766 lines
18 KiB
C
766 lines
18 KiB
C
/*
|
|
* linux/kernel/sys.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/times.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/param.h>
|
|
#include <linux/resource.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/string.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/mman.h>
|
|
|
|
#include <asm/segment.h>
|
|
#include <asm/io.h>
|
|
|
|
/*
|
|
* this indicates wether you can reboot with ctrl-alt-del: the default is yes
|
|
*/
|
|
static int C_A_D = 1;
|
|
|
|
extern void adjust_clock(void);
|
|
|
|
#define PZERO 15
|
|
|
|
static int proc_sel(struct task_struct *p, int which, int who)
|
|
{
|
|
switch (which) {
|
|
case PRIO_PROCESS:
|
|
if (!who && p == current)
|
|
return 1;
|
|
return(p->pid == who);
|
|
case PRIO_PGRP:
|
|
if (!who)
|
|
who = current->pgrp;
|
|
return(p->pgrp == who);
|
|
case PRIO_USER:
|
|
if (!who)
|
|
who = current->uid;
|
|
return(p->uid == who);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage int sys_setpriority(int which, int who, int niceval)
|
|
{
|
|
struct task_struct **p;
|
|
int error = ESRCH;
|
|
int priority;
|
|
|
|
if (which > 2 || which < 0)
|
|
return -EINVAL;
|
|
|
|
if ((priority = PZERO - niceval) <= 0)
|
|
priority = 1;
|
|
|
|
for(p = &LAST_TASK; p > &FIRST_TASK; --p) {
|
|
if (!*p || !proc_sel(*p, which, who))
|
|
continue;
|
|
if ((*p)->uid != current->euid &&
|
|
(*p)->uid != current->uid && !suser()) {
|
|
error = EPERM;
|
|
continue;
|
|
}
|
|
if (error == ESRCH)
|
|
error = 0;
|
|
if (priority > (*p)->priority && !suser())
|
|
error = EACCES;
|
|
else
|
|
(*p)->priority = priority;
|
|
}
|
|
return -error;
|
|
}
|
|
|
|
asmlinkage int sys_getpriority(int which, int who)
|
|
{
|
|
struct task_struct **p;
|
|
int max_prio = 0;
|
|
|
|
if (which > 2 || which < 0)
|
|
return -EINVAL;
|
|
|
|
for(p = &LAST_TASK; p > &FIRST_TASK; --p) {
|
|
if (!*p || !proc_sel(*p, which, who))
|
|
continue;
|
|
if ((*p)->priority > max_prio)
|
|
max_prio = (*p)->priority;
|
|
}
|
|
return(max_prio ? max_prio : -ESRCH);
|
|
}
|
|
|
|
asmlinkage int sys_profil(void)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
asmlinkage int sys_ftime(void)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
asmlinkage int sys_break(void)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
asmlinkage int sys_stty(void)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
asmlinkage int sys_gtty(void)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
asmlinkage int sys_prof(void)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
asmlinkage unsigned long save_v86_state(struct vm86_regs * regs)
|
|
{
|
|
unsigned long stack;
|
|
|
|
if (!current->vm86_info) {
|
|
printk("no vm86_info: BAD\n");
|
|
do_exit(SIGSEGV);
|
|
}
|
|
memcpy_tofs(&(current->vm86_info->regs),regs,sizeof(*regs));
|
|
put_fs_long(current->screen_bitmap,&(current->vm86_info->screen_bitmap));
|
|
stack = current->tss.esp0;
|
|
current->tss.esp0 = current->saved_kernel_stack;
|
|
current->saved_kernel_stack = 0;
|
|
return stack;
|
|
}
|
|
|
|
static void mark_screen_rdonly(struct task_struct * tsk)
|
|
{
|
|
unsigned long tmp;
|
|
unsigned long *pg_table;
|
|
|
|
if ((tmp = tsk->tss.cr3) != 0) {
|
|
tmp = *(unsigned long *) tmp;
|
|
if (tmp & PAGE_PRESENT) {
|
|
tmp &= PAGE_MASK;
|
|
pg_table = (0xA0000 >> PAGE_SHIFT) + (unsigned long *) tmp;
|
|
tmp = 32;
|
|
while (tmp--) {
|
|
if (PAGE_PRESENT & *pg_table)
|
|
*pg_table &= ~PAGE_RW;
|
|
pg_table++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
asmlinkage int sys_vm86(struct vm86_struct * v86)
|
|
{
|
|
struct vm86_struct info;
|
|
struct pt_regs * pt_regs = (struct pt_regs *) &v86;
|
|
|
|
if (current->saved_kernel_stack)
|
|
return -EPERM;
|
|
memcpy_fromfs(&info,v86,sizeof(info));
|
|
/*
|
|
* make sure the vm86() system call doesn't try to do anything silly
|
|
*/
|
|
info.regs.__null_ds = 0;
|
|
info.regs.__null_es = 0;
|
|
info.regs.__null_fs = 0;
|
|
info.regs.__null_gs = 0;
|
|
/*
|
|
* The eflags register is also special: we cannot trust that the user
|
|
* has set it up safely, so this makes sure interrupt etc flags are
|
|
* inherited from protected mode.
