo);
if (MCOperand_isReg(Op)) {
printRegName(O, MCOperand_getReg(Op));
} else if (MCOperand_isImm(Op)) {
int64_t imm = MCOperand_getImm(Op);
if (imm < 0) {
if (imm < -HEX_THRESHOLD)
SStream_concat(O, "-0x%"PRIx64, -imm);
else
SStream_concat(O, "-%"PRIu64, -imm);
} else {
if (imm > HEX_THRESHOLD)
SStream_concat(O, "0x%"PRIx64, imm);
else
SStream_concat(O, "%"PRIu64, imm);
}
}
}
static void printSrcIdx(MCInst *MI, unsigned Op, SStream *O)
{
MCOperand *SegReg;
int reg;
if (MI->csh->detail) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_REG_INVALID;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = X86_REG_INVALID;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0;
}
SegReg = MCInst_getOperand(MI, Op+1);
reg = MCOperand_getReg(SegReg);
// If this has a segment register, print it.
if (reg) {
_printOperand(MI, Op+1, O);
if (MI->csh->detail) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = reg;
}
SStream_concat0(O, ":");
}
SStream_concat0(O, "[");
set_mem_access(MI, true);
printOperand(MI, Op, O);
SStream_concat0(O, "]");
set_mem_access(MI, false);
}
static void printDstIdx(MCInst *MI, unsigned Op, SStream *O)
{
if (MI->csh->detail) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_REG_INVALID;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = X86_REG_INVALID;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0;
}
// DI accesses are always ES-based on non-64bit mode
if (MI->csh->mode != CS_MODE_64) {
SStream_concat(O, "es:[");
if (MI->csh->detail) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_ES;
}
} else
SStream_concat(O, "[");
set_mem_access(MI, true);
printOperand(MI, Op, O);
SStream_concat0(O, "]");
set_mem_access(MI, false);
}
void printSrcIdx8(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "byte ptr ");
MI->x86opsize = 1;
printSrcIdx(MI, OpNo, O);
}
void printSrcIdx16(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "word ptr ");
MI->x86opsize = 2;
printSrcIdx(MI, OpNo, O);
}
void printSrcIdx32(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "dword ptr ");
MI->x86opsize = 4;
printSrcIdx(MI, OpNo, O);
}
void printSrcIdx64(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "qword ptr ");
MI->x86opsize = 8;
printSrcIdx(MI, OpNo, O);
}
void printDstIdx8(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "byte ptr ");
MI->x86opsize = 1;
printDstIdx(MI, OpNo, O);
}
void printDstIdx16(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "word ptr ");
MI->x86opsize = 2;
printDstIdx(MI, OpNo, O);
}
void printDstIdx32(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "dword ptr ");
MI->x86opsize = 4;
printDstIdx(MI, OpNo, O);
}
void printDstIdx64(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "qword ptr ");
MI->x86opsize = 8;
printDstIdx(MI, OpNo, O);
}
static void printMemOffset(MCInst *MI, unsigned Op, SStream *O)
{
MCOperand *DispSpec = MCInst_getOperand(MI, Op);
MCOperand *SegReg = MCInst_getOperand(MI, Op + 1);
int reg;
if (MI->csh->detail) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_REG_INVALID;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = X86_REG_INVALID;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0;
}
// If this has a segment register, print it.
reg = MCOperand_getReg(SegReg);
if (reg) {
_printOperand(MI, Op + 1, O);
SStream_concat0(O, ":");
if (MI->csh->detail) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = reg;
}
}
SStream_concat0(O, "[");
if (MCOperand_isImm(DispSpec)) {
int64_t imm = MCOperand_getImm(DispSpec);
if (MI->csh->detail)
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = imm;
if (imm < 0) {
SStream_concat(O, "0x%"PRIx64, arch_masks[MI->csh->mode] & imm);
} else {
if (imm > HEX_THRESHOLD)
SStream_concat(O, "0x%"PRIx64, imm);
else
SStream_concat(O, "%"PRIu64, imm);
}
}
SStream_concat0(O, "]");
if (MI->csh->detail)
MI->flat_insn->detail->x86.op_count++;
if (MI->op1_size == 0)
MI->op1_size = MI->x86opsize;
}
static void printMemOffs8(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "byte ptr ");
MI->x86opsize = 1;
printMemOffset(MI, OpNo, O);
}
static void printMemOffs16(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "word ptr ");
MI->x86opsize = 2;
printMemOffset(MI, OpNo, O);
}
static void printMemOffs32(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "dword ptr ");
MI->x86opsize = 4;
printMemOffset(MI, OpNo, O);
}
static void printMemOffs64(MCInst *MI, unsigned OpNo, SStream *O)
{
SStream_concat0(O, "qword ptr ");
MI->x86opsize = 8;
printMemOffset(MI, OpNo, O);
}
#ifndef CAPSTONE_DIET
static char *printAliasInstr(MCInst *MI, SStream *OS, void *info);
#endif
static void printInstruction(MCInst *MI, SStream *O, MCRegisterInfo *MRI);
void X86_Intel_printInst(MCInst *MI, SStream *O, void *Info)
{
x86_reg reg, reg2;
#ifndef CAPSTONE_DIET
char *mnem;
// Try to print any aliases first.
