0b5b0188e4
Some general fixes
967 lines
27 KiB
JavaScript
967 lines
27 KiB
JavaScript
//TODO FIND OUT WHY I HAVE TO RESIZE A TEXTBOX AND THEN START USING IT TO AVOID THE 1px WHITE LINE ON LEFT EDGES DURING IMG2IMG
|
|
//...lmao did setting min width 200 on info div fix that accidentally? once the canvas is infinite and the menu bar is hideable it'll probably be a problem again
|
|
|
|
window.onload = startup;
|
|
|
|
var stableDiffusionData = {
|
|
//includes img2img data but works for txt2img just fine
|
|
prompt: "",
|
|
negative_prompt: "",
|
|
seed: -1,
|
|
cfg_scale: null,
|
|
sampler_index: "DDIM",
|
|
steps: null,
|
|
denoising_strength: 1,
|
|
mask_blur: 0,
|
|
batch_size: null,
|
|
width: 512,
|
|
height: 512,
|
|
n_iter: null, // batch count
|
|
mask: "",
|
|
init_images: [],
|
|
inpaint_full_res: false,
|
|
inpainting_fill: 2,
|
|
enable_hr: false,
|
|
firstphase_width: 0,
|
|
firstphase_height: 0,
|
|
styles: [],
|
|
// here's some more fields that might be useful
|
|
|
|
// ---txt2img specific:
|
|
// "enable_hr": false, // hires fix
|
|
// "denoising_strength": 0, // ok this is in both txt and img2img but txt2img only applies it if enable_hr == true
|
|
// "firstphase_width": 0, // hires fp w
|
|
// "firstphase_height": 0, // see above s/w/h/
|
|
|
|
// ---img2img specific
|
|
// "init_images": [ // imageS!??!? wtf maybe for batch img2img?? i just dump one base64 in here
|
|
// "string"
|
|
// ],
|
|
// "resize_mode": 0,
|
|
// "denoising_strength": 0.75, // yeah see
|
|
// "mask": "string", // string is just a base64 image
|
|
// "mask_blur": 4,
|
|
// "inpainting_fill": 0, // 0- fill, 1- orig, 2- latent noise, 3- latent nothing
|
|
// "inpaint_full_res": true,
|
|
// "inpaint_full_res_padding": 0, // px
|
|
// "inpainting_mask_invert": 0, // bool??????? wtf
|
|
// "include_init_images": false // ??????
|
|
};
|
|
|
|
// stuff things use
|
|
let debug = false;
|
|
var returnedImages;
|
|
var imageIndex = 0;
|
|
var tmpImgXYWH = {};
|
|
var host = "";
|
|
var url = "/sdapi/v1/";
|
|
var endpoint = "txt2img";
|
|
var frameX = 512;
|
|
var frameY = 512;
|
|
var drawThis = {};
|
|
const basePixelCount = 64; //64 px - ALWAYS 64 PX
|
|
var snapToGrid = true;
|
|
var backupMaskPaintCanvas; //???
|
|
var backupMaskPaintCtx; //...? look i am bad at this
|
|
var backupMaskChunk = null;
|
|
var backupMaskX = null;
|
|
var backupMaskY = null;
|
|
var totalImagesReturned;
|
|
var overMaskPx = 0;
|
|
var drawTargets = []; // is this needed? i only draw the last one anyway...
