98 lines
2.7 KiB
JavaScript
98 lines
2.7 KiB
JavaScript
|
import readline from 'readline';
|
||
|
import Ollama from 'ollama-js-client';
|
||
|
import fs from 'fs';
|
||
|
|
||
|
let DEBUG_MODE = true
|
||
|
|
||
|
async function ollamaInteraction() {
|
||
|
const rl = await readline.createInterface({
|
||
|
input: process.stdin,
|
||
|
output: process.stdout
|
||
|
});
|
||
|
|
||
|
function extractFunctionName(response) {
|
||
|
const match = response.match(/<functioncall>([^<]+)<\/functioncall>/);
|
||
|
return match ? match[1] : '';
|
||
|
}
|
||
|
|
||
|
|
||
|
function generateRandomString(length = 16) {
|
||
|
const characters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";
|
||
|
let result = "";
|
||
|
for (let i = 0; i < length; i++) {
|
||
|
result += characters.charAt(Math.floor(Math.random() * characters.length));
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
//INTERNAL FUNCTIONS MAGIC BEGIN
|
||
|
async function jitsi() {
|
||
|
const id = generateRandomString()
|
||
|
const jitsiURL = `https://meet.jit.si/${id}`;
|
||
|
console.log(jitsiURL);
|
||
|
return jitsiURL;
|
||
|
}
|
||
|
|
||
|
async function search(q) {
|
||
|
q = q.replaceAll(" ", "+")
|
||
|
const searchURL = `https://www.google.com/search?q=${q}&sca_upv=1`
|
||
|
console.log(searchURL);
|
||
|
return searchURL;
|
||
|
}
|
||
|
//END OF INTERNAL FUNCTIONS MAGIC
|
||
|
|
||
|
return new Promise(async (resolve) => {
|
||
|
rl.question("User: ", async (userInput) => {
|
||
|
rl.close();
|
||
|
|
||
|
const ollama = new Ollama({
|
||
|
model: "sneedgroup-llama3-agent",
|
||
|
url: "http://127.0.0.1:11434/api/",
|
||
|
}); // Ensure the model name is correct
|
||
|
|
||
|
const responsePreParse = await ollama.prompt(userInput)
|
||
|
const response = responsePreParse.response;
|
||
|
const functionName = extractFunctionName(response);
|
||
|
const responseWithoutFunctionCall = response.replace(/<functioncall>.*?<\/functioncall>/, '');
|
||
|
|
||
|
console.log(responseWithoutFunctionCall);
|
||
|
|
||
|
let contentToAppend = `<USER>: ${userInput}
|
||
|
|
||
|
<AI AGENT>: ${responseWithoutFunctionCall}`;
|
||
|
|
||
|
await fs.appendFile('journal.txt', contentToAppend, async (err) => {
|
||
|
if (err) {
|
||
|
await console.error(err);
|
||
|
} else {
|
||
|
await console.log('Content appended to journal file successfully!');
|
||
|
}
|
||
|
});
|
||
|
|
||
|
if (DEBUG_MODE) {
|
||
|
console.log(`DEBUG: RUN ${functionName}`)
|
||
|
}
|
||
|
|
||
|
eval(function() {
|
||
|
if (typeof functionName == 'undefined' || functionName == null) {
|
||
|
return "";
|
||
|
} else {
|
||
|
return functionName;
|
||
|
}
|
||
|
})
|
||
|
|
||
|
resolve(); // Resolve the promise after processing
|
||
|
});
|
||
|
});
|
||
|
}
|
||
|
|
||
|
(async () => {
|
||
|
while (true) {
|
||
|
try {
|
||
|
await ollamaInteraction();
|
||
|
} catch (error) {
|
||
|
console.error('Error occurred:', error);
|
||
|
}
|
||
|
}
|
||
|
})();
|