|
|
*/
|
|
info.regs.eflags &= 0x00000dd5;
|
|
info.regs.eflags |= ~0x00000dd5 & pt_regs->eflags;
|
|
info.regs.eflags |= VM_MASK;
|
|
current->saved_kernel_stack = current->tss.esp0;
|
|
current->tss.esp0 = (unsigned long) pt_regs;
|
|
current->vm86_info = v86;
|
|
current->screen_bitmap = info.screen_bitmap;
|
|
if (info.flags & VM86_SCREEN_BITMAP)
|
|
mark_screen_rdonly(current);
|
|
__asm__ __volatile__("movl %0,%%esp\n\t"
|
|
"pushl $ret_from_sys_call\n\t"
|
|
"ret"
|
|
: /* no outputs */
|
|
:"g" ((long) &(info.regs)),"a" (info.regs.eax));
|
|
return 0;
|
|
}
|
|
|
|
extern void hard_reset_now(void);
|
|
|
|
/*
|
|
* Reboot system call: for obvious reasons only root may call it,
|
|
* and even root needs to set up some magic numbers in the registers
|
|
* so that some mistake won't make this reboot the whole machine.
|
|
* You can also set the meaning of the ctrl-alt-del-key here.
|
|
*
|
|
* reboot doesn't sync: do that yourself before calling this.
|
|
*/
|
|
asmlinkage int sys_reboot(int magic, int magic_too, int flag)
|
|
{
|
|
if (!suser())
|
|
return -EPERM;
|
|
if (magic != 0xfee1dead || magic_too != 672274793)
|
|
return -EINVAL;
|
|
if (flag == 0x01234567)
|
|
hard_reset_now();
|
|
else if (flag == 0x89ABCDEF)
|
|
C_A_D = 1;
|
|
else if (!flag)
|
|
C_A_D = 0;
|
|
else
|
|
return -EINVAL;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This function gets called by ctrl-alt-del - ie the keyboard interrupt.
|
|
* As it's called within an interrupt, it may NOT sync: the only choice
|
|
* is wether to reboot at once, or just ignore the ctrl-alt-del.
|
|
*/
|
|
void ctrl_alt_del(void)
|
|
{
|
|
if (C_A_D)
|
|
hard_reset_now();
|
|
else
|
|
send_sig(SIGINT,task[1],1);
|
|
}
|
|
|
|
|
|
/*
|
|
* This is done BSD-style, with no consideration of the saved gid, except
|
|
* that if you set the effective gid, it sets the saved gid too. This
|
|
* makes it possible for a setgid program to completely drop its privileges,
|
|
* which is often a useful assertion to make when you are doing a security
|
|
* audit over a program.
|
|
*
|
|
* The general idea is that a program which uses just setregid() will be
|
|
* 100% compatible with BSD. A program which uses just setgid() will be
|
|
* 100% compatible with POSIX w/ Saved ID's.