|
|
var dropTargets = []; // uhhh yeah similar to the above but for arbitrary dropped images
|
|
var arbitraryImage;
|
|
var arbitraryImageData;
|
|
var arbitraryImageBitmap;
|
|
var arbitraryImageBase64; // seriously js cmon work with me here
|
|
var placingArbitraryImage = false; // for when the user has loaded an existing image from their computer
|
|
var marchOffset = 0;
|
|
var inProgress = false;
|
|
var marchCoords = {};
|
|
|
|
//
|
|
function startup() {
|
|
testHostConfiguration();
|
|
loadSettings();
|
|
|
|
const hostEl = document.getElementById("host");
|
|
testHostConnection().then((checkConnection) => {
|
|
hostEl.onchange = () => {
|
|
host = hostEl.value.endsWith("/")
|
|
? hostEl.value.substring(0, hostEl.value.length - 1)
|
|
: hostEl.value;
|
|
hostEl.value = host;
|
|
localStorage.setItem("host", host);
|
|
checkConnection();
|
|
};
|
|
});
|
|
|
|
const promptEl = document.getElementById("prompt");
|
|
promptEl.oninput = () => {
|
|
stableDiffusionData.prompt = promptEl.value;
|
|
promptEl.title = promptEl.value;
|
|
localStorage.setItem("prompt", stableDiffusionData.prompt);
|
|
};
|
|
|
|
const negPromptEl = document.getElementById("negPrompt");
|
|
negPromptEl.oninput = () => {
|
|
stableDiffusionData.negative_prompt = negPromptEl.value;
|
|
negPromptEl.title = negPromptEl.value;
|
|
localStorage.setItem("neg_prompt", stableDiffusionData.negative_prompt);
|
|
};
|
|
|
|
drawBackground();
|
|
changeSampler();
|
|
changeMaskBlur();
|
|
changeSmoothRendering();
|
|
changeSeed();
|
|
changeHiResFix();
|
|
}
|
|
|
|
/**
|
|
* Initial connection checks
|
|
*/
|
|
function testHostConfiguration() {
|
|
/**
|
|
* Check host configuration
|
|
*/
|
|
const hostEl = document.getElementById("host");
|
|
hostEl.value = localStorage.getItem("host");
|
|
|
|
const requestHost = (prompt, def = "http://127.0.0.1:7860") => {
|
|
let value = window.prompt(prompt, def);
|
|
if (value === null) value = "http://127.0.0.1:7860";
|
|
|
|
value = value.endsWith("/") ? value.substring(0, value.length - 1) : value;
|
|
host = value;
|
|
hostEl.value = host;
|
|
localStorage.setItem("host", host);
|
|
|
|
testHostConfiguration();
|
|
};
|
|
|
|
const current = localStorage.getItem("host");
|
|
if (current) {
|
|
if (!current.match(/^https?:\/\/[a-z0-9][a-z0-9.]+[a-z0-9](:[0-9]+)?$/i))
|
|
requestHost(
|
|
"Host seems to be invalid! Please fix your host here:",
|
|
current
|
|
);
|
|
else
|
|
host = current.endsWith("/")
|
|
? current.substring(0, current.length - 1)
|
|
: current;
|
|
} else {
|
|
requestHost(
|
|
"This seems to be the first time you are using openOutpaint! Please set your host here:"
|
|
);
|
|
}
|
|
}
|
|
|
|
async function testHostConnection() {
|
|
class CheckInProgressError extends Error {}
|
|
|
|
const connectionIndicator = document.getElementById(
|
|
"connection-status-indicator"
|
|
);
|
|
|
|
let connectionStatus = false;
|
|
let firstTimeOnline = true;
|
|
|
|
const setConnectionStatus = (status) => {
|
|
const connectionIndicatorText = document.getElementById(
|
|
"connection-status-indicator-text"
|
|
);
|
|
|
|
const statuses = {
|
|
online: () => {
|
|
connectionIndicator.classList.add("online");
|
|
connectionIndicator.classList.remove(
|
|
"cors-issue",
|
|
"offline",
|
|
"before",
|
|
"server-error"
|
|
);
|
|
connectionIndicatorText.textContent = connectionIndicator.title =
|
|
"Connected";
|
|
connectionStatus = true;
|
|
},
|
|
error: () => {
|
|
connectionIndicator.classList.add("server-error");
|
|
connectionIndicator.classList.remove(
|
|
"online",
|
|
"offline",
|
|
"before",
|
|
"cors-issue"
|
|
);
|
|
connectionIndicatorText.textContent = "Error";
|
|
connectionIndicator.title =
|
|
"Server is online, but is returning an error response";
|
|
connectionStatus = false;
|
|
},
|
|
corsissue: () => {
|
|
connectionIndicator.classList.add("cors-issue");
|
|
connectionIndicator.classList.remove(
|
|
"online",
|
|
"offline",
|
|
"before",
|
|
"server-error"
|
|
);
|
|
connectionIndicatorText.textContent = "CORS";
|
|
connectionIndicator.title =
|
|
"Server is online, but CORS is blocking our requests";
|
|
connectionStatus = false;
|