mnem = printAliasInstr(MI, O, Info);
if (mnem)
cs_mem_free(mnem);
else
#endif
printInstruction(MI, O, Info);
reg = X86_insn_reg_intel(MCInst_getOpcode(MI));
if (MI->csh->detail) {
// first op can be embedded in the asm by llvm.
// so we have to add the missing register as the first operand
if (reg) {
// shift all the ops right to leave 1st slot for this new register op
memmove(&(MI->flat_insn->detail->x86.operands[1]), &(MI->flat_insn->detail->x86.operands[0]),
sizeof(MI->flat_insn->detail->x86.operands[0]) * (ARR_SIZE(MI->flat_insn->detail->x86.operands) - 1));
MI->flat_insn->detail->x86.operands[0].type = X86_OP_REG;
MI->flat_insn->detail->x86.operands[0].reg = reg;
MI->flat_insn->detail->x86.operands[0].size = MI->csh->regsize_map[reg];
MI->flat_insn->detail->x86.operands[1].size = MI->csh->regsize_map[reg];
MI->flat_insn->detail->x86.op_count++;
} else {
if (X86_insn_reg_intel2(MCInst_getOpcode(MI), &reg, &reg2)) {
MI->flat_insn->detail->x86.operands[0].type = X86_OP_REG;
MI->flat_insn->detail->x86.operands[0].reg = reg;
MI->flat_insn->detail->x86.operands[0].size = MI->csh->regsize_map[reg];
MI->flat_insn->detail->x86.operands[1].type = X86_OP_REG;
MI->flat_insn->detail->x86.operands[1].reg = reg2;
MI->flat_insn->detail->x86.operands[1].size = MI->csh->regsize_map[reg2];
MI->flat_insn->detail->x86.op_count = 2;
}
}
}
if (MI->op1_size == 0 && reg)
MI->op1_size = MI->csh->regsize_map[reg];
}
/// printPCRelImm - This is used to print an immediate value that ends up
/// being encoded as a pc-relative value.
static void printPCRelImm(MCInst *MI, unsigned OpNo, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNo);
if (MCOperand_isImm(Op)) {
int64_t imm = MCOperand_getImm(Op) + MI->flat_insn->size + MI->address;
// truncat imm for non-64bit
if (MI->csh->mode != CS_MODE_64) {
imm = imm & 0xffffffff;
}
if (MI->csh->mode == CS_MODE_16 &&
(MI->Opcode != X86_JMP_4 && MI->Opcode != X86_CALLpcrel32))
imm = imm & 0xffff;
// Hack: X86 16bit with opcode X86_JMP_4
if (MI->csh->mode == CS_MODE_16 &&
(MI->Opcode == X86_JMP_4 && MI->x86_prefix[2] != 0x66))
imm = imm & 0xffff;
// CALL/JMP rel16 is special
if (MI->Opcode == X86_CALLpcrel16 || MI->Opcode == X86_JMP_2)
imm = imm & 0xffff;
if (imm < 0) {
SStream_concat(O, "0x%"PRIx64, imm);
} else {
if (imm > HEX_THRESHOLD)
SStream_concat(O, "0x%"PRIx64, imm);
else
SStream_concat(O, "%"PRIu64, imm);
}
if (MI->csh->detail) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM;
// if op_count > 0, then this operand's size is taken from the destination op
if (MI->flat_insn->detail->x86.op_count > 0)
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->flat_insn->detail->x86.operands[0].size;
else
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->imm_size;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = imm;
MI->flat_insn->detail->x86.op_count++;
}
if (MI->op1_size == 0)
MI->op1_size = MI->imm_size;
}
}
static void printOperand(MCInst *MI, unsigned OpNo, SStream *O)
{
uint8_t opsize = 0;
MCOperand *Op = MCInst_getOperand(MI, OpNo);
if (MCOperand_isReg(Op)) {