|
|
*/
|
|
asmlinkage int sys_setregid(gid_t rgid, gid_t egid)
|
|
{
|
|
int old_rgid = current->gid;
|
|
|
|
if (rgid != (gid_t) -1) {
|
|
if ((current->egid==rgid) ||
|
|
(old_rgid == rgid) ||
|
|
suser())
|
|
current->gid = rgid;
|
|
else
|
|
return(-EPERM);
|
|
}
|
|
if (egid != (gid_t) -1) {
|
|
if ((old_rgid == egid) ||
|
|
(current->egid == egid) ||
|
|
suser()) {
|
|
current->egid = egid;
|
|
current->sgid = egid;
|
|
} else {
|
|
current->gid = old_rgid;
|
|
return(-EPERM);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* setgid() is implemeneted like SysV w/ SAVED_IDS
|
|
*/
|
|
asmlinkage int sys_setgid(gid_t gid)
|
|
{
|
|
if (suser())
|
|
current->gid = current->egid = current->sgid = gid;
|
|
else if ((gid == current->gid) || (gid == current->sgid))
|
|
current->egid = gid;
|
|
else
|
|
return -EPERM;
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage int sys_acct(void)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
asmlinkage int sys_phys(void)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
asmlinkage int sys_lock(void)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
asmlinkage int sys_mpx(void)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
asmlinkage int sys_ulimit(void)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
asmlinkage int sys_old_syscall(void)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
/*
|
|
* Unprivileged users may change the real user id to the effective uid
|
|
* or vice versa. (BSD-style)
|
|
*
|
|
* When you set the effective uid, it sets the saved uid too. This
|
|
* makes it possible for a setuid program to completely drop its privileges,
|
|
* which is often a useful assertion to make when you are doing a security
|
|
* audit over a program.
|
|
*
|
|
* The general idea is that a program which uses just setreuid() will be
|
|
* 100% compatible with BSD. A program which uses just setuid() will be
|
|
* 100% compatible with POSIX w/ Saved ID's.
|
|
*/
|
|
asmlinkage int sys_setreuid(uid_t ruid, uid_t euid)
|
|
{
|
|
int old_ruid = current->uid;
|
|
|
|
if (ruid != (uid_t) -1) {
|
|
if ((current->euid==ruid) ||
|
|
(old_ruid == ruid) ||
|
|
suser())
|
|
current->uid = ruid;
|
|
else
|
|
return(-EPERM);
|
|
}
|
|
if (euid != (uid_t) -1) {
|
|
if ((old_ruid == euid) ||
|
|
(current->euid == euid) ||
|
|
suser()) {
|
|
current->euid = euid;
|
|
current->suid = euid;
|
|
} else {
|
|
current->uid = old_ruid;
|
|
return(-EPERM);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* setuid() is implemeneted like SysV w/ SAVED_IDS
|
|
*
|
|
* Note that SAVED_ID's is deficient in that a setuid root program
|
|
* like sendmail, for example, cannot set its uid to be a normal
|
|
* user and then switch back, because if you're root, setuid() sets
|
|
* the saved uid too. If you don't like this, blame the bright people
|
|
* in the POSIX commmittee and/or USG. Note that the BSD-style setreuid()
|
|
* will allow a root program to temporarily drop privileges and be able to
|
|
* regain them by swapping the real and effective uid.
|
|
*/
|
|
asmlinkage int sys_setuid(uid_t uid)
|
|
{
|
|
if (suser())
|
|
current->uid = current->euid = current->suid = uid;
|
|
else if ((uid == current->uid) || (uid == current->suid))
|
|
current->euid = uid;
|
|
else
|
|
return -EPERM;
|
|
return(0);
|
|
}
|
|
|
|
asmlinkage int sys_times(struct tms * tbuf)
|
|
{
|
|
if (tbuf) {
|
|
int error = verify_area(VERIFY_WRITE,tbuf,sizeof *tbuf);
|
|
if (error)
|
|
return error;
|
|
put_fs_long(current->utime,(unsigned long *)&tbuf->tms_utime);
|
|
put_fs_long(current->stime,(unsigned long *)&tbuf->tms_stime);
|
|
put_fs_long(current->cutime,(unsigned long *)&tbuf->tms_cutime);
|
|
put_fs_long(current->cstime,(unsigned long *)&tbuf->tms_cstime);
|
|
}
|
|
return jiffies;
|
|
}
|
|
|
|
asmlinkage int sys_brk(unsigned long brk)
|
|
{
|
|
int freepages;
|
|
unsigned long rlim;
|
|
unsigned long newbrk, oldbrk;
|
|
|
|
if (brk < current->end_code)
|
|
return current->brk;
|
|
newbrk = PAGE_ALIGN(brk);
|
|
oldbrk = PAGE_ALIGN(current->brk);
|
|
if (oldbrk == newbrk)
|
|
return current->brk = brk;
|
|
|
|
/*
|
|
* Always allow shrinking brk
|
|
*/
|
|
if (brk <= current->brk) {
|
|
current->brk = brk;
|
|
do_munmap(newbrk, oldbrk-newbrk);
|
|
return brk;
|
|
}
|
|
/*
|
|
* Check against rlimit and stack..