|
},
|
|
offline: () => {
|
|
connectionIndicator.classList.add("offline");
|
|
connectionIndicator.classList.remove(
|
|
"cors-issue",
|
|
"online",
|
|
"before",
|
|
"server-error"
|
|
);
|
|
connectionIndicatorText.textContent = "Offline";
|
|
connectionIndicator.title =
|
|
"Server seems to be offline. Please check the console for more information.";
|
|
connectionStatus = false;
|
|
},
|
|
before: () => {
|
|
connectionIndicator.classList.add("before");
|
|
connectionIndicator.classList.remove(
|
|
"cors-issue",
|
|
"online",
|
|
"offline",
|
|
"server-error"
|
|
);
|
|
connectionIndicatorText.textContent = "Waiting";
|
|
connectionIndicator.title = "Waiting for check to complete.";
|
|
connectionStatus = false;
|
|
},
|
|
};
|
|
|
|
statuses[status] && statuses[status]();
|
|
};
|
|
|
|
setConnectionStatus("before");
|
|
|
|
let checkInProgress = false;
|
|
|
|
const checkConnection = async (notify = false) => {
|
|
if (checkInProgress)
|
|
throw new CheckInProgressError(
|
|
"Check is currently in progress, please try again"
|
|
);
|
|
checkInProgress = true;
|
|
var url = document.getElementById("host").value + "/startup-events";
|
|
// Attempt normal request
|
|
try {
|
|
/** @type {Response} */
|
|
const response = await fetch(url, {
|
|
signal: AbortSignal.timeout(5000),
|
|
});
|
|
|
|
if (response.status === 200) {
|
|
setConnectionStatus("online");
|
|
// Load data as soon as connection is first stablished
|
|
if (firstTimeOnline) {
|
|
getConfig();
|
|
getStyles();
|
|
getSamplers();
|
|
getUpscalers();
|
|
getModels();
|
|
firstTimeOnline = false;
|
|
}
|
|
} else {
|
|
setConnectionStatus("error");
|
|
const message = `Server responded with ${response.status} - ${response.statusText}. Try running the webui with the flag '--api'`;
|
|
console.error(message);
|
|
if (notify) alert(message);
|
|
}
|
|
} catch (e) {
|
|
try {
|
|
if (e instanceof DOMException) throw "offline";
|
|
// Tests if problem is CORS
|
|
await fetch(url, {mode: "no-cors"});
|
|
|
|
setConnectionStatus("corsissue");
|
|
const message = `CORS is blocking our requests. Try running the webui with the flag '--cors-allow-origins=${window.location.protocol}//${window.location.host}/'`;
|
|
console.error(message);
|
|
if (notify) alert(message);
|
|
} catch (e) {
|
|
setConnectionStatus("offline");
|
|
const message = `The server seems to be offline. Is host '${
|
|
document.getElementById("host").value
|
|
}' correct?`;
|
|
console.error(message);
|
|
if (notify) alert(message);
|
|
}
|
|
}
|
|
checkInProgress = false;
|
|
return status;
|
|
};
|
|
|
|
await checkConnection(true);
|
|
|
|
// On click, attempt to refresh
|
|
connectionIndicator.onclick = async () => {
|
|
try {
|
|
await checkConnection(true);
|
|
checked = true;
|
|
} catch (e) {
|
|
console.debug("Already refreshing");
|
|
}
|
|
};
|
|
|
|
// Checks every 5 seconds if offline, 30 seconds if online
|
|
const checkAgain = () => {
|
|
setTimeout(
|
|
async () => {
|
|
await checkConnection();
|
|
checkAgain();
|
|
},
|
|
connectionStatus ? 30000 : 5000
|
|
);
|
|
};
|
|
|
|
checkAgain();
|
|
|
|
return () => {
|
|
checkConnection().catch(() => {});
|
|
};
|
|
}
|
|
|
|
function newImage(evt) {
|
|
clearPaintedMask();
|
|
uil.layers.forEach(({layer}) => {
|
|
commands.runCommand("eraseImage", "Clear Canvas", {
|
|
x: 0,
|
|
y: 0,
|
|
w: layer.canvas.width,
|
|
h: layer.canvas.height,
|
|
ctx: layer.ctx,
|
|
});
|
|
});
|
|
}
|
|
|
|
function clearPaintedMask() {
|
|
maskPaintCtx.clearRect(0, 0, maskPaintCanvas.width, maskPaintCanvas.height);
|
|
}
|
|
|
|
function march(bb, options = {}) {
|
|
defaultOpt(options, {
|
|
style: "#FFFF",
|
|
width: "2px",
|
|
filter: null,
|
|
});
|
|
|
|
const expanded = {...bb};
|
|
expanded.x--;
|
|
expanded.y--;
|
|
expanded.w += 2;
|
|
expanded.h += 2;
|
|
|
|
// Get temporary layer to draw marching ants
|
|
const layer = imageCollection.registerLayer(null, {
|
|
bb: expanded,
|
|
});
|
|
layer.canvas.style.imageRendering = "pixelated";
|
|
let offset = 0;
|
|
|
|
const interval = setInterval(() => {
|
|
drawMarchingAnts(layer.ctx, bb, offset++, options);
|
|
offset %= 12;
|
|
}, 20);
|
|
|