unsigned int reg = MCOperand_getReg(Op);
printRegName(O, reg);
if (MI->csh->detail) {
if (MI->csh->doing_mem) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = reg;
} else {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_REG;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].reg = reg;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->csh->regsize_map[reg];
MI->flat_insn->detail->x86.op_count++;
}
}
if (MI->op1_size == 0)
MI->op1_size = MI->csh->regsize_map[reg];
} else if (MCOperand_isImm(Op)) {
int64_t imm = MCOperand_getImm(Op);
switch(MCInst_getOpcode(MI)) {
default:
break;
case X86_AAD8i8:
case X86_AAM8i8:
case X86_ADC8i8:
case X86_ADD8i8:
case X86_AND8i8:
case X86_CMP8i8:
case X86_OR8i8:
case X86_SBB8i8:
case X86_SUB8i8:
case X86_TEST8i8:
case X86_XOR8i8:
case X86_ROL8ri:
case X86_ADC8ri:
case X86_ADD8ri:
case X86_ADD8ri8:
case X86_AND8ri:
case X86_AND8ri8:
case X86_CMP8ri:
case X86_MOV8ri:
case X86_MOV8ri_alt:
case X86_OR8ri:
case X86_OR8ri8:
case X86_RCL8ri:
case X86_RCR8ri:
case X86_ROR8ri:
case X86_SAL8ri:
case X86_SAR8ri:
case X86_SBB8ri:
case X86_SHL8ri:
case X86_SHR8ri:
case X86_SUB8ri:
case X86_SUB8ri8:
case X86_TEST8ri:
case X86_TEST8ri_NOREX:
case X86_TEST8ri_alt:
case X86_XOR8ri:
case X86_XOR8ri8:
case X86_OUT8ir:
case X86_ADC8mi:
case X86_ADD8mi:
case X86_AND8mi:
case X86_CMP8mi:
case X86_LOCK_ADD8mi:
case X86_LOCK_AND8mi:
case X86_LOCK_OR8mi:
case X86_LOCK_SUB8mi:
case X86_LOCK_XOR8mi:
case X86_MOV8mi:
case X86_OR8mi:
case X86_RCL8mi:
case X86_RCR8mi:
case X86_ROL8mi:
case X86_ROR8mi:
case X86_SAL8mi:
case X86_SAR8mi:
case X86_SBB8mi:
case X86_SHL8mi:
case X86_SHR8mi:
case X86_SUB8mi:
case X86_TEST8mi:
case X86_TEST8mi_alt:
case X86_XOR8mi:
case X86_PUSH64i8:
case X86_CMP32ri8:
case X86_CMP64ri8:
imm = imm & 0xff;
opsize = 1; // immediate of 1 byte
break;
}
switch(MI->flat_insn->id) {
default:
if (imm >= 0) {
if (imm > HEX_THRESHOLD)
SStream_concat(O, "0x%"PRIx64, imm);
else
SStream_concat(O, "%"PRIu64, imm);
} else {
if (imm < -HEX_THRESHOLD)
SStream_concat(O, "-0x%"PRIx64, -imm);
else
SStream_concat(O, "-%"PRIu64, -imm);
}
break;
case X86_INS_LCALL:
case X86_INS_LJMP:
// always print address in positive form
if (OpNo == 1) { // selector is ptr16
imm = imm & 0xffff;
opsize = 2;
}
if (imm > HEX_THRESHOLD)
SStream_concat(O, "0x%"PRIx64, imm);
else
SStream_concat(O, "%"PRIu64, imm);
break;
case X86_INS_AND:
case X86_INS_OR:
case X86_INS_XOR:
// do not print number in negative form
if (imm >= 0 && imm <= HEX_THRESHOLD)
SStream_concat(O, "%u", imm);
else {
imm = arch_masks[MI->op1_size? MI->op1_size : MI->imm_size] & imm;
SStream_concat(O, "0x%"PRIx64, imm);
}
break;
case X86_INS_RET:
// RET imm16
if (imm >= 0 && imm <= HEX_THRESHOLD)
SStream_concat(O, "%u", imm);
else {
imm = 0xffff & imm;
SStream_concat(O, "0x%x", 0xffff & imm);
}
break;
}
if (MI->csh->detail) {
if (MI->csh->doing_mem) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = imm;
} else {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM;
if (opsize > 0)