|
|
*/
|
|
rlim = current->rlim[RLIMIT_DATA].rlim_cur;
|
|
if (rlim >= RLIM_INFINITY)
|
|
rlim = ~0;
|
|
if (brk - current->end_code > rlim || brk >= current->start_stack - 16384)
|
|
return current->brk;
|
|
/*
|
|
* stupid algorithm to decide if we have enough memory: while
|
|
* simple, it hopefully works in most obvious cases.. Easy to
|
|
* fool it, but this should catch most mistakes.
|
|
*/
|
|
freepages = buffermem >> 12;
|
|
freepages += nr_free_pages;
|
|
freepages += nr_swap_pages;
|
|
freepages -= (high_memory - 0x100000) >> 16;
|
|
freepages -= (newbrk-oldbrk) >> 12;
|
|
if (freepages < 0)
|
|
return current->brk;
|
|
#if 0
|
|
freepages += current->rss;
|
|
freepages -= oldbrk >> 12;
|
|
if (freepages < 0)
|
|
return current->brk;
|
|
#endif
|
|
/*
|
|
* Ok, we have probably got enough memory - let it rip.
|
|
*/
|
|
current->brk = brk;
|
|
do_mmap(NULL, oldbrk, newbrk-oldbrk,
|
|
PROT_READ|PROT_WRITE|PROT_EXEC,
|
|
MAP_FIXED|MAP_PRIVATE, 0);
|
|
return brk;
|
|
}
|
|
|
|
/*
|
|
* This needs some heave checking ...
|
|
* I just haven't get the stomach for it. I also don't fully
|
|
* understand sessions/pgrp etc. Let somebody who does explain it.
|
|
*
|
|
* OK, I think I have the protection semantics right.... this is really
|
|
* only important on a multi-user system anyway, to make sure one user
|
|
* can't send a signal to a process owned by another. -TYT, 12/12/91
|
|
*/
|
|
asmlinkage int sys_setpgid(pid_t pid, pid_t pgid)
|
|
{
|
|
int i;
|
|
|
|
if (!pid)
|
|
pid = current->pid;
|
|
if (!pgid)
|
|
pgid = current->pid;
|
|
if (pgid < 0)
|
|
return -EINVAL;
|
|
for (i=0 ; i<NR_TASKS ; i++)
|
|
if (task[i] && (task[i]->pid == pid) &&
|
|
((task[i]->p_pptr == current) ||
|
|
(task[i]->p_opptr == current) ||
|
|
(task[i] == current))) {
|
|
if (task[i]->leader)
|
|
return -EPERM;
|
|
if ((task[i]->session != current->session) ||
|
|
((pgid != pid) &&
|
|
(session_of_pgrp(pgid) != current->session)))
|
|
return -EPERM;
|
|
task[i]->pgrp = pgid;
|
|
return 0;
|
|
}
|
|
return -ESRCH;
|
|
}
|
|
|
|
asmlinkage int sys_getpgid(pid_t pid)
|
|
{
|
|
struct task_struct * p;
|
|
|
|
if (!pid)
|
|
return current->pgrp;
|
|
for_each_task(p) {
|
|
if (p->pid == pid)
|
|
return p->pgrp;
|
|
}
|
|
return -ESRCH;
|
|
}
|
|
|
|
asmlinkage int sys_getpgrp(void)
|
|
{
|
|
return current->pgrp;
|
|
}
|
|
|
|
asmlinkage int sys_setsid(void)
|
|
{
|
|
if (current->leader)
|
|
return -EPERM;
|
|
current->leader = 1;
|
|
current->session = current->pgrp = current->pid;
|
|
current->tty = -1;
|
|
return current->pgrp;
|
|
}
|
|
|
|
/*
|
|
* Supplementary group ID's
|
|
*/
|
|
asmlinkage int sys_getgroups(int gidsetsize, gid_t *grouplist)
|
|
{
|
|
int i;
|
|
|
|
if (gidsetsize) {
|
|
i = verify_area(VERIFY_WRITE, grouplist, sizeof(gid_t) * gidsetsize);
|
|
if (i)
|
|
return i;
|
|
}
|
|
for (i = 0 ; (i < NGROUPS) && (current->groups[i] != NOGROUP) ; i++) {
|
|
if (!gidsetsize)
|
|
continue;
|
|
if (i >= gidsetsize)
|
|
break;
|
|
put_fs_word(current->groups[i], (short *) grouplist);
|
|
grouplist++;
|
|
}
|
|
return(i);
|
|
}
|
|
|
|
asmlinkage int sys_setgroups(int gidsetsize, gid_t *grouplist)
|
|
{
|
|
int i;
|
|
|
|
if (!suser())
|
|
return -EPERM;
|