|
return () => {
|
|
clearInterval(interval);
|
|
imageCollection.deleteLayer(layer);
|
|
};
|
|
}
|
|
|
|
function drawMarchingAnts(ctx, bb, offset, options) {
|
|
ctx.save();
|
|
|
|
ctx.clearRect(0, 0, bb.w + 2, bb.h + 2);
|
|
ctx.strokeStyle = options.style;
|
|
ctx.strokeWidth = options.width;
|
|
ctx.filter = options.filter;
|
|
ctx.setLineDash([4, 2]);
|
|
ctx.lineDashOffset = -offset;
|
|
ctx.strokeRect(1, 1, bb.w, bb.h);
|
|
|
|
ctx.restore();
|
|
}
|
|
|
|
function changeSampler() {
|
|
if (!document.getElementById("samplerSelect").value == "") {
|
|
// must be done, since before getSamplers is done, the options are empty
|
|
console.log(document.getElementById("samplerSelect").value == "");
|
|
stableDiffusionData.sampler_index =
|
|
document.getElementById("samplerSelect").value;
|
|
localStorage.setItem("sampler", stableDiffusionData.sampler_index);
|
|
}
|
|
}
|
|
|
|
const makeSlider = (
|
|
label,
|
|
el,
|
|
lsKey,
|
|
min,
|
|
max,
|
|
step,
|
|
defaultValue,
|
|
textStep = null,
|
|
valuecb = null
|
|
) => {
|
|
const local = lsKey && localStorage.getItem(lsKey);
|
|
const def = parseFloat(local === null ? defaultValue : local);
|
|
let cb = (v) => {
|
|
stableDiffusionData[lsKey] = v;
|
|
if (lsKey) localStorage.setItem(lsKey, v);
|
|
};
|
|
if (valuecb) {
|
|
cb = (v) => {
|
|
valuecb(v);
|
|
localStorage.setItem(lsKey, v);
|
|
};
|
|
}
|
|
return createSlider(label, el, {
|
|
valuecb: cb,
|
|
min,
|
|
max,
|
|
step,
|
|
defaultValue: def,
|
|
textStep,
|
|
});
|
|
};
|
|
|
|
makeSlider(
|
|
"Resolution",
|
|
document.getElementById("resolution"),
|
|
"resolution",
|
|
64,
|
|
1024,
|
|
64,
|
|
512,
|
|
2,
|
|
(v) => {
|
|
stableDiffusionData.width = stableDiffusionData.height = v;
|
|
stableDiffusionData.firstphase_width =
|
|
stableDiffusionData.firstphase_height = v / 2;
|
|
}
|
|
);
|
|
makeSlider(
|
|
"CFG Scale",
|
|
document.getElementById("cfgScale"),
|
|
"cfg_scale",
|
|
-1,
|
|
25,
|
|
0.5,
|
|
7.0,
|
|
0.1
|
|
);
|
|
makeSlider(
|
|
"Batch Size",
|
|
document.getElementById("batchSize"),
|
|
"batch_size",
|
|
1,
|
|
8,
|
|
1,
|
|
2
|
|
);
|
|
makeSlider(
|
|
"Iterations",
|
|
document.getElementById("batchCount"),
|
|
"n_iter",
|
|
1,
|
|
8,
|
|
1,
|
|
2
|
|
);
|
|
makeSlider(
|
|
"Upscale X",
|
|
document.getElementById("upscaleX"),
|
|
"upscale_x",
|
|
1.0,
|
|
4.0,
|
|
0.1,
|
|
2.0,
|
|
0.1
|
|
);
|
|
|
|
makeSlider("Steps", document.getElementById("steps"), "steps", 1, 70, 5, 30, 1);
|
|
|
|
function changeMaskBlur() {
|
|
stableDiffusionData.mask_blur = parseInt(
|
|
document.getElementById("maskBlur").value
|
|
);
|
|
localStorage.setItem("mask_blur", stableDiffusionData.mask_blur);
|
|
}
|
|
|
|
function changeSeed() {
|
|
stableDiffusionData.seed = document.getElementById("seed").value;
|
|
localStorage.setItem("seed", stableDiffusionData.seed);
|
|
}
|
|
|
|
function changeHiResFix() {
|
|
stableDiffusionData.enable_hr = Boolean(
|
|
document.getElementById("cbxHRFix").checked
|
|
);
|
|
localStorage.setItem("enable_hr", stableDiffusionData.enable_hr);
|
|
}
|
|
function changeSmoothRendering() {
|
|
const layers = document.getElementById("layer-render");
|
|
if (document.getElementById("cbxSmooth").checked) {
|
|
layers.classList.remove("pixelated");
|
|
} else {
|
|
layers.classList.add("pixelated");
|
|
}
|
|
}
|
|
|
|
function isCanvasBlank(x, y, w, h, canvas) {
|
|
return !canvas
|
|
.getContext("2d")
|
|
.getImageData(x, y, w, h)
|
|
.data.some((channel) => channel !== 0);
|
|
}
|
|
|
|
function drawBackground() {
|
|
// Checkerboard
|
|
let darkTileColor = "#333";
|
|
let lightTileColor = "#555";
|
|
for (var x = 0; x < bgLayer.canvas.width; x += 64) {
|
|
for (var y = 0; y < bgLayer.canvas.height; y += 64) {
|
|
bgLayer.ctx.fillStyle =
|
|
(x + y) % 128 === 0 ? lightTileColor : darkTileColor;
|
|
bgLayer.ctx.fillRect(x, y, 64, 64);
|
|
}
|
|
}
|
|
}
|
|
|
|
function getUpscalers() {
|
|
/*
|
|
so for some reason when upscalers request returns upscalers, the real-esrgan model names are incorrect, and need to be fetched from /sdapi/v1/realesrgan-models
|
|
also the realesrgan models returned are not all correct, extra fun!