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = opsize;
else if (MI->flat_insn->detail->x86.op_count > 0) {
if (MI->flat_insn->id != X86_INS_LCALL && MI->flat_insn->id != X86_INS_LJMP) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size =
MI->flat_insn->detail->x86.operands[0].size;
} else
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->imm_size;
} else
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->imm_size;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = imm;
MI->flat_insn->detail->x86.op_count++;
}
}
//if (MI->op1_size == 0)
// MI->op1_size = MI->imm_size;
}
}
static void printMemReference(MCInst *MI, unsigned Op, SStream *O)
{
bool NeedPlus = false;
MCOperand *BaseReg = MCInst_getOperand(MI, Op + X86_AddrBaseReg);
uint64_t ScaleVal = MCOperand_getImm(MCInst_getOperand(MI, Op + X86_AddrScaleAmt));
MCOperand *IndexReg = MCInst_getOperand(MI, Op + X86_AddrIndexReg);
MCOperand *DispSpec = MCInst_getOperand(MI, Op + X86_AddrDisp);
MCOperand *SegReg = MCInst_getOperand(MI, Op + X86_AddrSegmentReg);
int reg;
if (MI->csh->detail) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = MCOperand_getReg(BaseReg);
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = MCOperand_getReg(IndexReg);
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = (int)ScaleVal;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0;
}
// If this has a segment register, print it.
reg = MCOperand_getReg(SegReg);
if (reg) {
_printOperand(MI, Op + X86_AddrSegmentReg, O);
if (MI->csh->detail) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = reg;
}
SStream_concat0(O, ":");
}
SStream_concat0(O, "[");
if (MCOperand_getReg(BaseReg)) {
_printOperand(MI, Op + X86_AddrBaseReg, O);
NeedPlus = true;
}
if (MCOperand_getReg(IndexReg)) {
if (NeedPlus) SStream_concat0(O, " + ");
_printOperand(MI, Op + X86_AddrIndexReg, O);
if (ScaleVal != 1)
SStream_concat(O, "*%u", ScaleVal);
NeedPlus = true;
}
if (MCOperand_isImm(DispSpec)) {
int64_t DispVal = MCOperand_getImm(DispSpec);
if (MI->csh->detail)
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = DispVal;
if (DispVal) {
if (NeedPlus) {
if (DispVal < 0) {
if (DispVal < -HEX_THRESHOLD)
SStream_concat(O, " - 0x%"PRIx64, -DispVal);
else
SStream_concat(O, " - %"PRIu64, -DispVal);
} else {
if (DispVal > HEX_THRESHOLD)
SStream_concat(O, " + 0x%"PRIx64, DispVal);
else
SStream_concat(O, " + %"PRIu64, DispVal);
}
} else {
// memory reference to an immediate address
if (DispVal < 0) {
SStream_concat(O, "0x%"PRIx64, arch_masks[MI->csh->mode] & DispVal);
} else {
if (DispVal > HEX_THRESHOLD)
SStream_concat(O, "0x%"PRIx64, DispVal);
else
SStream_concat(O, "%"PRIu64, DispVal);
}
}
} else {
// DispVal = 0
if (!NeedPlus) // [0]
SStream_concat0(O, "0");
}
}
SStream_concat0(O, "]");
if (MI->csh->detail)
MI->flat_insn->detail->x86.op_count++;
if (MI->op1_size == 0)
MI->op1_size = MI->x86opsize;
}
#define GET_REGINFO_ENUM
#include "X86GenRegisterInfo.inc"
#define PRINT_ALIAS_INSTR
#ifdef CAPSTONE_X86_REDUCE
#include "X86GenAsmWriter1_reduce.inc"
#else
#include "X86GenAsmWriter1.inc"
#endif
#endif