|
if (gidsetsize > NGROUPS)
|
|
return -EINVAL;
|
|
for (i = 0; i < gidsetsize; i++, grouplist++) {
|
|
current->groups[i] = get_fs_word((unsigned short *) grouplist);
|
|
}
|
|
if (i < NGROUPS)
|
|
current->groups[i] = NOGROUP;
|
|
return 0;
|
|
}
|
|
|
|
int in_group_p(gid_t grp)
|
|
{
|
|
int i;
|
|
|
|
if (grp == current->egid)
|
|
return 1;
|
|
|
|
for (i = 0; i < NGROUPS; i++) {
|
|
if (current->groups[i] == NOGROUP)
|
|
break;
|
|
if (current->groups[i] == grp)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage int sys_newuname(struct new_utsname * name)
|
|
{
|
|
int error;
|
|
|
|
if (!name)
|
|
return -EFAULT;
|
|
error = verify_area(VERIFY_WRITE, name, sizeof *name);
|
|
if (!error)
|
|
memcpy_tofs(name,&system_utsname,sizeof *name);
|
|
return error;
|
|
}
|
|
|
|
asmlinkage int sys_uname(struct old_utsname * name)
|
|
{
|
|
int error;
|
|
if (!name)
|
|
return -EFAULT;
|
|
error = verify_area(VERIFY_WRITE, name,sizeof *name);
|
|
if (error)
|
|
return error;
|
|
memcpy_tofs(&name->sysname,&system_utsname.sysname,
|
|
sizeof (system_utsname.sysname));
|
|
memcpy_tofs(&name->nodename,&system_utsname.nodename,
|
|
sizeof (system_utsname.nodename));
|
|
memcpy_tofs(&name->release,&system_utsname.release,
|
|
sizeof (system_utsname.release));
|
|
memcpy_tofs(&name->version,&system_utsname.version,
|
|
sizeof (system_utsname.version));
|
|
memcpy_tofs(&name->machine,&system_utsname.machine,
|
|
sizeof (system_utsname.machine));
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage int sys_olduname(struct oldold_utsname * name)
|
|
{
|
|
int error;
|
|
if (!name)
|
|
return -EFAULT;
|
|
error = verify_area(VERIFY_WRITE, name,sizeof *name);
|
|
if (error)
|
|
return error;
|
|
memcpy_tofs(&name->sysname,&system_utsname.sysname,__OLD_UTS_LEN);
|
|
put_fs_byte(0,name->sysname+__OLD_UTS_LEN);
|
|
memcpy_tofs(&name->nodename,&system_utsname.nodename,__OLD_UTS_LEN);
|
|
put_fs_byte(0,name->nodename+__OLD_UTS_LEN);
|
|
memcpy_tofs(&name->release,&system_utsname.release,__OLD_UTS_LEN);
|
|
put_fs_byte(0,name->release+__OLD_UTS_LEN);
|
|
memcpy_tofs(&name->version,&system_utsname.version,__OLD_UTS_LEN);
|
|
put_fs_byte(0,name->version+__OLD_UTS_LEN);
|
|
memcpy_tofs(&name->machine,&system_utsname.machine,__OLD_UTS_LEN);
|
|
put_fs_byte(0,name->machine+__OLD_UTS_LEN);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Only sethostname; gethostname can be implemented by calling uname()
|
|
*/
|
|
asmlinkage int sys_sethostname(char *name, int len)
|
|
{
|
|
int i;
|
|
|
|
if (!suser())
|
|
return -EPERM;
|
|
if (len > __NEW_UTS_LEN)
|
|
return -EINVAL;
|
|
for (i=0; i < len; i++) {
|
|
if ((system_utsname.nodename[i] = get_fs_byte(name+i)) == 0)
|
|
return 0;
|
|
}
|
|
system_utsname.nodename[i] = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Only setdomainname; getdomainname can be implemented by calling
|
|
* uname()
|
|
*/
|
|
asmlinkage int sys_setdomainname(char *name, int len)
|
|
{
|
|
int i;
|
|
|
|
if (!suser())
|
|
return -EPERM;
|
|
if (len > __NEW_UTS_LEN)
|
|
return -EINVAL;
|
|
for (i=0; i < len; i++) {
|
|
if ((system_utsname.domainname[i] = get_fs_byte(name+i)) == 0)
|
|
return 0;
|
|
}
|
|
system_utsname.domainname[i] = 0;