|
|
LDSR seems to have problems so we dont add that either -> RuntimeError: Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor
|
|
need to figure out why that is, if you dont get this error then you can add it back in
|
|
|
|
Hacky way to get the correct list all in one go is to purposefully make an incorrect request, which then returns
|
|
{ detail: "Invalid upscaler, needs to be on of these: None , Lanczos , Nearest , LDSR , BSRGAN , R-ESRGAN General 4xV3 , R-ESRGAN 4x+ Anime6B , ScuNET , ScuNET PSNR , SwinIR_4x" }
|
|
from which we can extract the correct list of upscalers
|
|
*/
|
|
|
|
// hacky way to get the correct list of upscalers
|
|
var upscalerSelect = document.getElementById("upscalers");
|
|
var extras_url =
|
|
document.getElementById("host").value + "/sdapi/v1/extra-single-image/"; // endpoint for upscaling, needed for the hacky way to get the correct list of upscalers
|
|
var empty_image = new Image(512, 512);
|
|
empty_image.src =
|
|
""; //transparent pixel
|
|
var purposefully_incorrect_data = {
|
|
"resize-mode": 0, // 0 = just resize, 1 = crop and resize, 2 = resize and fill i assume based on theimg2img tabs options
|
|
upscaling_resize: 2,
|
|
upscaler_1: "fake_upscaler",
|
|
image: empty_image.src,
|
|
};
|
|
|
|
fetch(extras_url, {
|
|
method: "POST",
|
|
headers: {
|
|
Accept: "application/json",
|
|
"Content-Type": "application/json",
|
|
},
|
|
body: JSON.stringify(purposefully_incorrect_data),
|
|
})
|
|
.then((response) => response.json())
|
|
.then((data) => {
|
|
console.log("purposefully_incorrect_data response, ignore above error");
|
|
// result = purposefully_incorrect_data response: Invalid upscaler, needs to be on of these: None , Lanczos , Nearest , LDSR , BSRGAN , R-ESRGAN General 4xV3 , R-ESRGAN 4x+ Anime6B , ScuNET , ScuNET PSNR , SwinIR_4x
|
|
let upscalers = data.detail.split(": ")[1].trim().split(" , "); // converting the result to a list of upscalers
|
|
for (var i = 0; i < upscalers.length; i++) {
|
|
// if(upscalers[i] == "LDSR") continue; // Skip LDSR, see reason in the first comment // readded because worksonmymachine.jpg but leaving it here in case of, uh, future disaster?
|
|
var option = document.createElement("option");
|
|
option.text = upscalers[i];
|
|
option.value = upscalers[i];
|
|
upscalerSelect.add(option);
|
|
}
|
|
});
|
|
|
|
/* THE NON HACKY WAY THAT I SIMPLY COULD NOT GET TO PRODUCE A LIST WITHOUT NON WORKING UPSCALERS, FEEL FREE TO TRY AND FIGURE IT OUT
|
|
|
|
var url = document.getElementById("host").value + "/sdapi/v1/upscalers";
|
|
var realesrgan_url = document.getElementById("host").value + "/sdapi/v1/realesrgan-models";
|
|
|
|
// get upscalers
|
|
fetch(url)
|
|
.then((response) => response.json())
|
|
.then((data) => {
|
|
console.log(data);
|
|
|
|
for (var i = 0; i < data.length; i++) {
|
|
var option = document.createElement("option");
|
|
|
|
if (data[i].name.includes("ESRGAN") || data[i].name.includes("LDSR")) {
|
|
continue;
|
|
}
|
|
option.text = data[i].name;
|
|
upscalerSelect.add(option);
|
|
}
|
|
})
|
|
.catch((error) => {
|
|
alert(
|
|
"Error getting upscalers, please check console for additional info\n" +
|
|
error
|
|
);
|
|
});
|
|
// fetch realesrgan models separately
|
|
fetch(realesrgan_url)
|
|
.then((response) => response.json())
|
|
.then((data) => {
|
|
var model = data;
|
|
for(var i = 0; i < model.length; i++){
|
|
let option = document.createElement("option");
|
|
option.text = model[i].name;
|
|
option.value = model[i].name;
|
|
upscalerSelect.add(option);
|
|
|
|
}
|
|
|
|
})
|
|
*/
|
|
}
|
|
|
|
async function getModels() {
|
|
var modelSelect = document.getElementById("models");
|
|
var url = document.getElementById("host").value + "/sdapi/v1/sd-models";
|
|
await fetch(url)
|
|
.then((response) => response.json())
|
|
.then((data) => {
|
|
//console.log(data); All models
|
|
for (var i = 0; i < data.length; i++) {
|
|
var option = document.createElement("option");
|
|
option.text = data[i].model_name;
|
|
option.value = data[i].title;
|
|
modelSelect.add(option);
|
|
}
|
|
});
|
|
|
|
// get currently loaded model
|
|
|
|
await fetch(document.getElementById("host").value + "/sdapi/v1/options")
|
|
.then((response) => response.json())
|
|
.then((data) => {
|
|
var model = data.sd_model_checkpoint;
|
|
console.log("Current model: " + model);
|
|
modelSelect.value = model;
|
|
});
|
|
}
|
|
|
|
function changeModel() {
|
|
// change the model
|
|
console.log("changing model to " + document.getElementById("models").value);
|
|
var model_title = document.getElementById("models").value;
|
|
var payload = {
|
|
sd_model_checkpoint: model_title,
|
|
};
|
|
var url = document.getElementById("host").value + "/sdapi/v1/options/";
|
|
fetch(url, {
|
|
method: "POST",
|
|
mode: "cors", // no-cors, *cors, same-origin
|
|
cache: "default", // *default, no-cache, reload, force-cache, only-if-cached
|
|
credentials: "same-origin", // include, *same-origin, omit
|
|
redirect: "follow", // manual, *follow, error
|
|
referrerPolicy: "no-referrer", // no-referrer, *no-referrer-when-downgrade, origin, origin-when-cross-origin, same-origin, strict-origin, strict-origin-when-cross-origin, unsafe-url
|
|
headers: {
|
|
Accept: "application/json",
|
|
"Content-Type": "application/json",
|
|
},
|
|
body: JSON.stringify(payload),
|
|
})
|
|
.then((response) => response.json())
|
|
.then(() => {
|
|
alert("Model changed to " + model_title);
|
|
})
|
|
.catch((error) => {
|
|
alert(
|
|
"Error changing model, please check console for additional info\n" +
|
|
error
|
|
);
|
|
});
|
|
}
|
|
|
|
async function getConfig() {
|
|
var url = document.getElementById("host").value + "/sdapi/v1/options";
|
|
|
|
let message =
|
|
"The following options for the AUTOMATIC1111's webui are not recommended to use with this software:";
|
|
|
|
try {
|
|
const response = await fetch(url);
|
|
|
|
const data = await response.json();
|
|
|
|
let wrong = false;
|
|
|
|
// Check if img2img color correction is disabled and inpainting mask weight is set to one
|
|
// TODO: API Seems bugged for retrieving inpainting mask weight - returning 0 for all values different than 1.0
|
|
if (data.img2img_color_correction) {
|
|
message += "\n - Image to Image Color Correction: false recommended";
|
|
wrong = true;
|
|
}
|
|
|
|
if (data.inpainting_mask_weight < 1.0) {
|
|
message += `\n - Inpainting Conditioning Mask Strength: 1.0 recommended`;
|
|
wrong = true;
|
|
}
|
|
|
|
message += "\n\nShould these values be changed to the recommended ones?";
|
|
|
|
if (!wrong) {
|
|
console.info("[index] WebUI Settings set as recommended.");
|
|
return;
|
|
}
|
|
|
|
console.info(
|
|
"[index] WebUI Settings not set as recommended. Prompting for changing settings automatically."