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage int sys_getrlimit(unsigned int resource, struct rlimit *rlim)
|
|
{
|
|
int error;
|
|
|
|
if (resource >= RLIM_NLIMITS)
|
|
return -EINVAL;
|
|
error = verify_area(VERIFY_WRITE,rlim,sizeof *rlim);
|
|
if (error)
|
|
return error;
|
|
put_fs_long(current->rlim[resource].rlim_cur,
|
|
(unsigned long *) rlim);
|
|
put_fs_long(current->rlim[resource].rlim_max,
|
|
((unsigned long *) rlim)+1);
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage int sys_setrlimit(unsigned int resource, struct rlimit *rlim)
|
|
{
|
|
struct rlimit new_rlim, *old_rlim;
|
|
|
|
if (resource >= RLIM_NLIMITS)
|
|
return -EINVAL;
|
|
old_rlim = current->rlim + resource;
|
|
new_rlim.rlim_cur = get_fs_long((unsigned long *) rlim);
|
|
new_rlim.rlim_max = get_fs_long(((unsigned long *) rlim)+1);
|
|
if (((new_rlim.rlim_cur > old_rlim->rlim_max) ||
|
|
(new_rlim.rlim_max > old_rlim->rlim_max)) &&
|
|
!suser())
|
|
return -EPERM;
|
|
*old_rlim = new_rlim;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* It would make sense to put struct rusuage in the task_struct,
|
|
* except that would make the task_struct be *really big*. After
|
|
* task_struct gets moved into malloc'ed memory, it would
|
|
* make sense to do this. It will make moving the rest of the information
|
|
* a lot simpler! (Which we're not doing right now because we're not
|
|
* measuring them yet).
|
|
*/
|
|
int getrusage(struct task_struct *p, int who, struct rusage *ru)
|
|
{
|
|
int error;
|
|
struct rusage r;
|
|
unsigned long *lp, *lpend, *dest;
|
|
|
|
error = verify_area(VERIFY_WRITE, ru, sizeof *ru);
|
|
if (error)
|
|
return error;
|
|
memset((char *) &r, 0, sizeof(r));
|
|
switch (who) {
|
|
case RUSAGE_SELF:
|
|
r.ru_utime.tv_sec = CT_TO_SECS(p->utime);
|
|
r.ru_utime.tv_usec = CT_TO_USECS(p->utime);
|
|
r.ru_stime.tv_sec = CT_TO_SECS(p->stime);
|
|
r.ru_stime.tv_usec = CT_TO_USECS(p->stime);
|
|
r.ru_minflt = p->min_flt;
|
|
r.ru_majflt = p->maj_flt;
|
|
break;
|
|
case RUSAGE_CHILDREN:
|
|
r.ru_utime.tv_sec = CT_TO_SECS(p->cutime);
|
|
r.ru_utime.tv_usec = CT_TO_USECS(p->cutime);
|
|
r.ru_stime.tv_sec = CT_TO_SECS(p->cstime);
|
|
r.ru_stime.tv_usec = CT_TO_USECS(p->cstime);
|
|
r.ru_minflt = p->cmin_flt;
|
|
r.ru_majflt = p->cmaj_flt;
|
|
break;
|
|
default:
|
|
r.ru_utime.tv_sec = CT_TO_SECS(p->utime + p->cutime);
|
|
r.ru_utime.tv_usec = CT_TO_USECS(p->utime + p->cutime);
|
|
r.ru_stime.tv_sec = CT_TO_SECS(p->stime + p->cstime);
|
|
r.ru_stime.tv_usec = CT_TO_USECS(p->stime + p->cstime);
|
|
r.ru_minflt = p->min_flt + p->cmin_flt;
|
|
r.ru_majflt = p->maj_flt + p->cmaj_flt;
|
|
break;
|
|
}
|
|
lp = (unsigned long *) &r;
|
|
lpend = (unsigned long *) (&r+1);
|
|
dest = (unsigned long *) ru;
|
|
for (; lp < lpend; lp++, dest++)
|
|
put_fs_long(*lp, dest);
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage int sys_getrusage(int who, struct rusage *ru)
|
|
{
|
|
if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
|
|
return -EINVAL;
|
|
return getrusage(current, who, ru);
|
|
}
|
|
|
|
asmlinkage int sys_umask(int mask)
|
|
{
|
|
int old = current->umask;
|
|
|
|
current->umask = mask & S_IRWXUGO;
|
|
return (old);
|
|
}
|