|
|
);
|
|
|
|
if (!confirm(message)) return;
|
|
|
|
try {
|
|
await fetch(url, {
|
|
method: "POST",
|
|
headers: {
|
|
"Content-Type": "application/json",
|
|
},
|
|
body: JSON.stringify({
|
|
img2img_color_correction: false,
|
|
inpainting_mask_weight: 1.0,
|
|
}),
|
|
});
|
|
} catch (e) {
|
|
console.warn("[index] Failed to fetch WebUI Configuration");
|
|
console.warn(e);
|
|
}
|
|
} catch (e) {
|
|
console.warn("[index] Failed to fetch WebUI Configuration");
|
|
console.warn(e);
|
|
}
|
|
}
|
|
|
|
async function getStyles() {
|
|
/** @type {HTMLSelectElement} */
|
|
var styleSelect = document.getElementById("styleSelect");
|
|
var url = document.getElementById("host").value + "/sdapi/v1/prompt-styles";
|
|
try {
|
|
const response = await fetch(url);
|
|
/** @type {{name: string, prompt: string, negative_prompt: string}[]} */
|
|
const data = await response.json();
|
|
|
|
/** @type {string[]} */
|
|
let stored = null;
|
|
try {
|
|
stored = JSON.parse(localStorage.getItem("promptStyle"));
|
|
// doesn't seem to throw a syntaxerror if the localstorage item simply doesn't exist?
|
|
if (stored == null) stored = [];
|
|
} catch (e) {
|
|
stored = [];
|
|
}
|
|
|
|
data.forEach((style) => {
|
|
const option = document.createElement("option");
|
|
option.classList.add("style-select-option");
|
|
option.text = style.name;
|
|
option.value = style.name;
|
|
option.title = `prompt: ${style.prompt}\nnegative: ${style.negative_prompt}`;
|
|
if (stored.length === 0) option.selected = style.name === "None";
|
|
else
|
|
option.selected = !!stored.find(
|
|
(styleName) => style.name === styleName
|
|
);
|
|
|
|
styleSelect.add(option);
|
|
});
|
|
|
|
changeStyles();
|
|
|
|
stored.forEach((styleName, index) => {
|
|
if (!data.findIndex((style) => style.name === styleName)) {
|
|
stored.splice(index, 1);
|
|
}
|
|
});
|
|
localStorage.setItem("promptStyle", JSON.stringify(stored));
|
|
} catch (e) {
|
|
console.warn("[index] Failed to fetch prompt styles");
|
|
console.warn(e);
|
|
}
|
|
}
|
|
|
|
function changeStyles() {
|
|
/** @type {HTMLSelectElement} */
|
|
const styleSelectEl = document.getElementById("styleSelect");
|
|
const selected = Array.from(styleSelectEl.options).filter(
|
|
(option) => option.selected
|
|
);
|
|
let selectedString = selected.map((option) => option.value);
|
|
|
|
if (selectedString.find((selected) => selected === "None")) {
|
|
selectedString = [];
|
|
Array.from(styleSelectEl.options).forEach((option) => {
|
|
if (option.value !== "None") option.selected = false;
|
|
});
|
|
}
|
|
|
|
localStorage.setItem("promptStyle", JSON.stringify(selectedString));
|
|
|
|
// change the model
|
|
if (selectedString.length > 0)
|
|
console.log(`[index] Changing styles to ${selectedString.join(", ")}`);
|
|
else console.log(`[index] Clearing styles`);
|
|
stableDiffusionData.styles = selectedString;
|
|
}
|
|
|
|
function getSamplers() {
|
|
var samplerSelect = document.getElementById("samplerSelect");
|
|
var url = document.getElementById("host").value + "/sdapi/v1/samplers";
|
|
fetch(url)
|
|
.then((response) => response.json())
|
|
.then((data) => {
|
|
//console.log(data); All samplers
|
|
for (var i = 0; i < data.length; i++) {
|
|
// PLMS SAMPLER DOES NOT WORK FOR ANY IMAGES BEYOND FOR THE INITIAL IMAGE (for me at least), GIVES ASGI Exception; AttributeError: 'PLMSSampler' object has no attribute 'stochastic_encode'
|
|
|
|
var option = document.createElement("option");
|
|
option.text = data[i].name;
|
|
option.value = data[i].name;
|
|
samplerSelect.add(option);
|
|
}
|
|
if (localStorage.getItem("sampler") != null) {
|
|
samplerSelect.value = localStorage.getItem("sampler");
|
|
} else {
|
|
// needed now, as hardcoded sampler cant be guaranteed to be in the list
|
|
samplerSelect.value = data[0].name;
|
|
localStorage.setItem("sampler", samplerSelect.value);
|
|
}
|
|
})
|
|
.catch((error) => {
|
|
alert(
|
|
"Error getting samplers, please check console for additional info\n" +
|
|
error
|
|
);
|
|
});
|
|
}
|
|
async function upscaleAndDownload() {
|
|
// Future improvements: some upscalers take a while to upscale, so we should show a loading bar or something, also a slider for the upscale amount
|
|
|
|
// get cropped canvas, send it to upscaler, download result
|
|
var upscale_factor = localStorage.getItem("upscale_x")
|
|
? localStorage.getItem("upscale_x")
|
|
: 2;
|
|
var upscaler = document.getElementById("upscalers").value;
|
|
var croppedCanvas = cropCanvas(
|
|
uil.getVisible({
|
|
x: 0,
|
|
y: 0,
|
|
w: imageCollection.size.w,
|
|
h: imageCollection.size.h,
|
|
})
|
|
);
|
|
if (croppedCanvas != null) {
|
|
var upscaler = document.getElementById("upscalers").value;
|
|
var url =
|
|
document.getElementById("host").value + "/sdapi/v1/extra-single-image/";
|
|
var imgdata = croppedCanvas.canvas.toDataURL("image/png");
|
|
var data = {
|
|
"resize-mode": 0, // 0 = just resize, 1 = crop and resize, 2 = resize and fill i assume based on theimg2img tabs options
|
|
upscaling_resize: upscale_factor,
|
|
upscaler_1: upscaler,
|
|
image: imgdata,
|
|
};
|
|
console.log(data);
|
|
await fetch(url, {
|
|
method: "POST",
|
|
headers: {
|
|
Accept: "application/json",
|
|
"Content-Type": "application/json",
|
|
},
|
|
body: JSON.stringify(data),
|
|
})
|
|
.then((response) => response.json())
|
|
.then((data) => {
|
|
console.log(data);
|
|
var link = document.createElement("a");
|
|
link.download =
|
|
new Date()
|
|
.toISOString()
|
|
.slice(0, 19)
|
|
.replace("T", " ")
|
|
.replace(":", " ") +
|
|
" openOutpaint image upscaler_" +
|
|
upscaler +
|
|
"_x" +
|
|
upscale_factor +
|
|
".png";
|
|
link.href = "data:image/png;base64," + data["image"];
|
|
link.click();
|
|
});
|
|
}
|
|
}
|
|
|
|
function loadSettings() {
|
|
// set default values if not set
|
|
var _prompt =
|
|
localStorage.getItem("prompt") == null
|
|
? "ocean floor scientific expedition, underwater wildlife"
|
|
: localStorage.getItem("prompt");
|
|
var _negprompt =
|
|
localStorage.getItem("neg_prompt") == null
|
|
? "people, person, humans, human, divers, diver, glitch, error, text, watermark, bad quality, blurry"
|
|
: localStorage.getItem("neg_prompt");
|
|
var _sampler =
|
|
localStorage.getItem("sampler") == null
|
|
? "DDIM"
|
|
: localStorage.getItem("sampler");
|
|
var _mask_blur =
|
|
localStorage.getItem("mask_blur") == null
|
|
? 0
|
|
: localStorage.getItem("mask_blur");
|
|
var _seed =
|
|
localStorage.getItem("seed") == null ? -1 : localStorage.getItem("seed");
|
|
var _enable_hr = Boolean(
|
|
localStorage.getItem("enable_hr") == (null || "false")
|
|
? false
|
|
: localStorage.getItem("enable_hr")
|
|
);
|
|
|
|
// set the values into the UI
|
|
document.getElementById("prompt").value = String(_prompt);
|
|
document.getElementById("prompt").title = String(_prompt);
|
|
document.getElementById("negPrompt").value = String(_negprompt);
|
|
document.getElementById("negPrompt").title = String(_negprompt);
|
|
document.getElementById("samplerSelect").value = String(_sampler);
|
|
document.getElementById("maskBlur").value = Number(_mask_blur);
|
|
document.getElementById("seed").value = Number(_seed);
|
|
document.getElementById("cbxHRFix").checked = Boolean(_enable_hr);
|
|
}
|
|
|
|
imageCollection.element.addEventListener(
|
|
"wheel",
|
|
(evn) => {
|
|
evn.preventDefault();
|
|
},
|
|
{passive: false}
|
|
);
|
|
|
|
imageCollection.element.addEventListener(
|
|
"contextmenu",
|
|
(evn) => {
|
|
evn.preventDefault();
|
|
},
|
|
{passive: false}
|
|
);
|
|
|
|
function resetToDefaults() {
|
|
if (confirm("Are you sure you want to clear your settings?")) {
|
|
localStorage.clear();
|
|
}
|
|
}
|